fractional.rs
5.93 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
//
// Some code to support fractional numbers for full precision rational number
// calculations.
// TODO
// - maybe this could be build as a generic for all integral numbers.
// (Question, how can I assure that it is build from integral numbers?
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::cmp::Ordering;
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::fmt;
use std::convert::{TryFrom, TryInto};
use std::num::TryFromIntError;
#[derive(Debug, Eq, Clone, Copy)]
pub struct Fractional (pub i64, pub i64);
#[inline]
fn hcf(x :i64, y :i64) -> i64 {
match y {
0 => x,
_ => hcf(y, x % y),
}
}
impl Fractional {
#[inline]
pub fn gcd(self, other: Self) -> i64 {
let Fractional(_, d1) = self;
let Fractional(_, d2) = other;
(d1 * d2) / hcf(d1, d2)
}
#[inline]
pub fn reduce(self) -> Self {
let Fractional(n, d) = self;
Self(n / hcf(n, d), d / hcf(n, d))
}
#[inline]
pub fn numerator(self) -> i64 {
self.0
}
#[inline]
pub fn denominator(self) -> i64 {
self.1
}
}
impl fmt::Display for Fractional {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "({}/{})", self.0, self.1)
}
}
impl From<i64> for Fractional {
fn from(x: i64) -> Self {
Self(x, 1)
}
}
impl TryFrom<usize> for Fractional {
type Error = &'static str;
fn try_from(x: usize) -> Result<Self, Self::Error> {
let v = i64::try_from(x);
match v {
Err(_) => Err("Conversion from usize to i32 failed"),
Ok(_v) => Ok(Self(_v, 1)),
}
}
}
pub fn from_vector(xs: &Vec<i64>) -> Vec<Fractional> {
xs.iter().map(|x| Fractional(*x, 1)).collect()
}
impl TryInto<f64> for Fractional {
type Error = TryFromIntError;
fn try_into(self) -> Result<f64, Self::Error> {
let n :i32 = self.0.try_into()?;
let d :i32 = self.1.try_into()?;
Ok(f64::from(n) / f64::from(d))
}
}
impl TryInto<(i32, i32)> for Fractional {
type Error = TryFromIntError;
fn try_into(self) -> Result<(i32, i32), Self::Error> {
let a :i32 = (self.0 / self.1).try_into()?;
let b :i32 = (self.0 % self.1).try_into()?;
Ok((a, b))
}
}
impl PartialEq for Fractional {
fn eq(&self, other: &Self) -> bool {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
n1 * (self.gcd(*other) / d1) == n2 * (self.gcd(*other) / d2)
}
}
impl PartialOrd for Fractional {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Fractional {
fn cmp(&self, other: &Self) -> Ordering {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
let x = n1 * (self.gcd(*other) / d1);
let y = n2 * (self.gcd(*other) / d2);
x.cmp(&y)
}
}
impl Add for Fractional {
type Output = Self;
fn add(self, other: Self) -> Self {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
let n = n1 * (self.gcd(other) / d1) + n2 * (self.gcd(other) / d2);
Self(n, self.gcd(other)).reduce()
}
}
impl Sub for Fractional {
type Output = Self;
fn sub(self, other: Self) -> Self {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
let n = n1 * (self.gcd(other) / d1) - n2 * (self.gcd(other) / d2);
Self(n, self.gcd(other)).reduce()
}
}
impl Neg for Fractional {
type Output = Self;
fn neg(self) -> Self {
let Fractional(n, d) = self;
Self(-n, d).reduce()
}
}
impl Mul for Fractional {
type Output = Self;
fn mul(self, other :Self) -> Self {
let Fractional(n1, d1) = self;
let Fractional(n2, d2) = other;
Self(n1 * n2, d1 * d2).reduce()
}
}
impl Div for Fractional {
type Output = Self;
fn div(self, other: Self) -> Self {
let Fractional(n, d) = other;
self * Fractional(d, n)
}
}
/* some stuff that could be tested...
let x = Fractional(1, 3);
let y = Fractional(1, 6);
println!(
"Greatest common denominator of {} and {}: {}", x, y, x.gcd(y));
println!("Numerator of {}: {}", x, x.numerator());
println!("Denominator of {}: {}", x, x.denominator());
assert_eq!(Fractional(1, 3), Fractional(2, 6));
assert_eq!(Fractional(1, 3), Fractional(1, 3));
assert_eq!(y < x, true);
assert_eq!(y > x, false);
assert_eq!(x == y, false);
assert_eq!(x == x, true);
assert_eq!(x + y, Fractional(1, 2));
println!("{} + {} = {}", x, y, x + y);
assert_eq!(x - y, Fractional(1, 6));
println!("{} - {} = {}", x, y, x - y);
assert_eq!(y - x, Fractional(-1, 6));
println!("{} - {} = {}", y, x, y - x);
assert_eq!(-x, Fractional(-1, 3));
println!("-{} = {}", x, -x);
assert_eq!(x * y, Fractional(1, 18));
println!("{} * {} = {}", x, y, x * y);
assert_eq!(x / y, Fractional(2, 1));
println!("{} / {} = {}", x, y, x / y);
assert_eq!(y / x, Fractional(1, 2));
println!("{} / {} = {}", y, x, y / x);
println!("Fractional from 3: {}", Fractional::from(3));
let z :f64 = Fractional::into(x);
println!("Floating point of {}: {}", x, z);
let (d, r) = Fractional::into(x);
println!("(div, rest) of {}: ({}, {})", x, d, r);
*/