index.html
262 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Transitional//EN' 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'><html xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>RIF RDF and OWL Compatibility</title>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<style type="text/css">
.editsection { display: none; }
</style>
<link href="tr.css" rel="stylesheet" type="text/css" />
<link href="http://www.w3.org/StyleSheets/TR/W3C-REC" rel="stylesheet" type="text/css" />
</head>
<body>
<div class="head">
<a href="http://www.w3.org/"><img alt="W3C" height="48" src="http://www.w3.org/Icons/w3c_home" width="72" /></a><h1 id="title" style="clear:both"><span id="short-title">RIF RDF and OWL Compatibility</span></h1>
<h2 id="W3C-doctype">W3C Recommendation 22 June 2010</h2>
<!-- no inplace warning -->
<dl>
<dt>This version:</dt>
<dd><a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/" id="this-version-url">http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/</a></dd>
<dt>Latest version:</dt>
<dd><a href="http://www.w3.org/TR/rif-rdf-owl/">http://www.w3.org/TR/rif-rdf-owl/</a></dd>
<dt>Previous version:</dt>
<dd><a href="http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/">http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/</a> (<a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/diff-from-20100511">color-coded diff</a>)</dd>
</dl>
<dl><dt>Editors:</dt><dd>Jos de Bruijn, Vienna University of Technology</dd>
</dl>
<p>Please refer to the <a href="http://www.w3.org/2010/rif/errata"><strong>errata</strong></a> for this document, which may include some normative corrections.</p>
<p>This document is also available in these non-normative formats: <a href="http://www.w3.org/2010/pdf/REC-rif-rdf-owl-20100622.pdf">PDF version</a>.</p>
<p>See also <a href="http://www.w3.org/2010/rif/translation/rif-rdf-owl">translations</a>.</p>
<p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a> © 2010 <a href="http://www.w3.org/"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>®</sup> (<a href="http://www.csail.mit.edu/"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.eu/"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">trademark</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-documents">document use</a> rules apply.</p>
</div>
<hr />
<h2><a id="abstract" name="abstract">Abstract</a></h2>
<div>
<div>Rules interchanged using the Rule Interchange Format RIF may depend on or be used in combination with RDF data and RDF Schema or OWL ontologies. This document, developed by the <a class="external text" href="http://www.w3.org/2005/rules/wg" title="http://www.w3.org/2005/rules/wg">Rule Interchange Format (RIF) Working Group</a>, specifies the interoperation between RIF and the data and ontology languages RDF, RDF Schema, and OWL.</div>
</div>
<h2 class="no-toc no-num">
<a id="w3c_status" name="w3c_status">Status of this Document</a>
</h2>
<h4 class="no-toc no-num" id="may-be">May Be Superseded</h4>
<p><em>This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the <a href="http://www.w3.org/TR/">W3C technical reports index</a> at http://www.w3.org/TR/.</em></p>
<h4 class="no-toc no-num" id="related">Set of Documents</h4>
<p>This document is being published as one of a set of 11 documents: </p>
<ol>
<li><a href="http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/">RIF Overview</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/">RIF Core Dialect</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/">RIF Basic Logic Dialect</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-prd-20100622/">RIF Production Rule Dialect</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/">RIF Framework for Logic Dialects</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/">RIF Datatypes and Built-Ins 1.0</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/">RIF RDF and OWL Compatibility</a> (this document)</li>
<li><a href="http://www.w3.org/TR/2010/NOTE-rif-owl-rl-20100622/">OWL 2 RL in RIF</a></li>
<li><a href="http://www.w3.org/TR/2010/WD-rif-xml-data-20100622/">RIF Combination with XML data</a></li>
<li><a href="http://www.w3.org/TR/2010/WD-rif-in-rdf-20100622/">RIF In RDF</a></li>
<li><a href="http://www.w3.org/TR/2010/WD-rif-test-20100622/">RIF Test Cases</a></li>
</ol>
<!-- no eventStatusExtra -->
<!-- no statusExtra -->
<div>
<h4 class="no-toc no-num" id="sotd-xml-dep">XML Schema Datatypes Dependency</h4>
<p>RIF is defined to use datatypes defined in the <a href="http://www.w3.org/TR/xmlschema-2/">XML Schema Definition Language (XSD)</a>. As of this writing, the latest W3C Recommendation for XSD is version 1.0, with <a href="http://www.w3.org/TR/xmlschema11-1/">version 1.1</a> progressing toward Recommendation. RIF has been designed to take advantage of the new datatypes and clearer explanations available in XSD 1.1, but for now those advantages are being partially put on hold. Specifically, until XSD 1.1 becomes a W3C Recommendation, the elements of RIF which are based on it should be considered <em>optional</em>, as detailed in <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#XML_Schema_Datatypes">Datatypes and Builtins, section 2.3</a>. Upon the publication of XSD 1.1 as a W3C Recommendation, those elements will cease to be optional and are to be considered required as otherwise specified.</p>
<p>We suggest that for now developers and users follow the <a href="http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/">XSD 1.1 Last Call Working Draft</a>. Based on discussions between the Schema, RIF and OWL Working Groups, we do not expect any implementation changes will be necessary as XSD 1.1 advances to Recommendation.</p>
