memory.c 12.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/**
 * \file This holds all stufff related our memory managent.
 * I try the best as far as I can to reduce memory fragmentation
 * and unneccessary calls to alloc and free.
 *
 * To achive this I try an approach described here as "Quick Fit".
 * http://www.flounder.com/memory_allocation.htm
 *
 * The basic idea is to keep allocated memory segments and don't free
 * them again. Instead I will put them in a tree indexed by their size.
 * To get new memory I first have a look in the tree if there is
 * a fitting memory segment. Fitting mean, larger or exactly the size
 * I need. If there is one, use it. If not create a new one using 
 * usual malloc approach.
 * I won't split the reagions at all because most likely they will be
 * free soon again. This way I might waste some memory, so I have to
 * keep an eye on this.
 *
 * Right now I don't build an upper limit for allocation. The limit
 * still is the system memory itself.
 *
 * This is not implemented as a class because it will be used in the 
 * process of object creation.
 *
 * The data structure is a balanced tree with size as key.
 * Under the size key is a list of elements of the same size.
 *
 * \author	Georg Hopp
 *
 * \copyright
 * Copyright © 2012  Georg Hopp
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#define _GNU_SOURCE

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <search.h>
#include <unistd.h>

#include "tr/memory.h"
#include "tr/tree_macros.h"


struct memSegment
{
	size_t   ref_count;
    size_t   size;
    void   * ptr;

    TR_rbColor color;

	struct memSegment * data;

    struct memSegment * next;
    struct memSegment * last;

    struct memSegment * parent;
    struct memSegment * left;
    struct memSegment * right;
};

static
struct memSegment *
newElement(size_t size)
{
    struct memSegment * element = malloc(size);

	element->ref_count = 1;
    element->size      = size;
    element->ptr       = (void*)element + sizeof(struct memSegment);

	element->data      = element;

    element->next      = NULL;
    element->last      = NULL;

    element->color     = rbRed;
    element->parent    = NULL;
    element->left      = NULL;
    element->right     = NULL;

    return element;
}

static
int
_memSegmentFindCompare(const void * a, const void * b)
{
    struct memSegment * _a = (struct memSegment *)a;
    size_t              _b = *(size_t *)b;

    /*
     * find the smallest bigger or equal size segment
     */
    return _a->size < _b ? -1
        : _a->size > _b && _a->left && _a->left->size >= _b ? 1 : 0;
}

static
int
_memSegmentCompare(const void * a, const void * b)
{
    size_t _a = ((struct memSegment *)a)->size;
    size_t _b = ((struct memSegment *)b)->size;

    return _a < _b ? -1 : _a > _b ? 1 : 0;
}

/**
 * insert element in tree
 */
static
struct memSegment *
insertElement(struct memSegment ** tree, struct memSegment * element)
{
    struct memSegment * node     = *tree;
    struct memSegment * new_node = NULL;
	int                 found;

    element->next   = NULL;
    element->last   = NULL;

    element->color  = rbRed;
    element->parent = NULL;
    element->left   = NULL;
    element->right  = NULL;

	TR_TREE_FIND(node, element, found, _memSegmentCompare);

    // if tree is empty it's simple... :)
    if (NULL == node) {
        *tree = node = new_node = element;
	} else {
		// normal binary tree add....
		if (found == 0) {
			if (NULL == node->next) {
				node->next = element;
				node->last = element;
			} else {
                node->last->next = element;
                node->last       = element;
			}
			return node;
		} else {
			if (0 < found) {
				node->left         = element;
				node->left->parent = node;
				new_node = node = node->left;
			} else {
				node->right         = element;
				node->right->parent = node;
				new_node = node = node->right;

			}
		}
	}

	/* 
	 * handle reballancing rb style
	 */
	TR_TREE_BALANCE_INSERT(tree, node);

    return new_node;
}

static
struct memSegment *
deleteElement(struct memSegment ** tree, size_t size)
{
    struct memSegment * node = *tree;
    struct memSegment * del_node;
    struct memSegment * child;
    struct memSegment * s;
	int                 found;

    // find the relevant node and it's parent
	TR_TREE_FIND(node, &size, found, _memSegmentFindCompare);

	//while (node) {
    if (found != 0) {
		return NULL;
	} else {
		if (NULL != node->next) {
			if (NULL != node->parent) {
				if (node == node->parent->left) {
					node->parent->left = node->next;
				} else {
					node->parent->right = node->next;
				}
			} else {
				*tree = node->next;
			}

			if (NULL != node->left) {
				node->left->parent = node->next;
			}

			if (NULL != node->right) {
				node->right->parent = node->next;
			}
			
			node->next->last   = node->last;
			node->next->color  = node->color;
			node->next->parent = node->parent;
			node->next->left   = node->left;
			node->next->right  = node->right;

			return node;
		}
	}

    del_node = node;

    // now our cases follows...the first one is the same as with
    // simple binary search trees. Two non null children.

