memory.c
21.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
/**
* \file This holds all stufff related our memory managent.
* I try the best as far as I can to reduce memory fragmentation
* and unneccessary calls to alloc and free.
*
* To achive this I try an approach described here as "Quick Fit".
* http://www.flounder.com/memory_allocation.htm
*
* The basic idea is to keep allocated memory segments and don't free
* them again. Instead I will put them in a tree indexed by their size.
* To get new memory I first have a look in the tree if there is
* a fitting memory segment. Fitting mean, larger or exactly the size
* I need. If there is one, use it. If not create a new one using
* usual malloc approach.
* I won't split the reagions at all because most likely they will be
* free soon again. This way I might waste some memory, so I have to
* keep an eye on this.
*
* Right now I don't build an upper limit for allocation. The limit
* still is the system memory itself.
*
* This is not implemented as a class because it will be used in the
* process of object creation.
*
* The data structure is a balanced tree with size as key.
* Under the size key is a list of elements of the same size.
*
* \author Georg Hopp
*
* \copyright
* Copyright © 2012 Georg Hopp
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <search.h>
#include <unistd.h>
#include "tr/memory.h"
enum rbColor {rbBlack=1, rbRed=2};
struct memSegment
{
size_t ref_count;
size_t size;
void * ptr;
enum rbColor color;
struct memSegment * next;
struct memSegment * last;
struct memSegment * parent;
struct memSegment * left;
struct memSegment * right;
};
static
struct memSegment *
newElement(size_t size)
{
struct memSegment * element = malloc(size);
element->ref_count = 1;
element->size = size;
element->ptr = (void*)element + sizeof(struct memSegment);
element->next = NULL;
element->last = NULL;
element->color = rbRed;
element->parent = NULL;
element->left = NULL;
element->right = NULL;
return element;
}
/**
* find element in tree
*/
static
struct memSegment *
findElement(struct memSegment * tree, size_t size)
{
struct memSegment * fitting = NULL;
while (NULL != tree) {
if (tree->size == size) {
fitting = tree;
break;
}
if (size > tree->size) {
tree = tree->right;
} else {
fitting = tree;
tree = tree->left;
}
}
return fitting;
}
/*
* function to get specific elements needed for
* rb handling, grandparent, uncle and sibbling
*/
static
struct memSegment *
grandparent(struct memSegment * node)
{
if (NULL != node && NULL != node->parent) {
return node->parent->parent;
}
return NULL;
}
static
struct memSegment *
uncle(struct memSegment * node)
{
struct memSegment * gp = grandparent(node);
if (NULL == gp) {
return NULL;
}
if (node->parent == gp->left) {
return gp->right;
}
return gp->left;
}
static
struct memSegment *
sibling(struct memSegment * node)
{
if (NULL == node) {
return NULL;
}
if (NULL == node->parent->left || node == node->parent->left) {
return node->parent->right;
} else {
return node->parent->left;
}
}
/*
* tree modifications...needed for rb handling.
*/
static
void
rotateLeft(struct memSegment ** tree, struct memSegment * node)
{
struct memSegment * rightChild = node->right;
struct memSegment * rcLeftSub = node->right->left;
rightChild->left = node;
rightChild->parent = node->parent;
node->right = rcLeftSub;
if (NULL != rcLeftSub) {
rcLeftSub->parent = node;
}
if (node->parent) {
if (node->parent->left == node) {
node->parent->left = rightChild;
} else {
node->parent->right = rightChild;
}
} else {
*tree = rightChild;
}
node->parent = rightChild;
}
static
void
rotateRight(struct memSegment ** tree, struct memSegment * node)
{
struct memSegment * leftChild = node->left;
struct memSegment * lcRightSub = node->left->right;
leftChild->right = node;
leftChild->parent = node->parent;
node->left = lcRightSub;
if (NULL != lcRightSub) {
lcRightSub->parent = node;
}
if (node->parent) {
if (node->parent->left == node) {
node->parent->left = leftChild;
} else {
node->parent->right = leftChild;
}
} else {
*tree = leftChild;
}
node->parent = leftChild;
}
static
void
replaceNode(
struct memSegment ** tree,
struct memSegment * node1,
struct memSegment * node2)
{
if (NULL != node1->parent) {
if (node1 == node1->parent->left) {
node1->parent->left = node2;
} else {
node1->parent->right = node2;
}
} else {
*tree = node2;
}
if (NULL != node2) {
node2->parent = node1->parent;
}
}
/**
* insert element in tree
*/
static
struct memSegment *
insertElement(struct memSegment ** tree, struct memSegment * element)
{
struct memSegment * node = *tree;
struct memSegment * new_node = NULL;
struct memSegment * u;
struct memSegment * g;
element->next = NULL;
element->last = NULL;
element->color = rbRed;
element->parent = NULL;
element->left = NULL;
element->right = NULL;
// if tree is empty it's simple... :)
if (NULL == node) {
*tree = node = new_node = element;
} else {
// normal binary tree add....