</div>
<h4 class="no-toc no-num" id="status-changes">Summary of Changes</h4>
<div>There have been no <a href="http://www.w3.org/2005/10/Process-20051014/tr#substantive-change">substantive</a> changes since the <a href="http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/">previous version</a>. For details on the minor changes see the <a href="#changelog">change log</a> and <a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/diff-from-20100511">color-coded diff</a>.</div>
<h4 class="no-toc no-num" id="please">Please Send Comments</h4><p>Please send any comments to <a class="mailto" href="mailto:public-rif-comments@w3.org">public-rif-comments@w3.org</a>
(<a class="http" href="http://lists.w3.org/Archives/Public/public-rif-comments/">public
archive</a>). Although work on this document by the <a href="http://www.w3.org/2005/rules/wg.html">Rule Interchange Format (RIF) Working Group</a> is complete, comments may be addressed in the <a href="http://www.w3.org/2010/rif/errata">errata</a> or in future revisions. Open discussion among developers is welcome at <a class="mailto" href="mailto:public-rif-dev@w3.org">public-rif-dev@w3.org</a> (<a class="http" href="http://lists.w3.org/Archives/Public/public-rif-dev/">public archive</a>).</p>
<h4 class="no-toc no-num" id="endorsement">Endorsed By W3C</h4>
<p><em>This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.</em></p>
<h4 class="no-toc no-num" id="patents">Patents</h4>
<p><em>This document was produced by a group operating under the <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/">5 February 2004 W3C Patent Policy</a>. W3C maintains a <a href="http://www.w3.org/2004/01/pp-impl/38457/status" rel="disclosure">public list of any patent disclosures</a> made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent.</em></p>
<hr title="Separator After Status Section" />
<table class="toc" id="toc" summary="Contents"><tr><td><div id="toctitle"><h2>Table of Contents</h2></div>
<ul>
<li class="toclevel-1"><a href="#Overview_of_RDF_and_OWL_Compatibility"><span class="tocnumber">1</span> <span class="toctext">Overview of RDF and OWL Compatibility</span></a></li>
<li class="toclevel-1"><a href="#Symbols_in_RIF_versus_RDF.2FOWL_.28Informative.29"><span class="tocnumber">2</span> <span class="toctext">Symbols in RIF versus RDF/OWL (Informative)</span></a></li>
<li class="toclevel-1"><a href="#RDF_Compatibility"><span class="tocnumber">3</span> <span class="toctext">RDF Compatibility</span></a>
<ul>
<li class="toclevel-2"><a href="#Syntax_of_RIF-RDF_Combinations"><span class="tocnumber">3.1</span> <span class="toctext">Syntax of RIF-RDF Combinations</span></a>
<ul>
<li class="toclevel-3"><a href="#RDF_Vocabularies_and_Graphs"><span class="tocnumber">3.1.1</span> <span class="toctext">RDF Vocabularies and Graphs</span></a></li>
<li class="toclevel-3"><a href="#RIF-RDF_Combinations"><span class="tocnumber">3.1.2</span> <span class="toctext">RIF-RDF Combinations</span></a></li>
<li class="toclevel-3"><a href="#Datatypes_and_Typed_Literals"><span class="tocnumber">3.1.3</span> <span class="toctext">Datatypes and Typed Literals</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Semantics_of_RIF-RDF_Combinations"><span class="tocnumber">3.2</span> <span class="toctext">Semantics of RIF-RDF Combinations</span></a>
<ul>
<li class="toclevel-3"><a href="#Interpretations"><span class="tocnumber">3.2.1</span> <span class="toctext">Interpretations</span></a>
<ul>
<li class="toclevel-4"><a href="#RDF_and_RIF_Interpretations"><span class="tocnumber">3.2.1.1</span> <span class="toctext">RDF and RIF Interpretations</span></a></li>
<li class="toclevel-4"><a href="#RDF_Lists"><span class="tocnumber">3.2.1.2</span> <span class="toctext">RDF Lists</span></a></li>
<li class="toclevel-4"><a href="#Common_RIF-RDF_Interpretations"><span class="tocnumber">3.2.1.3</span> <span class="toctext">Common RIF-RDF Interpretations</span></a></li>
</ul>
</li>
<li class="toclevel-3"><a href="#Satisfaction_and_Models"><span class="tocnumber">3.2.2</span> <span class="toctext">Satisfaction and Models</span></a></li>
<li class="toclevel-3"><a href="#Entailment"><span class="tocnumber">3.2.3</span> <span class="toctext">Entailment</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#OWL_Compatibility"><span class="tocnumber">4</span> <span class="toctext">OWL Compatibility</span></a>
<ul>
<li class="toclevel-2"><a href="#Syntax_of_RIF-OWL_Combinations"><span class="tocnumber">4.1</span> <span class="toctext">Syntax of RIF-OWL Combinations</span></a>
<ul>
<li class="toclevel-3"><a href="#Safeness_Restrictions"><span class="tocnumber">4.1.1</span> <span class="toctext">Safeness Restrictions</span></a></li>
<li class="toclevel-3"><a href="#Datatypes_in_OWL_2"><span class="tocnumber">4.1.2</span> <span class="toctext">Datatypes in OWL 2</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Semantics_of_RIF-OWL_Combinations"><span class="tocnumber">4.2</span> <span class="toctext">Semantics of RIF-OWL Combinations</span></a>
<ul>
<li class="toclevel-3"><a href="#OWL_RDF-Based_Semantics"><span class="tocnumber">4.2.1</span> <span class="toctext">OWL RDF-Based Semantics</span></a></li>
<li class="toclevel-3"><a href="#OWL_Direct_Semantics"><span class="tocnumber">4.2.2</span> <span class="toctext">OWL Direct Semantics</span></a>
<ul>
<li class="toclevel-4"><a href="#Modified_Semantics_for_RIF_Subclass.2C_Membership.2C_and_Frame_Formulas"><span class="tocnumber">4.2.2.1</span> <span class="toctext">Modified Semantics for RIF Subclass, Membership, and Frame Formulas</span></a></li>
