main.rs
10.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//
// Test our fractional crate / module...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::cmp;
use std::convert::{TryFrom, TryInto, Into};
use std::f64::consts::PI as FPI;
use std::fmt::Display;
use std::num::TryFromIntError;
use std::ops::{Add,Sub,Neg,Mul,Div};
use fractional::continuous::Continuous;
use fractional::fractional::{Fractional, from_vector};
use fractional::trigonometry::Trig;
use fractional::vector::{Vector};
use fractional::transform::{translate, rotate_x, rotate_y, rotate_z, rotate_v};
// Tail recursive Bresenham line with integer incremental error.
fn line(a :(u32, u32), b :(u32, u32)) -> Vec<(u32, u32)>{
fn inner( v :&mut [(u32, u32)]
, bx :u32, by :u32
, dx :i32, dy :i32
, sx :i32, sy :i32
, err :i32) {
let (x, y) = v[0];
if x != bx || y != by {
let (x, y, err) = match (2*err as i32 >= dy, 2*err as i32 <= dx) {
(true, false) => ((x as i32 + sx) as u32, y, err + dy),
(false, true) => (x, (y as i32 + sy) as u32, err + dx),
_ => ( (x as i32 + sx) as u32
, (y as i32 + sy) as u32
, err + dx + dy ),
};
v[1] = (x, y);
inner(&mut v[1..], bx, by, dx, dy, sx, sy, err);
}
}
let (ax, ay) = a;
let (bx, by) = b;
let dx = (bx as i32 - ax as i32).abs();
let sx :i32 = if ax < bx { 1 } else { -1 };
let dy = -(by as i32 - ay as i32).abs();
let sy :i32 = if ay < by { 1 } else { -1 };
let mut v :Vec<(u32, u32)> = vec!((0, 0); cmp::max(dx, -dy) as usize + 1);
v[0] = (ax, ay);
inner(&mut v, bx, by, dx, dy, sx, sy, dx + dy);
v
}
fn mean(v: &Vec<i64>) -> Result<Fractional, TryFromIntError> {
let r = v.iter().fold(0, |acc, x| acc + x);
let l = i64::try_from(v.len())?;
Ok(Fractional(r, l))
}
fn common_fractional() {
let a = vec![3, 6, 1, 9];
let b = from_vector(&a);
let c = mean(&a).unwrap(); // This might fail if the len of the
// vector (usize) does not fit into i32.
let cr :f64 = c.try_into().unwrap();
println!(" [i32] : {:?}", a);
println!(" [Fractional] : {:?}", b);
println!(" mean of [i32] : {}" , c);
println!(" as f64 : {}" , cr);
println!(" again as f64 : {}" , TryInto::<f64>::try_into(c).unwrap());
}
fn continuous() {
let d = Fractional(45, 16);
let e = Fractional(16, 45);
let dc :Continuous = (&d).into();
let ec :Continuous = (&e).into();
println!("cont frac of d : {} => {:?}", d, dc);
println!("cont frac of e : {} => {:?}", e, ec);
println!(" reverted dc : {:?} {}", dc, Into::<Fractional>::into(&dc));
println!(" reverted ec : {:?} {}", ec, Into::<Fractional>::into(&ec));
}
fn sqrt() {
let f = Fractional(-9, 4);
let fr :f64 = f.try_into().unwrap();
let sq = f.sqrt();
let _sq = fr.sqrt();
println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq);
for f in [ Fractional(9, 4)
, Fractional(45, 16)
, Fractional(16, 45)
, Fractional(9, 3) ].iter() {
let fr :f64 = (*f).try_into().unwrap();
let sq = f.sqrt().unwrap();
let sqr :f64 = sq.try_into().unwrap();
let _sqr = fr.sqrt();
println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr);
}
}
fn pi() {
let pi = Fractional::pi();
let pir :f64 = pi.try_into().unwrap();
let pit :(i32, i32) = pi.try_into().unwrap();
let pi2r :f64 = (pi * pi).try_into().unwrap();
println!(" Rust π : {}" , FPI);
println!(" π : {} {}" , pi, pir);
println!(" π as tuple : {:?}" , pit);
println!(" Rust π² : {}" , FPI * FPI);
println!(" π² : {} {}" , pi * pi, pi2r);
}
fn _sin() {
for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = Fractional::sin(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::sin(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s);
}
}
fn _tan() {
for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let t = Fractional::tan(*d as i32);
let tr :f64 = t.try_into().unwrap();
let _t = f64::tan(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("tan {}", d), t, tr, _t);
}
}
fn _cos() {
for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let c = Fractional::cos(*d as i32);
