vector.rs 3.98 KB
//
// Stuff for manipulating 3 dimensional vectors.
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
use std::fmt::{Debug, Display, Formatter, Result};
use std::ops::{Add, Sub, Neg, Mul, Div};

use crate::trigonometry::Trig;
use crate::transform::{TMatrix, Transformable};

#[derive(Debug, Eq, Clone, Copy)]
pub struct Vector<T>(pub T, pub T, pub T)
    where T: Add + Sub + Neg + Mul + Div + Trig + Copy;

impl<T> Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T> + Trig + Copy {
    pub fn x(self) -> T { self.0 }
    pub fn y(self) -> T { self.1 }
    pub fn z(self) -> T { self.2 }

    pub fn mag(self) -> T {
        let Vector(x, y, z) = self;
        (x * x + y * y + z * z).sqrt().unwrap()
    }

    pub fn mul(self, s :&T) -> Self {
        let Vector(x, y, z) = self;
        Vector(x * *s, y * *s, z * *s)
    }

    pub fn dot(self, other :Self) -> T {
        let Vector(x1, y1, z1) = self;
        let Vector(x2, y2, z2) = other;

        x1 * x2 + y1 * y2 + z1 * z2
    }

    pub fn norm(self) -> Self {
        // TODO This can result in 0 or inf Vectors…
        //      Maybe we need to handle zero and inf magnitude here…
        self.mul(&self.mag().recip())
    }

    pub fn distance(self, other :Self) -> T {
        (self - other).mag()
    }
}

impl<T> Display for Vector<T>
where T: Add + Sub + Neg + Mul + Div + Trig + Display + Copy {
    fn fmt(&self, f :&mut Formatter<'_>) -> Result {
        let Vector(x, y, z) = self;
        write!(f, "({}, {}, {})", x, y, z)
    }
}

impl<T> PartialEq for Vector<T>
where T: Add + Sub + Neg + Mul + Div + Trig + PartialEq + Copy {
    fn eq(&self, other :&Self) -> bool {
        let Vector(x1, y1, z1) = self;
        let Vector(x2, y2, z2) = other;
        x1 == x2 && y1 == y2 && z1 == z2
    }
}

impl<T> Add for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T> + Trig + Copy {
    type Output = Self;

    fn add(self, other :Self) -> Self {
        let Vector(x1, y1, z1) = self;
        let Vector(x2, y2, z2) = other;
        Vector(x1 + x2, y1 + y2, z1 + z2)
    }
}

impl<T> Sub for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T> + Trig + Copy {
    type Output = Self;

    fn sub(self, other :Self) -> Self {
        self + -other
    }
}

impl<T> Neg for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T> + Trig + Copy {
    type Output = Self;

    fn neg(self) -> Self {
        let Vector(x, y, z) = self;
        Self(-x, -y, -z)
    }
}

impl<T> Mul for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T> + Trig + Copy {
    type Output = Self;

    fn mul(self, other :Self) -> Self {
        let Vector(ax, ay, az) = self;
        let Vector(bx, by, bz) = other;

        Vector( ay * bz - az * by
              , az * bx - ax * bz
              , ax * by - ay * bx )
    }
}

impl<T> Transformable<T> for Vector<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T>
       + Trig + Copy + Debug + From<i32> {
    fn transform(&self, m :&TMatrix<T>) -> Self {
        let (v, _) = m.apply(self, 0.into());
        v
    }
}