main.rs 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
//
// Test our fractional crate / module...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::{TryFrom, TryInto, Into};
use std::f64::consts::PI as FPI;
use std::fmt::{Debug, Display};
use std::marker::Send;
use std::num::TryFromIntError;
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::sync::mpsc;
use std::thread;
use std::time::{Duration, Instant};

use fractional::continuous::Continuous;
use fractional::easel::{ Coordinate, Coordinates, Drawable, Line, Polyline
                       , Polygon, Canvas, Fillable };
use fractional::fractional::{Fractional, from_vector};
use fractional::trigonometry::Trig;
use fractional::vector::Vector;
use fractional::transform::{TMatrix, Transformable};

use fractional::xcb::{XcbEasel, XcbCanvas};

use fractional::geometry::{Camera,DirectLight,Polyeder,Primitives};

fn mean(v: &Vec<i64>) -> Result<Fractional, TryFromIntError> {
    let r = v.iter().fold(0, |acc, x| acc + x);
    let l = i64::try_from(v.len())?;
    Ok(Fractional(r, l))
}

fn common_fractional() {
    let a = vec![3, 6, 1, 9];
    let b = from_vector(&a);
    let c = mean(&a).unwrap(); // This might fail if the len of the
                               // vector (usize) does not fit into i32.
    let cr :f64 = c.try_into().unwrap();

    println!("         [i32] : {:?}", a);
    println!("  [Fractional] : {:?}", b);
    println!(" mean of [i32] : {}"  , c);
    println!("        as f64 : {}"  , cr);
    println!("  again as f64 : {}"  , TryInto::<f64>::try_into(c).unwrap());
}

fn continuous() {
    let d = Fractional(45, 16);
    let e = Fractional(16, 45);

    let dc :Continuous = (&d).into();
    let ec :Continuous = (&e).into();

    println!("cont frac of d : {} => {:?}", d, dc);
    println!("cont frac of e : {} => {:?}", e, ec);
    println!("   reverted dc : {:?} {}", dc, Into::<Fractional>::into(&dc));
    println!("   reverted ec : {:?} {}", ec, Into::<Fractional>::into(&ec));
}

fn sqrt() {
    let f       = Fractional(-9, 4);
    let fr :f64 = f.try_into().unwrap();
    let sq      = f.sqrt();
    let _sq     = fr.sqrt();

    println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq);

    for f in [ Fractional(9, 4)
             , Fractional(45, 16)
             , Fractional(16, 45)
             , Fractional(9, 3) ].iter() {
        let fr  :f64 = (*f).try_into().unwrap();
        let sq       = f.sqrt().unwrap();
        let sqr :f64 = sq.try_into().unwrap();
        let _sqr     = fr.sqrt();

        println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr);
    }
}

fn pi() {
    let pi              = Fractional::pi();
    let pir :f64        = pi.try_into().unwrap();
    let pit :(i32, i32) = pi.try_into().unwrap();
    let pi2r :f64       = (pi * pi).try_into().unwrap();

    println!("        Rust π : {}"     , FPI);
    println!("             π : {} {}"  , pi, pir);
    println!("    π as tuple : {:?}"   , pit);
    println!("       Rust π² : {}"     , FPI * FPI);
    println!("            π² : {} {}"  , pi * pi, pi2r);
}

fn _sin() {
    for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315
             , 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
        let s       = Fractional::sin(*d as i32);
        let sr :f64 = s.try_into().unwrap();
        let _s      = f64::sin(*d as f64 * FPI / 180.0);

        println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s);
    }
}

fn _tan() {
    for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315
             , 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
        let t       = Fractional::tan(*d as i32);
        let tr :f64 = t.try_into().unwrap();
        let _t      = f64::tan(*d as f64 * FPI / 180.0);

        println!("{:>14} : {} {} / {}", format!("tan {}", d), t, tr, _t);
    }
}

fn _cos() {
    for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315
             , 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
        let c       = Fractional::cos(*d as i32);
        let cr :f64 = c.try_into().unwrap();
        let _c      = f64::cos(*d as f64 * FPI / 180.0);

        println!("{:>14} : {} {} / {}", format!("cos {}", d), c, cr, _c);
    }
}

fn _vector1() {
    let v1 = Vector(1.into(), 2.into(), 3.into());
    let v2 = Vector(2.into(), 2.into(), 3.into());
    let s :Fractional = 3.into();

    _vector(v1, v2, s);
}

fn _vector2() {
    let v1 = Vector(1.0, 2.0, 3.0);
    let v2 = Vector(2.0, 2.0, 3.0);
    let s = 3.0;

    _vector(v1, v2, s);
}

fn _vector<T>(v1 :Vector<T>, v2 :Vector<T>, s :T)
    where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
           + Mul<Output = T> + Div<Output = T> + Trig + Copy + Display {
    println!("{:>14} : {}", "Vector v1", v1);
    println!("{:>14} : {}", "Vector v2", v2);
    println!("{:>14} : {}", "magnitude v1", v1.mag());
    println!("{:>14} : {}", "-v1", -v1);
    println!("{:>14} : {}", "v1 + v1", v1 + v1);
    println!("{:>14} : {}", "v1 - v1", v1 - v1);
    println!("{:>14} : {}", "v2 - v1", v2 - v1);
    println!("{:>14} : {}", format!("v1 * {}", s), v1.mul(&s));
    println!("{:>14} : {}", "norm v1", v1.norm());
    println!("{:>14} : {}", "magnitude norm v1", v1.norm().mag());
    println!("{:>14} : {}", "magnitude v1", v1.mag());
    println!("{:>14} : {}", "norm * magnitude", v1.norm().mul(&v1.mag()));
    println!("{:>14} : {}", "distance v1 v2", v1.distance(v2));
    println!("{:>14} : {}", "distance v2 v1", v2.distance(v1));
    println!("{:>14} : {}", "v1 dot v2", v1.dot(v2));
    println!("{:>14} : {}", "v2 dot v1", v2.dot(v1));
    println!("{:>14} : {}", "v1 * v2", v1 * v2);
    println!("{:>14} : {}", "v2 * v1", v2 * v1);
}

fn _transform1() {
    let v  = Vector(Fractional(1,1), Fractional(1,1), Fractional(1,1));
    let v1 = Vector(Fractional(1,1), Fractional(2,1), Fractional(3,1));
    let v2 = Vector(Fractional(1,1), Fractional(1,1), Fractional(0,1));
    let v3 = Vector(Fractional(1,1), Fractional(0,1), Fractional(1,1));

    _transform(v, v1, v2, v3);
}

fn _transform2() {
    let v  = Vector(1.0, 1.0, 1.0);
    let v1 = Vector(1.0, 2.0, 3.0);
    let v2 = Vector(1.0, 1.0, 0.0);
    let v3 = Vector(1.0, 0.0, 1.0);

    _transform(v, v1, v2, v3);
}

fn _transform<T>(v :Vector<T>, v1 :Vector<T>, v2 :Vector<T>, v3 :Vector<T>)
    where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
           + Mul<Output = T> + Div<Output = T> + Trig
           + Debug + From<i32> + Copy + Display {

    println!("{:>14} : {}", "Vector v1", v1);
    println!( "{:>14} : {}", "translate v1"
            , v.transform(&TMatrix::translate(v)));
    println!();

    fn _rot<T>( o :&str , n :&str , v :&Vector<T>
              , fs :&[&dyn Fn(i32) -> TMatrix<T>] )
        where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
               + Mul<Output = T> + Div<Output = T> + Trig
               + Debug + From<i32> + Copy + Display {

        for d in [ 30, 45, 60, 90, 120, 135, 150, 180
                 , 210, 225, 240, 270, 300, 315, 330 ].iter() {
            let mi = fs.iter().map(|f| f(*d as i32));
            println!( "{:>14} : {}"
                    , format!("{} {} {}", o, d, n)
                    , v.transform(&TMatrix::combine(mi)) );
        }
    }

    println!("{:>14} : {}", "Vector v2", v2);
    _rot("rot_x", "v2", &v2, &[&TMatrix::rotate_x]);
    println!();
    _rot("rot_y", "v2", &v2, &[&TMatrix::rotate_y]);
    println!();
    _rot("rot_xy", "v2", &v2, &[&TMatrix::rotate_x, &TMatrix::rotate_y]);
    println!();
    println!("{:>14} : {}", "Vector v3", v3);
    _rot("rot_z", "v3", &v3, &[&TMatrix::rotate_z]);
    println!();

    for d in [ 30, 45, 60, 90, 120, 135, 150, 180
             , 210, 225, 240, 270, 300, 315, 330 ].iter() {
        println!( "{:>14} : {}"
                , format!("rot_v {} v2", d)
                , v2.transform(&TMatrix::rotate_v(&v, *d as i32)) );
    }
}

fn _line() {
    let a = (Coordinate(0, 1, 0.0), Coordinate(6, 4, 0.0));
    let b = (Coordinate(0, 4, 0.0), Coordinate(6, 1, 0.0));
    let c = (Coordinate(1, 0, 0.0), Coordinate(6, 8, 0.0));
    let d = (Coordinate(1, 8, 0.0), Coordinate(6, 0, 0.0));

    for i in [a, b, c, d].iter() {
        println!("{:>14} : {}", Line(i.0, i.1), Line(i.0, i.1).plot());
        println!("{:>14} : {}", Line(i.1, i.0), Line(i.1, i.0).plot());
    }

    println!();
    let pl = Polyline(
        Coordinates(vec!(a.0, a.1, b.0, b.1, c.0, c.1, d.0, d.1)));
    println!("{:>14} : {}", pl, pl.plot());

    println!();
    let pg = Polygon(
        Coordinates(vec!( Coordinate(  0, -10, 0.0)
                        , Coordinate( 10,  10, 0.0)
                        , Coordinate(-10,  10, 0.0) )));
    println!("{:>14} : {}", pg, pg.plot());

    let i = Vector(Fractional(  0,1), Fractional(-30,1), Fractional(0,1));
    let j = Vector(Fractional( 30,1), Fractional( 30,1), Fractional(0,1));
    let k = Vector(Fractional(-30,1), Fractional( 30,1), Fractional(0,1));

    let rot :TMatrix<Fractional> = TMatrix::rotate_z(20);
    let Vector(ix, iy, _) = i.transform(&rot);
    let Vector(jx, jy, _) = j.transform(&rot);
    let Vector(kx, ky, _) = k.transform(&rot);

    fn to_i32(x :Fractional) -> i32 {
        let Fractional(n, d) = x;
        (n / d + if (n % d).abs() < (n / 2).abs() { 0 } else { 1 }) as i32
    }

    println!();
    let pg = Polygon(
        Coordinates(vec!( Coordinate(to_i32(ix) + 100, to_i32(iy) + 100, 0.0)
                        , Coordinate(to_i32(jx) + 100, to_i32(jy) + 100, 0.0)
                        , Coordinate(to_i32(kx) + 100, to_i32(ky) + 100, 0.0) )));
    println!("{:>14} : {}", pg, pg.plot());

    let i = Vector(  0.0, -30.0, 0.0);
    let j = Vector( 30.0,  30.0, 0.0);
    let k = Vector(-30.0,  30.0, 0.0);

    let rot :TMatrix<f64> = TMatrix::rotate_z(20);
    let Vector(ix, iy, _) = i.transform(&rot);
    let Vector(jx, jy, _) = j.transform(&rot);
    let Vector(kx, ky, _) = k.transform(&rot);

    fn to_i32_2(x :f64) -> i32 {
        x.round() as i32
    }

    println!();
    let pg = Polygon(
        Coordinates(vec!( Coordinate(to_i32_2(ix) + 100, to_i32_2(iy) + 100, 0.0)
                        , Coordinate(to_i32_2(jx) + 100, to_i32_2(jy) + 100, 0.0)
                        , Coordinate(to_i32_2(kx) + 100, to_i32_2(ky) + 100, 0.0) )));
    println!("{:>14} : {}", pg, pg.plot());
}

