vector.rs
3.99 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//
// Stuff for manipulating 3 dimensional vectors.
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::fmt::{Debug, Display, Formatter, Result};
use std::ops::{Add, Sub, Neg, Mul, Div};
use crate::math::trigonometry::Trig;
use crate::math::transform::{TMatrix, Transformable};
#[derive(Debug, Eq, Clone, Copy)]
pub struct Vector<T>(pub T, pub T, pub T)
where T: Add + Sub + Neg + Mul + Div + Trig + Copy;
impl<T> Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig + Copy {
pub fn x(self) -> T { self.0 }
pub fn y(self) -> T { self.1 }
pub fn z(self) -> T { self.2 }
pub fn mag(self) -> T {
let Vector(x, y, z) = self;
(x * x + y * y + z * z).sqrt().unwrap()
}
pub fn mul(self, s :&T) -> Self {
let Vector(x, y, z) = self;
Vector(x * *s, y * *s, z * *s)
}
pub fn dot(self, other :Self) -> T {
let Vector(x1, y1, z1) = self;
let Vector(x2, y2, z2) = other;
x1 * x2 + y1 * y2 + z1 * z2
}
pub fn norm(self) -> Self {
// TODO This can result in 0 or inf Vectors…
// Maybe we need to handle zero and inf magnitude here…
self.mul(&self.mag().recip())
}
pub fn distance(self, other :Self) -> T {
(self - other).mag()
}
}
impl<T> Display for Vector<T>
where T: Add + Sub + Neg + Mul + Div + Trig + Display + Copy {
fn fmt(&self, f :&mut Formatter<'_>) -> Result {
let Vector(x, y, z) = self;
write!(f, "({}, {}, {})", x, y, z)
}
}
impl<T> PartialEq for Vector<T>
where T: Add + Sub + Neg + Mul + Div + Trig + PartialEq + Copy {
fn eq(&self, other :&Self) -> bool {
let Vector(x1, y1, z1) = self;
let Vector(x2, y2, z2) = other;
x1 == x2 && y1 == y2 && z1 == z2
}
}
impl<T> Add for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig + Copy {
type Output = Self;
fn add(self, other :Self) -> Self {
let Vector(x1, y1, z1) = self;
let Vector(x2, y2, z2) = other;
Vector(x1 + x2, y1 + y2, z1 + z2)
}
}
impl<T> Sub for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig + Copy {
type Output = Self;
fn sub(self, other :Self) -> Self {
self + -other
}
}
impl<T> Neg for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig + Copy {
type Output = Self;
fn neg(self) -> Self {
let Vector(x, y, z) = self;
Self(-x, -y, -z)
}
}
impl<T> Mul for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig + Copy {
type Output = Self;
fn mul(self, other :Self) -> Self {
let Vector(ax, ay, az) = self;
let Vector(bx, by, bz) = other;
Vector( ay * bz - az * by
, az * bx - ax * bz
, ax * by - ay * bx )
}
}
impl<T> Transformable<T> for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Trig + Copy + Debug + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self {
let (v, _) = m.apply(self, 0.into());
v
}
}