while (NULL != node) {
if (element->size < node->size) {
if (NULL == node->left) {
node->left = element;
node->left->parent = node;
new_node = node = node->left;
break;
} else {
node = node->left;
}
} else if (element->size > node->size) {
if (NULL == node->right) {
node->right = element;
node->right->parent = node;
new_node = node = node->right;
break;
} else {
node = node->right;
}
} else {
if (NULL == node->next) {
node->next = element;
node->last = element;
} else {
node->last->next = element;
node->last = element;
}
return node;
}
}
}
if (NULL != new_node) {
/*
* handle reballancing rb style
*/
while (1) {
// case 1
if (node->parent == NULL) {
node->color = rbBlack;
// we're done.... :)
break;
}
// case 2
if (node->parent->color == rbBlack) {
// Tree is still valid ... wow, again we're done... :)
break;
}
// case 3
u = uncle(node);
g = grandparent(node);
if (u != NULL && u->color == rbRed) {
node->parent->color = rbBlack;
u->color = rbBlack;
g->color = rbRed;
node = g;
continue;
}
// case 4
if (node == node->parent->right && node->parent == g->left) {
rotateLeft(tree, node->parent);
node = node->left;
} else if (node == node->parent->left && node->parent == g->right) {
rotateRight(tree, node->parent);
node = node->right;
}
// case 5
g = grandparent(node);
node->parent->color = rbBlack;
g->color = rbRed;
if (node == node->parent->left) {
rotateRight(tree, g);
} else {
rotateLeft(tree, g);
}
// we're done..
break;
}
}
return new_node;
}
/**
* delete element from tree
* here multiple functions are involved....
* =======================================================================
*/
/**
* find minimum of the right subtree aka leftmost leaf of right subtree
* aka left in-order successor.
* We return the parent of the element in the out argument parent.
* This can be NULL wenn calling.
*
* 2: *successor = {size = 80, ptr = 0x603ae0, color = rbRed, parent = 0x603160,
* left = 0x0, right = 0x0}
* 1: *node = {size = 70, ptr = 0x603a60, color = rbBlack, parent = 0x603070,
* left = 0x6030e0, right = 0x6031e0}
*
*/
static
struct memSegment *
findInOrderSuccessor(struct memSegment * tree)
{
struct memSegment * node = tree->right;
while (NULL != node->left) {
node = node->left;
}
return node;
}
static
struct memSegment *
deleteElement(struct memSegment ** tree, struct memSegment * element)
{
struct memSegment * node = *tree;
struct memSegment * del_node;
struct memSegment * child;
struct memSegment * s;
// find the relevant node and it's parent
while (NULL != node) {
if (element->size < node->size) {
node = node->left;
} else if (element->size > node->size) {
node = node->right;
} else {
if (NULL != node->next) {
if (NULL != node->parent) {
if (node == node->parent->left) {
node->parent->left = node->next;
} else {
node->parent->right = node->next;
}
} else {
*tree = node->next;
}
if (NULL != node->left) {
node->left->parent = node->next;
}
if (NULL != node->right) {
node->right->parent = node->next;
}
node->next->last = node->last;
node->next->color = node->color;
node->next->parent = node->parent;
node->next->left = node->left;
node->next->right = node->right;
return node;
}
break;
}
}
// element not found
if (NULL == node) {
return node;
}
del_node = node;
// now our cases follows...the first one is the same as with
// simple binary search trees. Two non null children.