<li class="toclevel-4"><a href="#Semantics_of_RIF-OWL_DL_Combinations"><span class="tocnumber">4.2.2.2</span> <span class="toctext">Semantics of RIF-OWL DL Combinations</span></a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Importing_RDF_and_OWL_in_RIF"><span class="tocnumber">5</span> <span class="toctext">Importing RDF and OWL in RIF</span></a>
<ul>
<li class="toclevel-2"><a href="#Profiles_of_Imports"><span class="tocnumber">5.1</span> <span class="toctext">Profiles of Imports</span></a>
<ul>
<li class="toclevel-3"><a href="#Specific_Profiles"><span class="tocnumber">5.1.1</span> <span class="toctext">Specific Profiles</span></a></li>
<li class="toclevel-3"><a href="#Generic_Profile"><span class="tocnumber">5.1.2</span> <span class="toctext">Generic Profile</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Interpretation_of_Profiles"><span class="tocnumber">5.2</span> <span class="toctext">Interpretation of Profiles</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Conformance_Clauses"><span class="tocnumber">6</span> <span class="toctext">Conformance Clauses</span></a></li>
<li class="toclevel-1"><a href="#Acknowledgements"><span class="tocnumber">7</span> <span class="toctext">Acknowledgements</span></a></li>
<li class="toclevel-1"><a href="#References"><span class="tocnumber">8</span> <span class="toctext">References</span></a>
<ul>
<li class="toclevel-2"><a href="#Normative_References"><span class="tocnumber">8.1</span> <span class="toctext">Normative References</span></a></li>
<li class="toclevel-2"><a href="#Informational_References"><span class="tocnumber">8.2</span> <span class="toctext">Informational References</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Appendix:_Embeddings_.28Informative.29"><span class="tocnumber">9</span> <span class="toctext">Appendix: Embeddings (Informative)</span></a>
<ul>
<li class="toclevel-2"><a href="#Embedding_RIF-RDF_Combinations"><span class="tocnumber">9.1</span> <span class="toctext">Embedding RIF-RDF Combinations</span></a>
<ul>
<li class="toclevel-3"><a href="#Embedding_Symbols"><span class="tocnumber">9.1.1</span> <span class="toctext">Embedding Symbols</span></a></li>
<li class="toclevel-3"><a href="#Embedding_Triples_and_Graphs"><span class="tocnumber">9.1.2</span> <span class="toctext">Embedding Triples and Graphs</span></a></li>
<li class="toclevel-3"><a href="#Embedding_Simple_Entailment"><span class="tocnumber">9.1.3</span> <span class="toctext">Embedding Simple Entailment</span></a></li>
<li class="toclevel-3"><a href="#Embedding_RDF_Entailment"><span class="tocnumber">9.1.4</span> <span class="toctext">Embedding RDF Entailment</span></a></li>
<li class="toclevel-3"><a href="#Embedding_RDFS_Entailment"><span class="tocnumber">9.1.5</span> <span class="toctext">Embedding RDFS Entailment</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Embedding_RIF-OWL_2_RL_Combinations"><span class="tocnumber">9.2</span> <span class="toctext">Embedding RIF-OWL 2 RL Combinations</span></a>
<ul>
<li class="toclevel-3"><a href="#Embedding_RIF_DL-document_formulas_into_RIF_BLD"><span class="tocnumber">9.2.1</span> <span class="toctext">Embedding RIF DL-document formulas into RIF BLD</span></a></li>
<li class="toclevel-3"><a href="#Embedding_OWL_2_RL_into_RIF_BLD"><span class="tocnumber">9.2.2</span> <span class="toctext">Embedding OWL 2 RL into RIF BLD</span></a>
<ul>
<li class="toclevel-4"><a href="#Normalization_of_OWL_2_RL"><span class="tocnumber">9.2.2.1</span> <span class="toctext">Normalization of OWL 2 RL</span></a></li>
<li class="toclevel-4"><a href="#Embedding_Normalized_OWL_2_RL"><span class="tocnumber">9.2.2.2</span> <span class="toctext">Embedding Normalized OWL 2 RL</span></a></li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Appendix:_Change_log_.28Informative.29"><span class="tocnumber">10</span> <span class="toctext">Appendix: Change log (Informative)</span></a></li>
<li class="toclevel-1"><a href="#End_Notes"><span class="tocnumber">11</span> <span class="toctext">End Notes</span></a></li>
</ul>
</td></tr></table><script type="text/javascript"> if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } </script>
<a id="Overview_of_RDF_and_OWL_Compatibility" name="Overview_of_RDF_and_OWL_Compatibility"></a><h2> <span class="mw-headline">1 Overview of RDF and OWL Compatibility </span></h2>
<p>The Rule Interchange Format (RIF) is a format for interchanging rules over the Web. Rules that are exchanged using RIF may refer to external data sources and may be based on data models that are represented using a language different from RIF. The Resource Description Framework <a class="external text" href="http://www.w3.org/RDF/" title="http://www.w3.org/RDF/">RDF</a> [<a href="#ref-rdf-concepts" title="">RDF-Concepts</a>] is a Web-based language for the representation and exchange of data; <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-schema-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-schema-20040210/">RDF Schema</a> (RDFS) [<a href="#ref-rdf-schema" title="">RDF-Schema</a>] and the <a class="external text" href="http://www.w3.org/2007/OWL/" title="http://www.w3.org/2007/OWL/">OWL</a> Web Ontology Language [<a href="#ref-owl2-syntax" title="">OWL2-Syntax</a>] are Web-based languages for representing and exchanging ontologies. This document specifies how combinations of RIF documents and RDF data and RDFS and OWL ontologies are interpreted; i.e., it specifies how RIF interoperates with RDF, RDFS, and OWL. We consider here OWL 2 [<a href="#ref-owl2-syntax" title="">OWL2-Syntax</a>], which is an extension of OWL 1 [<a href="#ref-owl-reference" title="">OWL-Reference</a>]. Therefore, the notions defined in this document also apply to combinations of RIF documents with OWL 1 ontologies.
