geometry.rs 6.25 KB
//
// Basic geometric things...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::From;
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::fmt::Debug;

use crate::easel::{Canvas,Coordinate,Coordinates,Polygon};
use crate::transform::TMatrix;
use crate::trigonometry::Trig;
use crate::vector::Vector;

#[derive(Debug)]
pub struct Polyeder<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig {
    points  :Vec<Vector<T>>,
    faces   :Vec<Vec<usize>>,
    normals :Vec<Vector<T>>,
}

pub trait Primitives<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
    fn transform(&self, m :&TMatrix<T>) -> Self;
    fn project(&self, camera :&Camera<T>) -> Vec<Polygon>;
}

pub struct Camera<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
    width   :T,
    height  :T,
    project :TMatrix<T>,
}

impl<T> Camera<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T>
       + Debug + Copy + Trig + From<i32> {
    // This code assumes that the size of the viewport is always
    // equal to the size of the physical screen… e.g. window/canvas thus some
    // effects can't be done. See book for examples with different viewport
    // and screen sizes.
    pub fn new(c :&dyn Canvas, angle :i32) -> Self {
        let  width :T = (c.width() as i32).into();
        let height :T = (c.height() as i32).into();
        let      d :T = 1.into();
        let    fov    = T::cot(angle) * width;
        let     wh    = width / 2.into();
        let     hh    = height / 2.into();

        Camera { width:   width
               , height:  height
               , project: TMatrix::new(
                     (     fov, 0.into(),       wh, 0.into())
                   , (0.into(),      fov,       hh, 0.into())
                   , (0.into(), 0.into(),        d, 1.into())
                   , (0.into(), 0.into(), 1.into(), 0.into()) ) }
    }

    pub fn get_projection(&self) -> TMatrix<T> {
        self.project
    }

    pub fn project(&self, v :Vector<T>) -> Coordinate {
        let p = self.project.apply(&v);
        Coordinate(T::round(&p.x()), T::round(&p.y()))
    }
}

impl<T> Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T>
       + Debug + Copy + Trig + From<i32> {
    // https://rechneronline.de/pi/tetrahedron.php
    pub fn tetrahedron(a :T) -> Polyeder<T> {
        let  f0 :T = 0.into();
        let  f3 :T = 3.into();
        let  f4 :T = 4.into();
        let  f6 :T = 6.into();
        let f12 :T = 12.into();

        let yi :T = a / f12 * T::sqrt(f6).unwrap();
        let yc :T = a /  f4 * T::sqrt(f6).unwrap();
        let zi :T = T::sqrt(f3).unwrap() / f6 * a;
        let zc :T = T::sqrt(f3).unwrap() / f3 * a;
        let ah :T = a / 2.into();

        // half the height in y
        let _yh :T = a /  f6 * T::sqrt(f6).unwrap();
        // half the deeps in z
        let _zh :T = T::sqrt(f3).unwrap() / f4 * a;

        Polyeder{ points: vec!( Vector( f0,  yc,  f0)
                              , Vector(-ah, -yi, -zi)
                              , Vector( ah, -yi, -zi)
                              , Vector( f0, -yi,  zc) )
                , faces:  vec!( vec!(1, 2, 3)
                              , vec!(1, 0, 2)
                              , vec!(3, 0, 1)
                              , vec!(2, 0, 3) )}
    }

    pub fn cube(a :T) -> Polyeder<T> {
        let ah :T = a / From::<i32>::from(2);

        Polyeder{ points: vec!( Vector(-ah,  ah, -ah)    // 0 => front 1
                              , Vector(-ah, -ah, -ah)    // 1 => front 2
                              , Vector( ah, -ah, -ah)    // 2 => front 3
                              , Vector( ah,  ah, -ah)    // 3 => front 4
                              , Vector(-ah,  ah,  ah)    // 4 => back 1
                              , Vector(-ah, -ah,  ah)    // 5 => back 2
                              , Vector( ah, -ah,  ah)    // 6 => back 3
                              , Vector( ah,  ah,  ah) )  // 7 => back 4
                , faces:  vec!( vec!(0, 1, 2, 3)         // front
                              , vec!(7, 6, 5, 4)         // back
                              , vec!(1, 5, 6, 2)         // top
                              , vec!(0, 3, 7, 4)         // bottom
                              , vec!(0, 4, 5, 1)         // left
                              , vec!(2, 6, 7, 3) )}      // right
    }
}

impl<T> Primitives<T> for Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
       + Mul<Output = T> + Div<Output = T>
       + Debug + Copy + Trig + From<i32> + From<i32> {
    fn transform(&self, m :&TMatrix<T>) -> Self {
        Polyeder{ points: self.points.iter().map(|p| m.apply(p)).collect()
                , faces:  self.faces.to_vec() }
    }

    // TODO for now we assume already prejected vertices (points)
    // in future we need to distinguish more clear between vertex and point
    // and projected_point.
    fn project(&self, _camera :&Camera<T>) -> Vec<Polygon> {
        fn polygon<I>(c :I) -> Polygon
        where I: Iterator<Item = Coordinate> {
            Polygon(Coordinates(c.collect()))
        }

        // this one does the projection... as the projection was the last
        // matrix we do not need to do it here.
        // let to_coord = |p :&usize| _camera.project(self.points[*p]);
        let to_coord = |p :&usize| {
            let v = self.points[*p];
            Coordinate(v.x().round(), v.y().round()) };
        let to_poly  = |f :&Vec<usize>| polygon(f.iter().map(to_coord));

        self.faces.iter().map(to_poly).collect()
    }
}