geometry.rs
12.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//
// Basic geometric things...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::{From, Into};
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::fmt::Debug;
use crate::easel::{Canvas, Coordinate, Coordinates, Polygon};
use crate::transform::{TMatrix, Transformable};
use crate::trigonometry::Trig;
use crate::vector::Vector;
#[derive(Debug, Clone)]
pub struct Face<T>
where T: Add + Sub + Neg + Mul + Div + Copy + Trig {
corners :Vec<usize>,
normal :Option<Vector<T>>,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct Point<T>(pub Vector<T>, T)
where T: Add + Sub + Neg + Mul + Div + PartialEq + Copy + Trig;
impl<T> Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
pub fn new(x :T, y :T, z :T) -> Self {
Self(Vector(x, y, z), 1.into())
}
}
impl<T> Add for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy {
type Output = Self;
fn add(self, other :Self) -> Self {
let Point(v1, w1) = self;
let Point(v2, w2) = other;
Self(v1 + v2, w1 + w2)
}
}
impl<T> Neg for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy {
type Output = Self;
fn neg(self) -> Self {
let Point(v, w) = self;
Self(-v, -w)
}
}
impl<T> Sub for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy {
type Output = Self;
fn sub(self, other :Self) -> Self {
self + -other
}
}
impl<T> Mul for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
type Output = Self;
fn mul(self, other :Self) -> Self {
let a :Vector<T> = self.into();
let b :Vector<T> = other.into();
Point(a * b, 1.into())
}
}
impl<T> From<Vector<T>> for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
fn from(v :Vector<T>) -> Self {
Point(v, 1.into())
}
}
impl<T> Into<Vector<T>> for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
fn into(self) -> Vector<T> {
let Point(v, w) = self;
if w == 0.into() {
v
} else {
v.mul(&w.recip())
}
}
}
impl<T> Transformable<T> for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Trig + Copy + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self {
let Point(v, w) = *self;
let (v, w) = m.apply(&v, w);
if w == 0.into() {
v.into()
} else {
v.mul(&w.recip()).into()
}
}
}
#[derive(Debug)]
pub struct Polyeder<T>
where T: Add + Sub + Neg + Mul + Div + PartialEq + Copy + Trig {
points :Vec<Point<T>>,
faces :Vec<Face<T>>,
}
pub trait Primitives<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self;
fn project( &self
, camera :&Camera<T>
, light :&DirectLight<T>
, col :u32 ) -> Vec<(Polygon<T>, u32)>;
}
pub struct Camera<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
width :T,
height :T,
distance :T,
project :TMatrix<T>,
}
pub struct DirectLight<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
direction: Vector<T>,
}
impl<T> Camera<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
// This code assumes that the size of the viewport is always
// equal to the size of the physical screen… e.g. window/canvas thus some
// effects can't be done. See book for examples with different viewport
// and screen sizes.
pub fn new(c :&dyn Canvas<T>, angle :i32) -> Self {
let width :T = (c.width() as i32).into();
let height :T = (c.height() as i32).into();
let d :T = 1.into();
let fov = T::cot(angle) * width;
let wh = width / 2.into();
let hh = height / 2.into();
Camera { width: width
, height: height
, distance: d
, project: TMatrix::new(
( fov, 0.into(), wh, 0.into())
, (0.into(), fov, hh, 0.into())
, (0.into(), 0.into(), d, 1.into())
, (0.into(), 0.into(), 1.into(), 0.into()) ) }
}
pub fn get_distance(&self) -> T {
self.distance
}
pub fn get_projection(&self) -> TMatrix<T> {
self.project
}
pub fn project(&self, p :Point<T>) -> Point<T> {
p.transform(&self.project)
}
}
impl<T> DirectLight<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> {
pub fn new(v :Vector<T>) -> Self {
DirectLight{ direction: v }
}
pub fn dir(&self) -> Vector<T> {
self.direction
}
}
impl<T> Face<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
fn new(corners :Vec<usize>, ps :&[Point<T>]) -> Self {