// case 1: two children
if (NULL != node->left && NULL != node->right) {
struct memSegment * successor = findInOrderSuccessor(node);
enum rbColor tmpcolor = successor->color;
struct memSegment * tmpparent = successor->parent;
struct memSegment * tmpleft = successor->left;
struct memSegment * tmpright = successor->right;
replaceNode(tree, node, successor);
successor->color = node->color;
successor->left = node->left;
successor->left->parent = successor;
// the right one might be successor...
if (node->right == successor) {
successor->right = node;
node->parent = successor;
} else {
successor->right = node->right;
node->right->parent = successor;
node->parent = tmpparent;
tmpparent->left = node;
}
node->color = tmpcolor;
node->left = tmpleft;
node->right = tmpright;
}
// Precondition: n has at most one non-null child.
child = (NULL == node->right) ? node->left : node->right;
replaceNode(tree, node, child);
// delete one child case
// TODO this is overly complex as simply derived from the function...
// maybe this can be simplified. Maybe not...check.
if (node->color == rbBlack) {
if (NULL != child && child->color == rbRed) {
child->color = rbBlack;
// done despite modifying tree itself if neccessary..
return del_node;
} else {
if (NULL != child) {
node = child;
} else {
node->color = rbBlack;
node->left = NULL;
node->right = NULL;
}
}
} else {
return del_node;
}
// delete and rb rebalance...
while(1) {
// case 1
if (NULL == node->parent) {
// done again
break;
}
// case 2
s = sibling(node);
if (NULL != s && s->color == rbRed) {
node->parent->color = rbRed;
s->color = rbBlack;
/*
* detect which child we are...assumption
* if we are not parent->right and parent->right is not
* null we must be left, even if its set to NULL previously
*/
if (NULL != node->parent->right && node != node->parent->right) {
rotateLeft(tree, node->parent);
} else {
rotateRight(tree, node->parent);
}
}
s = sibling(node);
// case 3 / 4
if (NULL == s || ((s->color == rbBlack) &&
(NULL == s->left || s->left->color == rbBlack) &&
(NULL == s->right || s->right->color == rbBlack))) {
if (NULL != s) {
s->color = rbRed;
}
if (node->parent->color == rbBlack) {
// case 3
node = node->parent;
continue;
} else {
// case 4
node->parent->color = rbBlack;
// and done again...
break;
}
}
// case 5
if (NULL != s && s->color == rbBlack) {
// this if statement is trivial,
// due to case 2 (even though case 2 changed the sibling to a
// sibling's child,
// the sibling's child can't be red, since no red parent can
// have a red child).
//
// the following statements just force the red to be on the
// left of the left of the parent,
// or right of the right, so case 6 will rotate correctly.
if ((node == node->parent->left) &&
(NULL == s->right || s->right->color == rbBlack) &&
(NULL != s->left && s->left->color == rbRed)) {
// this last test is trivial too due to cases 2-4.
s->color = rbRed;
s->left->color = rbBlack;
rotateRight(tree, s);
} else if ((node == node->parent->right) &&
(NULL == s->left || s->left->color == rbBlack) &&
(NULL != s->right && s->right->color == rbRed)) {
// this last test is trivial too due to cases 2-4.
s->color = rbRed;
s->right->color = rbBlack;
rotateLeft(tree, s);
}
}
s = sibling(node);
// case 6
if (NULL != s) {
s->color = node->parent->color;
}
if (NULL != node && NULL != node->parent) {
node->parent->color = rbBlack;
/*
* detect which child we are...assumption
* if we are not parent->right and parent->right is not
* null we must be left, even if its set to NULL previously
*/
if (NULL != node->parent->right && node != node->parent->right) {
if (NULL != s->right) {
s->right->color = rbBlack;
}
rotateLeft(tree, node->parent);
} else {
if (NULL != s->left) {
s->left->color = rbBlack;
}
rotateRight(tree, node->parent);
}
}
// done...
break;
}
return del_node;
}
static
void
post(struct memSegment * tree, void (*cb)(struct memSegment *, int))
{
struct memSegment * previous = tree;
struct memSegment * node = tree;
int depth = 1;
/*
* I think this has something like O(n+log(n)) on a ballanced
* tree because I have to traverse back the rightmost leaf to
* the root to get a break condition.