</p><p>We consider here the RIF Basic Logic Dialect (BLD) [<a href="#ref-rif-bld" title="">RIF-BLD</a>] and RIF Core [<a href="#ref-rif-core" title="">RIF-Core</a>], a subset of RIF BLD.
The RIF Production Rule Dialect (PRD) [<a href="#ref-rif-prd" title="">RIF-PRD</a>] is an extension of RIF Core. Interoperability between RIF and RDF/OWL is only defined for the Core subset of PRD. In the remainder, when speaking about RIF documents and rules, we refer to RIF Core and BLD.
</p><p>RDF data and RDFS and OWL ontologies can be represented using <i>RDF graphs</i>. There exist several alternative syntaxes for OWL ontologies; however, for exchange purposes it is assumed they are represented using RDF graphs.
</p><p>Several syntaxes have been proposed for the exchange of RDF graphs, the normative syntax being RDF/XML [<a href="#ref-rdf-syntax" title="">RDF-Syntax</a>]. RIF does not provide a format for exchanging RDF graphs; it is assumed that RDF graphs are exchanged using RDF/XML, or any other syntax that can be used for representing or exchanging RDF graphs.
</p><p>A typical scenario for the use of RIF with RDF/OWL is the exchange of rules that use RDF data and/or RDFS or OWL ontologies: an interchange partner <i>A</i> has a rules language that is RDF/OWL-aware, i.e., it supports the use of RDF data, it uses an RDFS or OWL ontology, or it extends RDF(S)/OWL. <i>A</i> sends its rules using RIF, possibly with references to the appropriate RDF graph(s), to partner <i>B</i>. <i>B</i> receives the rules and retrieves the referenced RDF graph(s). The rules are translated to the internal rules language of <i>B</i> and are processed, together with the RDF graphs, using the RDF/OWL-aware rule engine of <i>B</i>. The use case <a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/#Vocabulary_Mapping_for_Data_Integration" title="UCR">Vocabulary Mapping for Data Integration</a> [<a href="#ref-rif-ucr" title="">RIF-UCR</a>] is an example of the interchange of RIF rules that use RDF data and RDFS ontologies.
</p><p>A specialization of this scenario is the publication of RIF rules that refer to RDF graphs; publication is a special kind of interchange: one to many, rather than one-to-one. When a rule publisher <i>A</i> publishes its rules on the Web, there may be several consumers that retrieve the RIF rules and RDF graphs from the Web, translate the RIF rules to their respective rules languages, and process them together with the RDF graphs in their own rules engines. The use case <a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/#Publishing_Rules_for_Interlinked_Metadata" title="UCR">Publishing Rules for Interlinked Metadata</a> [<a href="#ref-rif-ucr" title="">RIF-UCR</a>] illustrates the publication scenario.
</p><p>Another specialization of the exchange scenario is the <a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/#Interchanging_Rule_Extensions_to_OWL" title="UCR">Interchange of Rule Extensions to OWL</a> [<a href="#ref-rif-ucr" title="">RIF-UCR</a>]. The intention of the rule publisher in this scenario is to extend an OWL ontology with rules: interchange partner <i>A</i> has a rules language that extends OWL. <i>A</i> splits its ontology+rules description into a separate OWL ontology and a RIF document, publishes the OWL ontology, and sends (or publishes) the RIF document, which includes a reference to the OWL ontology. A consumer of the rules retrieves the OWL ontology and translates the ontology and document into a combined ontology+rules description in its own rule extension of OWL.
</p><p><br />
A RIF document that refers to (<i>imports</i>) RDF graphs and/or RDFS/OWL ontologies, or any use of a RIF document with RDF graphs, is viewed as a combination of a document and a number of graphs and ontologies. This document specifies how, in such a combination, the document and the graphs and ontologies interoperate in a technical sense, i.e., the conditions under which the combination is satisfiable (i.e., consistent), as well as the entailments (i.e., logical consequences) of the combination.
The interaction between RIF and RDF/OWL is realized by connecting the model theory of RIF [<a href="#ref-rif-bld" title="">RIF-BLD</a>] with the model theories of RDF [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>] and OWL [<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>], respectively.
</p><p><br />
The notation of certain symbols in RIF, particularly IRIs and plain literals, is slightly different from the notation in RDF/OWL. These differences are illustrated in the Section <a href="#sec-swc-symbols-rdf-owl" title="">Symbols in RIF Versus RDF/OWL</a>.
</p><p>The RDF Semantics specification [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>] defines four normative notions of entailment for RDF graphs: Simple, RDF, RDFS, and Datatype entailment. OWL 2 specifies two different semantics, with corresponding notions of entailment: the Direct Semantics [<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>] and the RDF-Based Semantics [<a href="#ref-owl2-rdf-based-semantics" title="">OWL2-RDF-Based-Semantics</a>]. This document specifies the interaction between RIF and RDF/OWL for all six notions. The Section <a href="#RDF_Compatibility" title="">RDF Compatibility</a> is concerned with the combination of RIF and RDF/RDFS. The combination of RIF and OWL is addressed in the Section <a href="#OWL_Compatibility" title="">OWL Compatibility</a>. The semantics of the interaction between RIF and the OWL 2 Direct Semantics is close in spirit to [<a href="#ref-swrl" title="">SWRL</a>].
</p><p>RIF provides a mechanism for referring to (importing) RDF graphs and a means for specifying the <i>profile</i> of this import, which corresponds to the intended entailment regime. The Section <a href="#Importing_RDF_and_OWL_in_RIF" title="">Importing RDF and OWL in RIF</a> specifies how such import statements are used for representing RIF-RDF and RIF-OWL combinations.
</p><p>The <a href="#Appendix:_Embeddings_.28Informative.29" title="">Appendix: Embeddings (Informative)</a> describes how reasoning with combinations of RIF rules with RDF and OWL 2 RL (a subset of OWL 2 DL) can be reduced to reasoning with RIF documents. This reduction can be seen as an implementation hint for interchange partners who do not have RDF/OWL-aware rule systems, but want to process RIF rules that import RDF graphs and OWL ontologies. In terms of the aforementioned scenario: if the interchange partner <i>B</i> does not have an RDF/OWL-aware rule system, but <i>B</i> can process RIF rules, then the appendix explains how the rule system of <i>B</i> could be used for processing RIF-RDF/OWL combinations.
</p><p>Throughout this document the following conventions are used when writing RIF and RDF statements in examples and definitions.
</p>
<ul><li> All RIF statements are written using the <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#Direct_Specification_of_RIF-BLD_Presentation_Syntax" title="BLD">RIF presentation syntax</a> [<a href="#ref-rif-bld" title="">RIF-BLD</a>]. Where possible, this document uses the <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#Constants_and_Symbol_Spaces" title="DTB">shortcut syntax for IRIs and strings</a> as defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</li><li> RDF triples are written using the Turtle syntax [<a href="#ref-turtle" title="">Turtle</a>]: triples are written as <tt>s p o</tt>, where <tt>s</tt>, <tt>p</tt>, and <tt>o</tt> are blank nodes <tt>_:<i>x</i></tt>, IRIs delimited with '<tt><</tt>' and '<tt>></tt>', compact IRIs <tt><i>prefix</i>:<i>localname</i></tt>, plain literals without language tags <tt>"<i>literal</i>"</tt>, plain literals with language tags <tt>"<i>literal</i>"@<i>lang</i></tt>, or typed literals <tt>"<i>literal</i>"^^<i>datatype-IRI</i></tt>.
</li><li> The following namespace prefixes are used throughout this document: <tt>ex</tt> refers to <tt>http://example.org/example#</tt>, <tt>xs</tt> refers to <tt>http://www.w3.org/2001/XMLSchema#</tt>, <tt>rdf</tt> refers to <tt>http://www.w3.org/1999/02/22-rdf-syntax-ns#</tt>, <tt>rdfs</tt> refers to <tt>http://www.w3.org/2000/01/rdf-schema#</tt>, <tt>owl</tt> refers to <tt>http://www.w3.org/2002/07/owl#</tt>, and <tt>rif</tt> refers to <tt>http://www.w3.org/2007/rif#</tt>.
</li></ul>
<p><span class="anchor" id="sec-swc-symbols-rdf-owl"></span>
</p>
<a id="Symbols_in_RIF_versus_RDF.2FOWL_.28Informative.29" name="Symbols_in_RIF_versus_RDF.2FOWL_.28Informative.29"></a><h2> <span class="mw-headline">2 Symbols in RIF versus RDF/OWL (Informative) </span></h2>
<p>Where RDF/OWL has four kinds of constants: <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference">URI references</a> (i.e., IRIs), <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-plain-literal" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-plain-literal">plain literals without language tags</a>, <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-plain-literal" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-plain-literal">plain literals with language tags</a> and <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-typed-literal" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-typed-literal">typed literals</a> (i.e., Unicode sequences with datatype IRIs) [<a href="#ref-rdf-concepts" title="">RDF-Concepts</a>], RIF has one kind of constants: Unicode sequences with symbol space IRIs [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p><p><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-symspace" title="DTB">Symbol spaces</a> can be seen as groups of constants. Every datatype is a symbol space, but there are symbol spaces that are not datatypes. For example, the symbol space <tt>rif:iri</tt> groups all IRIs.
The correspondence between constant symbols in RDF graphs and RIF documents is explained in <a href="#tab-rif-rdf-symbol-correspondence" title="">Table 1</a>.
</p>
<table border="1" id="tab-rif-rdf-symbol-correspondence">
<caption>Table 1. Correspondence between RDF and RIF symbols.</caption>
<tr>
<th>RDF Symbol</th>
<th>Example</th>
<th>RIF Symbol</th>
<th>Example</th>
</tr>
<tr>
<td>IRI</td>
<td><tt><http://www.w3.org/2007/rif></tt></td>
<td>Constant in the <tt>rif:iri</tt> symbol space</td>
<td><tt>"http://www.w3.org/2007/rif"^^rif:iri</tt></td>
</tr>
<tr>
<td>Plain literal without language tag</td>
<td><tt>"literal string"</tt></td>
<td>Constant in the <tt>rdf:PlainLiteral</tt> symbol space</td>
<td><tt>"literal string@"^^rdf:PlainLiteral</tt></td>
</tr>
<tr>
<td>Plain literal with language tag</td>
<td><tt>"literal string"@en</tt></td>
<td>Constant in the <tt>rdf:PlainLiteral</tt> symbol space</td>
<td><tt>"literal string@en"^^rdf:PlainLiteral</tt></td>
</tr>
<tr>
<td>Typed literal</td>
<td><tt>"1"^^xs:integer</tt></td>
<td>Constant with symbol space</td>
<td><tt>"1"^^xs:integer</tt></td>
</tr>
</table>
<p>The <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#Constants_and_Symbol_Spaces" title="DTB">shortcut syntax for IRIs and strings</a> [<a href="#ref-rif-dtb" title="">RIF-DTB</a>], used throughout this document, corresponds to the syntax for IRIs and plain literals in Turtle [<a href="#ref-turtle" title="">Turtle</a>], a commonly used syntax for RDF.
</p>
<ul><li> IRIs, i.e., constants of the form <tt>"<i>IRI</i>"^^rif:iri</tt>, may be written as <tt><<i>IRI</i>></tt> or as compact IRIs [<a href="#ref-curie" title="">CURIE</a>], i.e., as <tt><i>prefix</i>:<i>localname</i></tt>, where <tt><i>prefix</i></tt> is understood to refer to an IRI <tt><i>namespace-IRI</i></tt>, and <tt><i>prefix</i>:<i>localname</i></tt> stands for the IRI (<tt><i>IRI</i></tt>) obtained by concatenating <tt><i>namespace-IRI</i></tt> and <tt><i>localname</i></tt>.
</li><li> Plain literals without language tags, i.e., constants of the form <tt>"<i>my string@</i>"^^rdf:PlainLiteral</tt> may be written as <tt>"<i>my string</i>"</tt>.
</li></ul>
<p>RIF does not have a notion corresponding exactly to RDF <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-blank-nodes" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-blank-nodes">blank nodes</a>. RIF <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#Constants_and_Symbol_Spaces" title="DTB">local symbols</a>, written <tt>_<i>symbolname</i></tt>, have some commonality with blank nodes; like the blank node label, the name of a local symbol is not exposed outside of the document. However, in contrast to blank nodes, which are essentially existentially quantified variables, RIF local symbols are <i>constant</i> symbols. In many applications and deployment scenarios, this difference may be inconsequential. However the results will differ when such symbols are used in a non-assertional context, such as in a query pattern or rule body.
</p><p>Finally, <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-alphabet" title="BLD">variables</a> in the bodies of RIF rules or in query patterns may be existentially quantified, and are thus similar to blank nodes; however, RIF BLD does not allow existentially quantified variables to occur in rule heads.
</p>
<a id="RDF_Compatibility" name="RDF_Compatibility"></a><h2> <span class="mw-headline">3 RDF Compatibility </span></h2>
<p>This section specifies how a RIF document interacts with a set of RDF graphs in a RIF-RDF combination. In other words, how rules can "access" data in the RDF graphs.
</p><p>There is a correspondence between statements in RDF graphs and certain kinds of formulas in RIF. Namely, there is a correspondence between RDF triples of the form <tt>s p o</tt> and RIF frame formulas of the form <tt>s'[p' -> o']</tt>, where <tt>s'</tt>, <tt>p'</tt>, and <tt>o'</tt> are RIF symbols corresponding to the RDF symbols <tt>s</tt>, <tt>p</tt>, and <tt>o</tt>, respectively. This means that whenever a triple <tt>s p o</tt> is satisfied, the corresponding RIF frame formula <tt>s'[p' -> o']</tt> is satisfied, and vice versa.
</p><p>Consider, for example, a combination of an RDF graph that contains the triples
</p>
<pre>ex:john ex:brotherOf ex:jack .
ex:jack ex:parentOf ex:mary .
</pre>
<p>saying that <tt>ex:john</tt> is a brother of <tt>ex:jack</tt> and <tt>ex:jack</tt> is a parent of <tt>ex:mary</tt>,
and a RIF document that contains the rule
</p>
<pre>Forall ?x ?y ?z (?x[ex:uncleOf -> ?z] :-
And(?x[ex:brotherOf -> ?y] ?y[ex:parentOf -> ?z]))
</pre>
<p>which says that whenever some <tt>x</tt> is a brother of some <tt>y</tt> and <tt>y</tt> is a parent of some <tt>z</tt>, then <tt>x</tt> is an uncle of <tt>z</tt>. From this combination the RIF frame formula <tt>:john[:uncleOf -> :mary]</tt>, as well as the RDF triple <tt>:john :uncleOf :mary</tt>, are consequences of this combination.
</p><p>Note that blank nodes cannot be referenced directly from RIF rules, since blank nodes are local to a specific RDF graph. Variables in RIF rules do, however, range over objects denoted by blank nodes. So, it is possible to "access" an object denoted by a blank node from a RIF rule using a variable in a rule.
</p><p>The following example illustrates the interaction between RDF and RIF in the face of blank nodes.
</p><p>Consider a combination of an RDF graph that contains the triple
</p>
<pre>_:x ex:hasName "John" .
</pre>
<p>saying that there is something, denoted here by a blank node, which has the name <tt>"John"</tt>, and a RIF document that contains the rules
</p>
<pre>Forall ?x ?y ( ?x[rdf:type -> ex:named] :- ?x[ex:hasName -> ?y] )
Forall ?x ?y ( <http://a>[<http://p> -> ?y] :- ?x[ex:hasName -> ?y] )
</pre>
<p>which says that whenever there is some <tt>x</tt> that has some name <tt>y</tt>, then <tt>x</tt> is of type <tt>ex:named</tt> and <tt>http://a</tt> has a property <tt>http://p</tt> with value <tt>y</tt>.
</p><p>From this combination the following RIF condition formulas can be derived:
</p>
<pre>Exists ?z (?z[rdf:type -> ex:named])
<http://a>[<http://p> -> "John"]
</pre>
<p>as can the following RDF triples:
</p>
<pre>_:y rdf:type ex:named .
<http://a> <http://p> "John" .
</pre>
<p>However, there is no RIF constant symbol <tt>t</tt> such that <tt>t[rdf:type -> ex:named]</tt> can be derived, because there is no constant that represents the named individual.
</p><p><br />
Note that, even when considering <a href="#def-simple-entails" title="">Simple entailment</a>, not every combination is satisfiable. In fact, not every RIF document has a model. For example, the RIF BLD document consisting of the fact
</p>
<pre>"a"="b"
</pre>
<p>does not have a model, since the symbols <tt>"a"</tt> and <tt>"b"</tt> are mapped to the (distinct) character strings "a" and "b", respectively, in every semantic structure.