fn _democanvas<T>( xcb         :&XcbEasel
                 , title       :&'static str
                 , tx          :mpsc::Sender<i32>
                 , _triangle   :Polyeder<T>
                 , tetrahedron :Polyeder<T>
                 , cube        :Polyeder<T>
                 , light       :DirectLight<T> )
    where T: 'static + Add<Output = T> + Sub<Output = T> + Neg<Output = T>
           + Mul<Output = T> + Div<Output = T>
           + Debug + Copy + Trig + Send + From<i32> + PartialOrd {

    let mut canvas = xcb.canvas(151, 151).unwrap();
    let camera     = Camera::<T>::new(&canvas, 45); // the orig. view angle
                                                    // was 50.

    canvas.set_title(title);
    <XcbCanvas as Canvas<T>>::init_events(&canvas);
    <XcbCanvas as Canvas<T>>::start_events(&canvas, tx.clone());

    thread::spawn(move || {
        let     start = Instant::now();
        let     step  = Duration::from_millis(25);
        let mut last  = Instant::now();

        let t = TMatrix::translate(Vector(0.into() , 0.into() , 150.into()));

        loop {
            let deg = ((start.elapsed() / 25).as_millis() % 360) as i32;

            let rz = TMatrix::rotate_z(deg);
            let rx = TMatrix::rotate_x(-deg*2);
            let ry = TMatrix::rotate_y(-deg*2);

            let rot1 = TMatrix::combine(vec!(rz, rx, t));
            let rot2 = TMatrix::combine(vec!(rz, ry, t));

            let objects = vec!( (tetrahedron.transform(&rot1), 0xFFFF00)
                              , (       cube.transform(&rot2), 0x0000FF) );
            //let objects = vec!( (       cube.transform(&rot2), 0x0000FF) );
            //let objects = vec!( (tetrahedron.transform(&rot1), 0xFFFF00) );
            //let objects = vec!( (triangle.transform(&rot1), 0xFFFF00) );

            <XcbCanvas as Canvas<T>>::clear(&mut canvas);

            for (o, color) in objects {
                for (pg, c) in o.project(&camera, &light, color) {
                    //canvas.draw(&pg, Coordinate(0, 0, 0.into()), c);
                    (&pg).fill(&mut canvas, c);
                    //(&pg).debug();
                    //println!("\n");
                }
            }

            let passed = Instant::now() - last;
            let f      = (passed.as_nanos() / step.as_nanos()) as u32;

            if f > 1 {
                println!("{} !!! Detected frame drop", title);
            }

            last = last + step*(f + 1);
            <XcbCanvas as Canvas<T>>::put_text( &canvas
                                              , Coordinate(10, 15, 0.into())
                                              , &format!( "sleep: {:?}"
                                              , last - Instant::now() ));
            <XcbCanvas as Canvas<T>>::show(&canvas);
            thread::sleep(last - Instant::now());
        }
    });
}

fn main() {
    common_fractional();
    println!();
    continuous();
    println!();
    sqrt();
    println!();
    pi();
    println!();
    _sin();
    println!();
    _cos();
    println!();
    _tan();
    println!();
    _vector1();
    println!();
    _vector2();
    println!();
    _transform1();
    println!();
    _transform2();
    println!();
    _line();

    let xcb = XcbEasel::new().unwrap();
    let (tx, rx) = mpsc::channel();

    _democanvas( &xcb, "Something...(f64)", tx.clone()
               , Polyeder::triangle(60.0)
               , Polyeder::tetrahedron(80.0)
               , Polyeder::cube(55.0)
               , DirectLight::new(Vector(0.0, 0.0, 1.0)) );
    /*
    _democanvas( &xcb, "Something...(Fractional)", tx.clone()
               , Polyeder::triangle(Fractional(60,1))
               , Polyeder::tetrahedron(Fractional(80,1))
               , Polyeder::cube(Fractional(55,1))
               , DirectLight::new(Vector( Fractional(0,1)
                                        , Fractional(0,1)
                                        , Fractional(1,1) )) );
    */

    for x in rx {
        match x {
            1 => break,
            _ => {},
        }
    }
}