let cr :f64 = c.try_into().unwrap();
let _c = f64::cos(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("cos {}", d), c, cr, _c);
}
}
fn _vector1() {
let v1 = Vector(1.into(), 2.into(), 3.into());
let v2 = Vector(2.into(), 2.into(), 3.into());
let s :Fractional = 3.into();
_vector(v1, v2, s);
}
fn _vector2() {
let v1 = Vector(1.0, 2.0, 3.0);
let v2 = Vector(2.0, 2.0, 3.0);
let s = 3.0;
_vector(v1, v2, s);
}
fn _vector<T>(v1 :Vector<T>, v2 :Vector<T>, s :T)
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig + Copy + Display {
println!("{:>14} : {}", "Vector v1", v1);
println!("{:>14} : {}", "Vector v2", v2);
println!("{:>14} : {}", "abs v1", v1.abs());
println!("{:>14} : {}", "-v1", -v1);
println!("{:>14} : {}", "v1 + v1", v1 + v1);
println!("{:>14} : {}", "v1 - v1", v1 - v1);
println!("{:>14} : {}", "v2 - v1", v2 - v1);
println!("{:>14} : {}", format!("v1 * {}", s), v1.mul(&s));
println!("{:>14} : {}", "norm v1", v1.norm());
println!("{:>14} : {}", "abs norm v1", v1.norm().abs());
println!("{:>14} : {}", "abs v1", v1.abs());
println!("{:>14} : {}", "norm * abs", v1.norm().mul(&v1.abs()));
println!("{:>14} : {}", "distance v1 v2", v1.distance(v2));
println!("{:>14} : {}", "distance v2 v1", v2.distance(v1));
println!("{:>14} : {}", "v1 dot v2", v1.dot(v2));
println!("{:>14} : {}", "v2 dot v1", v2.dot(v1));
println!("{:>14} : {}", "v1 * v2", v1 * v2);
println!("{:>14} : {}", "v2 * v1", v2 * v1);
}
fn _transform1() {
let v = Vector(Fractional(1,1), Fractional(1,1), Fractional(1,1));
let v1 = Vector(Fractional(1,1), Fractional(2,1), Fractional(3,1));
let v2 = Vector(Fractional(1,1), Fractional(1,1), Fractional(0,1));
let v3 = Vector(Fractional(1,1), Fractional(0,1), Fractional(1,1));
_transform(v, v1, v2, v3);
}
fn _transform2() {
let v = Vector(1.0, 1.0, 1.0);
let v1 = Vector(1.0, 2.0, 3.0);
let v2 = Vector(1.0, 1.0, 0.0);
let v3 = Vector(1.0, 0.0, 1.0);
_transform(v, v1, v2, v3);
}
fn _transform<T>(v :Vector<T>, v1 :Vector<T>, v2 :Vector<T>, v3 :Vector<T>)
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T> + Trig
+ From<i32> + Copy + Display {
let mt = translate(v);
println!("{:>14} : {}", "Vector v1", v1);
println!("{:>14} : {}", "translate v1", mt.apply(&v1));
println!();
println!("{:>14} : {}", "Vector v2", v2);
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_x(*d as i32);
println!("{:>14} : {}", format!("rot_x {} v2", d), m.apply(&v2));
}
println!();
println!("{:>14} : {}", "Vector v2", v2);
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_y(*d as i32);
println!("{:>14} : {}", format!("rot_y {} v2", d), m.apply(&v2));
}
println!();
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_x(*d as i32) * rotate_y(*d as i32);
println!("{:>14} : {}", format!("rot_xy {} v2", d), m.apply(&v2));
}
println!();
println!("{:>14} : {}", "Vector v3", v3);
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_z(*d as i32);
println!("{:>14} : {}", format!("rot_z {} v3", d), m.apply(&v3));
}
println!();
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_v(&v, *d as i32);
println!("{:>14} : {}", format!("rot_v {} v2", d), m.apply(&v2));
}
}
fn _line() {
println!("{:>14} : {:?}", "Line", line((0,1), (6,4)));
println!("{:>14} : {:?}", "Line", line((0,4), (6,1)));
println!("{:>14} : {:?}", "Line", line((6,1), (0,4)));
println!("{:>14} : {:?}", "Line", line((6,4), (0,1)));
println!("{:>14} : {:?}", "Line", line((0,1), (6,8)));
println!("{:>14} : {:?}", "Line", line((0,8), (6,1)));
println!("{:>14} : {:?}", "Line", line((6,1), (0,8)));
println!("{:>14} : {:?}", "Line", line((6,8), (0,1)));
}
fn main() {
common_fractional();
println!();
continuous();
println!();
sqrt();
println!();
pi();
println!();
_sin();
println!();
_cos();
println!();
_tan();
println!();
_vector1();
println!();
_vector2();
println!();
_transform1();
println!();
_transform2();
println!();
_line();
}