*/
while (node) {
/*
* If we come from the right so nothing and go to our
* next parent.
*/
if (((NULL == node->left || previous == node->left)
&& NULL == node->right)
|| previous == node->right) {
struct memSegment * parent = node->parent;
cb(node, depth);
previous = node;
node = parent;
depth--;
continue;
}
if ((NULL == node->left || previous == node->left)) {
/*
* If there are no more elements to the left or we
* came from the left, process data.
*/
previous = node;
if (NULL != node->right) {
node = node->right;
depth++;
} else {
node = node->parent;
depth--;
}
} else {
/*
* if there are more elements to the left go there.
*/
previous = node;
node = node->left;
depth++;
}
}
}
static
struct memSegment * segments = NULL;
static
void
segmentFree(struct memSegment * segment, int depth)
{
while (NULL != segment) {
struct memSegment * next = segment->next;
free(segment);
segment = next;
}
}
void *
TR_reference(void * mem)
{
struct memSegment * seg = (mem - sizeof(struct memSegment));
seg->ref_count++;
return mem;
}
/*
* This tries to reflect the memory management behaviour of the
* GNU version of malloc. For other versions this might need
* to be changed to be optimal.
*
* However, GNU malloc keeps separate pools for each power of
* 2 memory size up to page size. So one page consists all of
* memory blocks of the same sizei (a power of 2).
*
* Also as far as I understand the smallest allocatable block is
* 8 bytes. At least the adresses are alwayse a multiple of 8.
*
* So lets say page size is 4096. There is nothing allocated
* right now. We allocate a block of 8 bytes. This will request
* a memory page from the OS. Then define it as a page containing
* 8 byte blocks and return the address of the first one of these.
* Any subsequent call to malloc for 8 bytes will return one of the
* blocks within this page as long as there are some left.
*
* So what we do here is up to page size round the request size up
* to the next power of 2 >= 8.
* Sizes greater then pagesize will be round up to the next
* multiple of pagesize. As far as I understand these are not
* pooled anyway.
*
* For now this assumes we are on a little endian machine.
*/
void *
TR_malloc(size_t size)
{
struct memSegment * seg = NULL;
long psize = sysconf(_SC_PAGESIZE);
size += sizeof(struct memSegment);
if (size > psize) {
if (0 != (size % psize)) {
// size if not a multiple of pagesize so bring it to one.
size = ((size / psize) + 1) * psize;
}
} else {
if (size < 8) {
size = 8;
} else {
size_t check = size;
size_t mask = 1;
while (check >>= 1) {
mask = (mask << 1) | 1;
}
size = (size << 1) & ~mask;
}
}
#ifdef MEM_OPT
seg = findElement(segments, size);
#endif
if (NULL == seg) {
seg = newElement(size);
} else {
// remove the found one from the tree as we use it now.
seg = deleteElement(&segments, seg);
}
return seg->ptr;
}
/**
* this is a really memory wasting solution....just to be able to
* use calloc, which might be faster then malloc/memset solution.
*
* Maybe this is a bad idea, as we need to memset the buffer anyway
* if it comes from our tree, which hopefully should be the majority
* of cases.
*/
void *
TR_calloc(size_t nmemb, size_t size)
{
size_t _size = nmemb * size;
void * mem = TR_malloc(_size);
memset(mem, 0, _size);
return mem;
}
void
TR_free(void ** mem)
{
if (NULL != *mem) {
struct memSegment * seg = (*mem - sizeof(struct memSegment));
if (1 < seg->ref_count) {
seg->ref_count--;
} else {
#ifdef MEM_OPT
insertElement(&segments, seg);
#else
free(seg);
#endif
}
*mem = NULL;
}
}
size_t
TR_getSize(void * mem)
{
struct memSegment * segment;
if (NULL == mem) {
return 0;
}
segment = (struct memSegment *)(mem - sizeof(struct memSegment));
return segment->size;
}
void
TR_cleanup()
{
#ifdef MEM_OPT
post(segments, segmentFree);
#endif
}
// vim: set ts=4 sw=4: