main.rs
5.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//
// Test our fractional crate / module...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::{TryFrom, TryInto, Into};
use std::num::TryFromIntError;
use std::f64::consts::PI as FPI;
use fractional::fractional::{Fractional, from_vector, Continuous};
use fractional::trigonometry::{sin, cos, tan, PI};
use fractional::vector::{Vector};
fn mean(v: &Vec<i64>) -> Result<Fractional, TryFromIntError> {
let r = v.iter().fold(0, |acc, x| acc + x);
let l = i64::try_from(v.len())?;
Ok(Fractional(r, l))
}
fn common_fractional() {
let a = vec![3, 6, 1, 9];
let b = from_vector(&a);
let c = mean(&a).unwrap(); // This might fail if the len of the
// vector (usize) does not fit into i32.
let cr :f64 = c.try_into().unwrap();
println!(" [i32] : {:?}", a);
println!(" [Fractional] : {:?}", b);
println!(" mean of [i32] : {}" , c);
println!(" as f64 : {}" , cr);
println!(" again as f64 : {}" , TryInto::<f64>::try_into(c).unwrap());
}
fn continuous() {
let d = Fractional(45, 16);
let e = Fractional(16, 45);
let dc :Continuous = d.into();
let ec :Continuous = e.into();
println!("cont frac of d : {} => {:?}", d, dc);
println!("cont frac of e : {} => {:?}", e, ec);
println!(" reverted dc : {:?} {}", dc, Into::<Fractional>::into(&dc));
println!(" reverted ec : {:?} {}", ec, Into::<Fractional>::into(&ec));
}
fn sqrt() {
let f = Fractional(-9, 4);
let fr :f64 = f.try_into().unwrap();
let sq = f.sqrt();
let _sq = fr.sqrt();
println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq);
for f in [ Fractional(9, 4)
, Fractional(45, 16)
, Fractional(16, 45)
, Fractional(9, 3) ].iter() {
let fr :f64 = (*f).try_into().unwrap();
let sq = f.sqrt().unwrap();
let sqr :f64 = sq.try_into().unwrap();
let _sqr = fr.sqrt();
println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr);
}
}
fn pi() {
let pir :f64 = PI.try_into().unwrap();
let pit :(i32, i32) = PI.try_into().unwrap();
let pi2r :f64 = (PI * PI).try_into().unwrap();
println!(" Rust π : {}" , FPI);
println!(" π : {} {}" , PI, pir);
println!(" π as tuple : {:?}" , pit);
println!(" Rust π² : {}" , FPI * FPI);
println!(" π² : {} {}" , PI * PI, pi2r);
}
fn _sin() {
for d in [ 0, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = sin(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::sin(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s);
}
}
fn _tan() {
for d in [ 0, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = tan(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::tan(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("tan {}", d), s, sr, _s);
}
}
fn _cos() {
for d in [ 0, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = cos(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::cos(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("cos {}", d), s, sr, _s);
}
}
fn _vector() {
let v1 = Vector(1.into(), 2.into(), 3.into());
let v2 = Vector(2.into(), 2.into(), 3.into());
let s :Fractional = 3.into();
println!("{:>14} : {:?}", "Vector v1", v1);
println!("{:>14} : {:?}", "Vector v2", v2);
println!("{:>14} : {}" , "abs v1", v1.abs());
println!("{:>14} : {:?}", "-v1", -v1);
println!("{:>14} : {:?}", "v1 + v1", v1 + v1);
println!("{:>14} : {:?}", "v1 - v1", v1 - v1);
println!("{:>14} : {:?}", "v2 - v1", v2 - v1);
println!("{:>14} : {:?}", format!("v1 * {}", s), v1.mul(&s));
println!("{:>14} : {:?}", "norm v1", v1.norm());
println!("{:>14} : {}" , "abs norm v1", v1.norm().abs());
println!("{:>14} : {}" , "distance v1 v2", v1.distance(v2));
println!("{:>14} : {}" , "distance v2 v1", v2.distance(v1));
println!("{:>14} : {}" , "v1 dot v2", v1.dot(v2));
println!("{:>14} : {}" , "v2 dot v1", v2.dot(v1));
println!("{:>14} : {:?}", "v1 * v2", v1 * v2);
println!("{:>14} : {:?}", "v2 * v1", v2 * v1);
}
fn main() {
common_fractional();
println!();
continuous();
println!();
sqrt();
println!();
pi();
println!();
_sin();
println!();
_cos();
println!();
_tan();
println!();
_vector();
}