let mut f = Face{ corners: corners, normal: None };
f.update_normal(ps);
f
}
fn update_normal(&mut self, ps :&[Point<T>]) {
let edge10 :Vector<T> = (ps[self.corners[1]] - ps[self.corners[0]]).into();
let edge12 :Vector<T> = (ps[self.corners[1]] - ps[self.corners[2]]).into();
self.normal = Some(edge10 * edge12);
}
}
impl<T> Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
fn update_normals(&mut self) {
for f in self.faces.iter_mut() {
f.update_normal(&self.points);
}
}
// https://rechneronline.de/pi/tetrahedron.php
pub fn tetrahedron(a :T) -> Polyeder<T> {
let f0 :T = 0.into();
let f3 :T = 3.into();
let f4 :T = 4.into();
let f6 :T = 6.into();
let f12 :T = 12.into();
let yi :T = a / f12 * T::sqrt(f6).unwrap();
let yc :T = a / f4 * T::sqrt(f6).unwrap();
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
let ah :T = a / 2.into();
let ps = vec!( Point::new( f0, yc, f0)
, Point::new(-ah, -yi, -zi)
, Point::new( ah, -yi, -zi)
, Point::new( f0, -yi, zc) );
let fs = vec!( Face::new(vec!(1, 2, 3), &ps)
, Face::new(vec!(1, 0, 2), &ps)
, Face::new(vec!(3, 0, 1), &ps)
, Face::new(vec!(2, 0, 3), &ps) );
Polyeder{ points: ps, faces: fs }
}
pub fn triangle(a :T) -> Polyeder<T> {
let f0 :T = 0.into();
let f3 :T = 3.into();
let f6 :T = 6.into();
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
let ah :T = a / 2.into();
let ps = vec!( Point::new(-ah, f0, -zi)
, Point::new( f0, f0, zc)
, Point::new( ah, f0, -zi) );
let fs = vec!(Face::new(vec!(0, 1, 2), &ps));
Polyeder{ points: ps, faces: fs }
}
pub fn cube(a :T) -> Polyeder<T> {
let ah :T = a / From::<i32>::from(2);
let ps = vec!( Point::new(-ah, ah, -ah) // 0 => front 1
, Point::new(-ah, -ah, -ah) // 1 => front 2
, Point::new( ah, -ah, -ah) // 2 => front 3
, Point::new( ah, ah, -ah) // 3 => front 4
, Point::new(-ah, ah, ah) // 4 => back 1
, Point::new(-ah, -ah, ah) // 5 => back 2
, Point::new( ah, -ah, ah) // 6 => back 3
, Point::new( ah, ah, ah) ); // 7 => back 4
let fs = vec!( Face::new(vec!(0, 1, 2, 3), &ps) // front
, Face::new(vec!(7, 6, 5, 4), &ps) // back
, Face::new(vec!(1, 5, 6, 2), &ps) // top
, Face::new(vec!(0, 3, 7, 4), &ps) // bottom
, Face::new(vec!(0, 4, 5, 1), &ps) // left
, Face::new(vec!(2, 6, 7, 3), &ps) ); // right
Polyeder{ points: ps, faces: fs }
}
}
impl<T> Primitives<T> for Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> + PartialOrd {
// TODO Maybe this should also be an instance of Transformable…
fn transform(&self, m :&TMatrix<T>) -> Self {
let Polyeder{ points: ps, faces: fs } = self;
let mut p = Polyeder{
points: ps.iter().map(|p| p.transform(m)).collect()
, faces: fs.to_vec()
};
// TODO alternatively we could rotate the normals too, but this cannot
// done with the original matrix… the question is, what is faster.
p.update_normals();
p
}
fn project( &self
, camera :&Camera<T>
, light :&DirectLight<T>
, color :u32 ) -> Vec<(Polygon<T>, u32)> {
// Helper to create a Polygon from Coordinates…
// TODO probably there needs to be a Polygon constructor for this.
fn polygon<I, T>(c :I) -> Polygon<T>
where I: Iterator<Item = Coordinate<T>> {
Polygon(Coordinates(c.collect()))
}
// this one does the projection... as the projection was the last
// matrix we do not need to do it here.
let to_coord = |p :&usize| {
let Point(v, _) = camera.project(self.points[*p]);
Coordinate(T::round(&v.x()), T::round(&v.y()), v.z() - 1.into())
};
let to_poly = |f :&Face<T>| {
let pg = polygon(f.corners.iter().map(to_coord));
let mut r :T = (((color >> 16) & 0xFF) as i32).into();
let mut g :T = (((color >> 8) & 0xFF) as i32).into();
let mut b :T = (((color ) & 0xFF) as i32).into();
let lf :T = match f.normal {
None => 1.into(),
Some(n) => n.dot(light.dir())
/ (n.mag() * light.dir().mag()),
};
// this "if" represents a first simple backface culling
// approach. We only return face that face towards us.
if lf < 0.into() {
r = r * -lf;
g = g * -lf;
b = b * -lf;
let c :u32 = (r.round() as u32) << 16
| (g.round() as u32) << 8
| (b.round() as u32);
Some((pg, c))
} else {
None
}};
self.faces.iter().filter_map(to_poly).collect()
}
}