    // case 1: two children
    if (NULL != node->left && NULL != node->right) {
        struct memSegment * successor;
        struct memSegment * tmpparent;
        struct memSegment * tmpleft;
        struct memSegment * tmpright;
        TR_rbColor tmpcolor;

        TR_TREE_INORDER_SUCC(node, successor);
        tmpparent = successor->parent;
        tmpleft   = successor->left;
        tmpright  = successor->right;
        tmpcolor  = successor->color;

        TR_TREE_REPLACE_NODE(tree, node, successor);

        successor->color        = node->color;
        successor->left         = node->left;
        successor->left->parent = successor;
        // the right one might be successor...
        if (node->right == successor) {
            successor->right = node;
            node->parent     = successor;
        } else {
            successor->right    = node->right;
            node->right->parent = successor;
            node->parent        = tmpparent;
            tmpparent->left     = node;
        }

        node->color  = tmpcolor;
        node->left   = tmpleft;
        node->right  = tmpright;
    }

    // Precondition: n has at most one non-null child.
    child = (NULL == node->right) ? node->left : node->right;
    TR_TREE_REPLACE_NODE(tree, node, child);

    // delete one child case
    // TODO this is overly complex as simply derived from the function...
    // maybe this can be simplified. Maybe not...check.
    if (node->color == rbBlack) {
        if (NULL != child && child->color == rbRed) {
            child->color = rbBlack;
            // done despite modifying tree itself if neccessary..
            return del_node;
        } else {
            if (NULL != child) {
                node = child;
            } else {
                node->color = rbBlack;
                node->left  = NULL;
                node->right = NULL;
            }
        }
    } else {
        return del_node;
    }

	s = TR_TREE_SIBLING(node);
	TR_TREE_BALANCE_DELETE(tree, node, s);
 
    return del_node;
}

static
void
post(struct memSegment * tree, void (*cb)(struct memSegment *, int))
{
    struct memSegment * previous = tree;
    struct memSegment * node     = tree;
    int                 depth    = 1;

    /*
     * I think this has something like O(n+log(n)) on a ballanced
     * tree because I have to traverse back the rightmost leaf to
     * the root to get a break condition.
     */
    while (node) {
        /*
         * If we come from the right so nothing and go to our
         * next parent.
         */
        if (((NULL == node->left || previous == node->left)
					&& NULL == node->right)
                || previous == node->right) {

            struct memSegment * parent = node->parent;

            cb(node, depth);

            previous = node;
            node     = parent;
            depth--;
            continue;
        }

        if ((NULL == node->left || previous == node->left)) {
            /*
             * If there are no more elements to the left or we
             * came from the left, process data.
             */
            previous = node;

            if (NULL != node->right) {
                node = node->right;
                depth++;
            } else {
                node = node->parent;
                depth--;
            }
        } else {
            /*
             * if there are more elements to the left go there.
             */
            previous = node;
            node     = node->left;
            depth++;
        }
    }
}

struct memSegment * segments = NULL;

static
void
segmentFree(struct memSegment * segment, int depth)
{
    while (NULL != segment) {
        struct memSegment * next = segment->next;
        free(segment);
        segment = next;
    }
}

void *
TR_reference(void * mem)
{
	struct memSegment * seg = (mem - sizeof(struct memSegment));

	seg->ref_count++;

	return mem;
}

/*
 * This tries to reflect the memory management behaviour of the
 * GNU version of malloc. For other versions this might need
 * to be changed to be optimal.
 *
 * However, GNU malloc keeps separate pools for each power of
 * 2 memory size up to page size. So one page consists all of
 * memory blocks of the same sizei (a power of 2).
 *
 * Also as far as I understand the smallest allocatable block is
 * 8 bytes. At least the adresses are alwayse a multiple of 8.
 *
 * So lets say page size is 4096. There is nothing allocated
 * right now. We allocate a block of 8 bytes. This will request
 * a memory page from the OS. Then define it as a page containing
 * 8 byte blocks and return the address of the first one of these.
 * Any subsequent call to malloc for 8 bytes will return one of the
 * blocks within this page as long as there are some left.
 *
 * So what we do here is up to page size round the request size up
 * to the next power of 2 >= 8.
 * Sizes greater then pagesize will be round up to the next
 * multiple of pagesize. As far as I understand these are not
 * pooled anyway.
 *
 * For now this assumes we are on a little endian machine.
 */
void *
TR_malloc(size_t size)
{
	struct memSegment * seg   = NULL;
	long                psize = sysconf(_SC_PAGESIZE);

	size += sizeof(struct memSegment);

	if (size > psize) {
		if (0 != (size % psize)) {
			// size if not a multiple of pagesize so bring it to one.
			size = ((size / psize) + 1) * psize;
		}
	} else {
		if (size < 8) {
			size = 8;
		} else {
			size_t check = size >> 4;
			size_t mask  = 0x1F;

			while (check >>= 1) {
				mask = (mask << 1) | 1;
			}

			if (size != (size & ~(mask >> 1))) {
				size = (size << 1) & ~mask;
			}
		}
	}

#ifdef MEM_OPT
	seg = deleteElement(&segments, size);
#endif

	if (NULL == seg) {
		seg = newElement(size);
	}

	return seg->ptr;
}

/**
 * this is a really memory wasting solution....just to be able to
 * use calloc, which might be faster then malloc/memset solution.
 *
 * Maybe this is a bad idea, as we need to memset the buffer anyway
 * if it comes from our tree, which hopefully should be the majority
 * of cases.
 */
void *
TR_calloc(size_t nmemb, size_t size)
{
	size_t   _size = nmemb * size;
	void   * mem   = TR_malloc(_size);

	memset(mem, 0, _size);

	return mem;
}

void
TR_free(void ** mem)
{
	if (NULL != *mem) {
		struct memSegment * seg = (*mem - sizeof(struct memSegment));

		if (1 < seg->ref_count) {
			seg->ref_count--;
		} else {
#ifdef MEM_OPT
			insertElement(&segments, seg);
#else
			free(seg);
#endif
		}

		*mem = NULL;
	}
}

size_t
TR_getSize(void * mem)
{
	struct memSegment * segment;

	if (NULL == mem) {
		return 0;
	}

	segment = (struct memSegment *)(mem - sizeof(struct memSegment));
	return segment->size;
}

void
TR_cleanup()
{
#ifdef MEM_OPT
	post(segments, segmentFree);
#endif
}

// vim: set ts=4 sw=4: