polyeder.rs
7.03 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//
// Basic geometric things...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::fmt::Debug;
use std::ops::{Add, Div, Mul, Neg, Sub};
use crate::easel::polygon::Polygon;
use crate::easel::canvas::Vertex;
use crate::math::transform::{TMatrix, Transformable};
use crate::math::trigonometry::Trig;
use crate::math::vector::Vector;
use super::camera::Camera;
use super::face::Face;
use super::light::DirectLight;
use super::point::Point;
use super::primitives::Primitives;
#[derive(Debug)]
pub struct Polyeder<T>
where T: Add + Sub + Neg + Mul + Div + PartialEq + Copy + Trig {
points :Vec<Point<T>>,
faces :Vec<Face<T>>,
}
impl<T> Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
fn update_normals(&mut self) {
for f in self.faces.iter_mut() {
f.update_normal(&self.points);
}
}
// construct via cube, see polyhedra.pdf
pub fn tetrahedron(a :T) -> Polyeder<T> {
let f2 :T = 2.into();
let ch = a / (f2 * T::sqrt(f2).unwrap());
let ps = vec!( Point::new(-ch, -ch, ch)
, Point::new(-ch, ch, -ch)
, Point::new( ch, -ch, -ch)
, Point::new( ch, ch, ch) );
let fs = vec!( Face::new(vec!(2, 1, 0), &ps) // bottom
, Face::new(vec!(3, 2, 0), &ps)
, Face::new(vec!(0, 1, 3), &ps)
, Face::new(vec!(1, 2, 3), &ps) );
Polyeder{ points: ps, faces: fs }
}
pub fn triangle(a :T) -> Polyeder<T> {
let f0 :T = 0.into();
let f3 :T = 3.into();
let f6 :T = 6.into();
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
let ah :T = a / 2.into();
let ps = vec!( Point::new(-ah, f0, -zi)
, Point::new( f0, f0, zc)
, Point::new( ah, f0, -zi) );
let fs = vec!(Face::new(vec!(0, 1, 2), &ps));
Polyeder{ points: ps, faces: fs }
}
pub fn cube(a :T) -> Polyeder<T> {
let ah :T = a / From::<i32>::from(2);
let ps = vec!( Point::new(-ah, ah, -ah) // 0 => front 1
, Point::new(-ah, -ah, -ah) // 1 => front 2
, Point::new( ah, -ah, -ah) // 2 => front 3
, Point::new( ah, ah, -ah) // 3 => front 4
, Point::new(-ah, ah, ah) // 4 => back 1
, Point::new(-ah, -ah, ah) // 5 => back 2
, Point::new( ah, -ah, ah) // 6 => back 3
, Point::new( ah, ah, ah) ); // 7 => back 4
let fs = vec!( Face::new(vec!(0, 1, 2, 3), &ps) // front
, Face::new(vec!(7, 6, 5, 4), &ps) // back
, Face::new(vec!(1, 5, 6, 2), &ps) // top
, Face::new(vec!(0, 3, 7, 4), &ps) // bottom
, Face::new(vec!(0, 4, 5, 1), &ps) // left
, Face::new(vec!(2, 6, 7, 3), &ps) ); // right
Polyeder{ points: ps, faces: fs }
}
}
impl<T> Primitives<T> for Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> + From<f64> + PartialOrd {
// TODO Maybe this should also be an instance of Transformable…
fn transform(&self, m :&TMatrix<T>) -> Self {
let Polyeder{ points: ps, faces: fs } = self;
let mut p = Polyeder{
points: ps.iter().map(|p| p.transform(m)).collect()
, faces: fs.to_vec()
};
// TODO alternatively we could rotate the normals too, but this cannot
// done with the original matrix… the question is, what is faster.
p.update_normals();
p
}
fn project( &self
, camera :&Camera<T>
, light :&DirectLight<T>
, color :u32 ) -> Vec<(Polygon<T>, u32)> {
// Helper to create a Polygon from Coordinates…
// TODO probably there needs to be a Polygon constructor for this.
fn polygon<I, T>(c :I) -> Polygon<T>
where I: Iterator<Item = Vertex<T>> {
Polygon(c.collect())
}
// currently our cam has only one direction...
let cam_dir = Vector(0.into(), 0.into(), 1.into());
// this one does the projection... as the projection was the last
// matrix we do not need to do it here.
let to_coord = |p :&usize| camera.project(self.points[*p]);
let to_poly = |f :&Face<T>| {
let pg = polygon(f.corners().iter().map(to_coord));
let mut r :T = (((color >> 16) & 0xFF) as i32).into();
let mut g :T = (((color >> 8) & 0xFF) as i32).into();
let mut b :T = (((color ) & 0xFF) as i32).into();
let lf :T = match f.normal() {
None => 1.into(),
Some(n) => n.dot(light.dir())
/ (n.mag() * light.dir().mag()),
};
let view_f :T = match f.normal() {
None => 1.into(),
Some(n) => n.dot(cam_dir)
/ (n.mag() * cam_dir.mag()),
};
// this "if" represents a first simple backface culling
// approach. We only return face that face towards us.
if view_f >= 0.into() {
None
} else {
if lf < (-0.1).into() {
r = r * -lf;
g = g * -lf;
b = b * -lf;
} else {
r = r * 0.1.into();
g = g * 0.1.into();
b = b * 0.1.into();
}
let c :u32 = (r.round() as u32) << 16
| (g.round() as u32) << 8
| (b.round() as u32);
Some((pg, c))
}};
self.faces.iter().filter_map(to_poly).collect()
}
}