fractional.rs
6.93 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//
// Some code to support fractional numbers for full precision rational number
// calculations. (At least for the standard operations.)
// This also implements a sqrt on fractional numbers, which can not be precise
// because of the irrational nature of most sqare roots.
// Fractions can only represent rational numbers precise.
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::cmp::Ordering;
use std::convert::{TryFrom, TryInto};
use std::fmt::{Formatter, Display};
use std::num::TryFromIntError;
use std::ops::{Add,Sub,Neg,Mul,Div};
use crate::continuous::Continuous;
#[derive(Debug, Eq, Clone, Copy)]
pub struct Fractional (pub i64, pub i64);
#[inline]
fn hcf(x :i64, y :i64) -> i64 {
match y {
0 => x,
_ => hcf(y, x % y),
}
}
pub fn from_vector(xs: &Vec<i64>) -> Vec<Fractional> {
xs.iter().map(|x| Fractional(*x, 1)).collect()
}
impl Fractional {
#[inline]
pub fn gcd(self, other: Self) -> i64 {
let Fractional(_, d1) = self;
let Fractional(_, d2) = other;
(d1 * d2) / hcf(d1, d2)
}
#[inline]
pub fn reduce(self) -> Self {
let Fractional(n, d) = self;
let (_n, _d) = if n > d { (n, d) } else { (d, n) };
// if the difference from _n % _d to _n is very big we are close to
// a whole number and can ignore the fractional part... this reduces
// the precision but ensures smaller numbers for numerator and
// denominator.
if _d > 1 && (_n % _d) * 10000000 < _n {
if n == _n {
Self(_n / _d, 1)
} else {
Self(1, _n / _d)
}
} else {
//Self(n / hcf(n, d), d / hcf(n, d))
let regular_reduced = self;
let cont :Continuous = (®ular_reduced).into();
cont.into_prec(5)
}
}
pub fn noreduce_add(self, other: Self) -> Self {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
let n = n1 * (self.gcd(other) / d1) + n2 * (self.gcd(other) / d2);
Self(n, self.gcd(other))
}
pub fn noreduce_sub(self, other: Self) -> Self {
self.noreduce_add(other.noreduce_neg())
}
pub fn noreduce_neg(self) -> Self {
let Fractional(n, d) = self;
Self(-n, d)
}
}
impl From<i64> for Fractional {
fn from(x: i64) -> Self {
Self(x, 1)
}
}
impl From<i32> for Fractional {
fn from(x: i32) -> Self {
Self(x as i64, 1)
}
}
impl TryFrom<usize> for Fractional {
type Error = &'static str;
fn try_from(x: usize) -> Result<Self, Self::Error> {
let v = i64::try_from(x);
match v {
Err(_) => Err("Conversion from usize to i32 failed"),
Ok(_v) => Ok(Self(_v, 1)),
}
}
}
impl TryInto<f64> for Fractional {
type Error = TryFromIntError;
fn try_into(self) -> Result<f64, Self::Error> {
let n :i32 = self.0.try_into()?;
let d :i32 = self.1.try_into()?;
Ok(f64::from(n) / f64::from(d))
}
}
impl TryInto<(i32, i32)> for Fractional {
type Error = TryFromIntError;
fn try_into(self) -> Result<(i32, i32), Self::Error> {
let a :i32 = (self.0 / self.1).try_into()?;
let b :i32 = (self.0 % self.1).try_into()?;
Ok((a, b))
}
}
impl Display for Fractional {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "({}/{})", self.0, self.1)
}
}
impl PartialEq for Fractional {
fn eq(&self, other: &Self) -> bool {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
n1 * (self.gcd(*other) / d1) == n2 * (self.gcd(*other) / d2)
}
}
impl PartialOrd for Fractional {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Fractional {
fn cmp(&self, other: &Self) -> Ordering {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
let x = n1 * (self.gcd(*other) / d1);
let y = n2 * (self.gcd(*other) / d2);
x.cmp(&y)
}
}
impl Add for Fractional {
type Output = Self;
fn add(self, other: Self) -> Self {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
let n = n1 * (self.gcd(other) / d1) + n2 * (self.gcd(other) / d2);
Self(n, self.gcd(other)).reduce()
}
}
impl Sub for Fractional {
type Output = Self;
fn sub(self, other: Self) -> Self {
self + -other
}
}
impl Neg for Fractional {
type Output = Self;
fn neg(self) -> Self {
let Fractional(n, d) = self;
Self(-n, d).reduce()
}
}
impl Mul for Fractional {
type Output = Self;
fn mul(self, other :Self) -> Self {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
Self(n1 * n2, d1 * d2).reduce()
}
}
impl Div for Fractional {
type Output = Self;
fn div(self, other: Self) -> Self {
let Fractional(n, d) = other;
self * Fractional(d, n)
}
}
/* some stuff that could be tested...
let x = Fractional(1, 3);
let y = Fractional(1, 6);
println!(
"Greatest common denominator of {} and {}: {}", x, y, x.gcd(y));
println!("Numerator of {}: {}", x, x.numerator());
println!("Denominator of {}: {}", x, x.denominator());
assert_eq!(Fractional(1, 3), Fractional(2, 6));
assert_eq!(Fractional(1, 3), Fractional(1, 3));
assert_eq!(y < x, true);
assert_eq!(y > x, false);
assert_eq!(x == y, false);
assert_eq!(x == x, true);
assert_eq!(x + y, Fractional(1, 2));
println!("{} + {} = {}", x, y, x + y);
assert_eq!(x - y, Fractional(1, 6));
println!("{} - {} = {}", x, y, x - y);
assert_eq!(y - x, Fractional(-1, 6));
println!("{} - {} = {}", y, x, y - x);
assert_eq!(-x, Fractional(-1, 3));
println!("-{} = {}", x, -x);
assert_eq!(x * y, Fractional(1, 18));
println!("{} * {} = {}", x, y, x * y);
assert_eq!(x / y, Fractional(2, 1));
println!("{} / {} = {}", x, y, x / y);
assert_eq!(y / x, Fractional(1, 2));
println!("{} / {} = {}", y, x, y / x);
println!("Fractional from 3: {}", Fractional::from(3));
let z :f64 = Fractional::into(x);
println!("Floating point of {}: {}", x, z);
let (d, r) = Fractional::into(x);
println!("(div, rest) of {}: ({}, {})", x, d, r);
*/