</p><p><br />
<span id="ex-difference-in-entailment">One consequence of the difference of the alphabets of RDF and RIF is that IRIs of the form <tt>http://iri</tt> and typed literals of the form <tt>"http://iri"^^rif:iri</tt> that occur in an RDF graph are treated the same in RIF-RDF combinations, even if the RIF document is empty. However, documents importing RDF graphs containing typed literals of the form <tt>"http://iri"^^rif:iri</tt> must be rejected.</span>
</p><p><span id="ex-strings">Plain literals without language tags of the form <tt>"mystring"</tt> and typed literals of the form <tt>"mystring"^^xs:string</tt> also correspond. For example, consider the combination of an empty document and an RDF graph that contains the triple</span>
</p>
<pre><http://a> <http://p> "abc" .
</pre>
<p>This combination entails, among other things, the following frame formula:
</p>
<pre><http://a>[<http://p> -> "abc"^^xs:string]
</pre>
<p>as well as the following triple:
</p>
<pre><http://a> <http://p> "abc"^^xs:string .
</pre>
<p>These entailments are sanctioned by the semantics of plain literals and <tt>xs:string</tt>s.
</p><p><br />
Lists in RDF (also called <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#collections" title="http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#collections">collections</a>) have a natural correspondence to RIF lists. For example, the RDF list <tt>_:l1 rdf:first ex:b . _:l1 rdf:rest rdf:nil .</tt> corresponds to the RIF list <tt>List(ex:b)</tt>. And so, the combination of the empty RIF document with the RDF graph
</p>
<pre>ex:a ex:p _:l1 .
_:l1 rdf:first ex:b .
_:l1 rdf:rest rdf:nil .
</pre>
<p>entails the formula
</p>
<pre>ex:a[ex:p -> List(ex:b)].
</pre>
<p><br />
Likewise, the combination of the empty RDF graph with the RIF fact
</p>
<pre>ex:p(List(ex:a))
</pre>
<p>entails the triples
</p>
<pre>_:l1 rdf:first ex:a .
_:l1 rdf:rest rdf:nil .
</pre>
<p>as well as the formula
</p>
<pre>Exists ?x (And(ex:p(?x) ?x[rdf:first -> ex:a] ?x[rdf:rest -> rdf:nil])).
</pre>
<p><br />
The remainder of this section formally defines combinations of RIF rules with RDF graphs and the semantics of such combinations. A combination consists of a RIF document and a set of RDF graphs. The semantics of combinations is defined in terms of combined models, which are pairs of RIF and RDF interpretations. The interaction between the two interpretations is defined through a number of conditions. Entailment is defined as model inclusion, as usual.
</p>
<a id="Syntax_of_RIF-RDF_Combinations" name="Syntax_of_RIF-RDF_Combinations"></a><h3> <span class="mw-headline">3.1 Syntax of RIF-RDF Combinations </span></h3>
<p>This section first reviews the definitions of RDF Vocabularies and RDF graphs, after which RIF-RDF combinations are formally defined. The section concludes with a review of definitions related to datatypes and typed literals.
</p>
<a id="RDF_Vocabularies_and_Graphs" name="RDF_Vocabularies_and_Graphs"></a><h4> <span class="mw-headline">3.1.1 RDF Vocabularies and Graphs </span></h4>
<p>An RDF <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defvocab" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defvocab">Vocabulary</a> <i>V</i> consists of the following sets of <i>names</i>:
</p>
<ul><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-Graph-URIref" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-Graph-URIref">IRIs</a> <i>V<sub>U</sub></i>, (corresponds to the Concepts and Abstract Syntax term "<i><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-URI-reference">RDF URI references</a></i>"; see the <a href="#note-rdf-uri-references" title="">End note on RDF URI references</a>)
</li></ul>
<ul><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">plain literals</a> <i>V<sub>PL</sub></i> (i.e., character strings with an optional language tag), and
</li></ul>
<ul><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">typed literals</a> <i>V<sub>TL</sub></i> (i.e., pairs of character strings and datatype IRIs).
</li></ul>
<p>In addition, there is an infinite set of <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-blank-node">blank nodes</a>, which is disjoint from the sets of names. See <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">RDF Concepts and Abstract Syntax</a> [<a href="#ref-rdf-concepts" title="">RDF-Concepts</a>] for precise definitions of these concepts.
</p><p><b>Definition.</b> Given an RDF Vocabulary <i>V</i>, a <i><b>generalized RDF triple</b></i> of <i>V</i> is a statement of the form <tt>s p o</tt>, where <tt>s</tt>, <tt>p</tt> and <tt>o</tt> are names in <i>V</i> or blank nodes. ☐
</p><p><b>Definition.</b> Given an RDF Vocabulary <i>V</i>, a <span id="def-generalized-rdf-graph"><i><b>generalized RDF graph</b></i></span> is a set of <i><b>generalized RDF triples</b></i> of <i>V</i>. ☐
</p><p>(See the <a href="#note-generalized-rdf-graphs" title="">End note on generalized RDF graphs</a>)
</p>
<a id="RIF-RDF_Combinations" name="RIF-RDF_Combinations"></a><h4> <span class="mw-headline">3.1.2 RIF-RDF Combinations </span></h4>
<p>A RIF-RDF combination consists of a RIF document and zero or more RDF graphs. Formally:
</p><p><b>Definition.</b> A <span id="def-rif-rdf-combination"><i><b>RIF-RDF combination</b></i></span> is a pair < <i>R</i>,<b>S</b>>, where <i>R</i> is a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-wff" title="BLD">RIF document</a> and <b>S</b> is a set of <a href="#def-generalized-rdf-graph" title="">generalized RDF graphs</a> of a Vocabulary <i>V</i>. ☐
</p><p>When clear from the context, RIF-RDF combinations are referred to simply as <i><b>combinations</b></i>.
</p>
<a id="Datatypes_and_Typed_Literals" name="Datatypes_and_Typed_Literals"></a><h4> <span class="mw-headline">3.1.3 Datatypes and Typed Literals </span></h4>
<p>Even though RDF allows the use of arbitrary datatype IRIs in typed literals, not all such datatype IRIs are recognized in the semantics. In fact, Simple entailment does not recognize any datatype and RDF and RDFS entailment recognize only the datatype <tt><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-XMLLiteral" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-XMLLiteral">rdf:XMLLiteral</a></tt>. To facilitate discussing datatypes, and specifically datatypes supported in specific contexts (required for RIF-D-entailment), the notion of datatype maps [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>] is used.
</p><p>A <i><b><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDatatypeMap" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDatatypeMap">datatype map</a></b></i> is a partial mapping from IRIs to <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-datatype" title="DTB">datatypes</a>.
</p><p>RDFS, specifically RIF-D-entailment, allows the use of arbitrary datatype maps, as long as <tt>rdf:XMLLiteral</tt> is in the domain of the map. RIF BLD requires a number of additional datatypes to be included; these are the <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-required-datatypes" title="DTB"><i>RIF-required datatypes</i></a> [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p><p>When checking consistency of a <a href="#def-rif-rdf-combination" title="">combination</a> < <i>R</i>,<b>S</b>> or entailment of a graph <i>S</i> or RIF formula φ by a combination < <i>R</i>,<b>S</b>>, the set of <span id="def-considered-datatypes"><i><b>considered datatypes</b></i></span> is the union of the set of <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-required-datatypes" title="DTB">RIF-required datatypes</a> and the sets of datatypes referenced in <i>R</i>, the documents <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-imported-doc" title="BLD">imported into</a> <i>R</i>, and φ (when considering entailment of φ).
</p><p><b>Definition.</b> Let DTS be a set of <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-datatype" title="DTB">datatypes</a>. A <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDatatypeMap" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDatatypeMap">datatype map</a> D is <span id="def-conforming-datatype-map"><i><b>conforming</b></i></span> with DTS if it satisfies the following conditions:
</p>
<ol><li> Every IRI identifying a datatype in DTS is in the domain of D.
</li><li> D maps each IRI in its domain to the datatype identified by that IRI in DTS. ☐
</li></ol>
<p>Note that it follows from the definition that every datatype used in the RIF document in the combination or the entailed RIF formula (when considering entailment questions) is included in any datatype map conforming to the set of considered datatypes. There may be datatypes used in an RDF graph in the combination that are not included in such a datatype map.
</p><p><b>Definition.</b> Given a datatype map D, a typed literal (<tt>s</tt>, <tt>d</tt>) is a <span id="def-well-typed-literal"><i><b>well-typed literal</b></i></span> if
</p>
<ol><li> <tt>d</tt> is in the domain of D and <tt>s</tt> is in the lexical space of D(<tt>d</tt>) or
</li><li> <tt>d</tt> is the IRI of a <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-symspace" title="DTB">symbol space</a> required by RIF BLD and <tt>s</tt> is in the lexical space of the symbol space. ☐
</li></ol>
<a id="Semantics_of_RIF-RDF_Combinations" name="Semantics_of_RIF-RDF_Combinations"></a><h3> <span class="mw-headline">3.2 Semantics of RIF-RDF Combinations </span></h3>
<p>The semantics of RIF-RDF combinations is defined through a combination of the RIF and RDF model theories, using a notion of <i>common models</i>. These models are then used to define satisfiability and entailment in the usual way. Combined entailment extends both entailment in RIF and entailment in RDF.
</p><p>The RDF Semantics document [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>] defines four normative kinds of interpretations, as well as corresponding notions of satisfiability and entailment:
</p>
<ul><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#sinterp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#sinterp">Simple interpretations</a>, which do not impose any conditions on the RDF and RDFS Vocabularies,
</li><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfinterpdef" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfinterpdef">RDF interpretations</a>, which impose additional conditions on the interpretation of the RDF Vocabulary,
</li><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsinterpdef" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsinterpdef">RDFS interpretations</a>, which impose additional conditions on the interpretation of the RDF and RDFS Vocabularies, and
</li><li> <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp">D-interpretations</a>, which impose additional conditions on the treatment of datatypes, relative to a <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDatatypeMap" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDatatypeMap">datatype map</a> D.
</li></ul>
<p>Those four types of interpretations are reflected in the definitions of satisfaction and entailment in this section.
</p>
<a id="Interpretations" name="Interpretations"></a><h4> <span class="mw-headline">3.2.1 Interpretations </span></h4>
<p>This section defines the notion of <i>common-RIF-RDF-interpretation</i>, which is an interpretation of a RIF-RDF combination. This common-RIF-RDF-interpretation is the basis for the definitions of satisfaction and entailment in the following sections.
</p><p>The correspondence between <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-sem-struct" title="BLD">RIF semantic structures</a> (interpretations) and <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#interp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#interp">RDF interpretations</a> is defined through a number of conditions that ensure the correspondence in the interpretation of names (i.e., IRIs and literals) and formulas, i.e., the correspondence between RDF triples of the form <tt>s p o</tt> and RIF frames of the form <tt>s'[p' -> o']</tt>, where <tt>s'</tt>, <tt>p'</tt>, and <tt>o'</tt> are RIF symbols corresponding to the RDF symbols <tt>s</tt>, <tt>p</tt>, and <tt>o</tt>, respectively (cf. the Section <a href="#sec-swc-symbols-rdf-owl" title="">Symbols in RIF Versus RDF/OWL</a>).
</p>
<a id="RDF_and_RIF_Interpretations" name="RDF_and_RIF_Interpretations"></a><h5> <span class="mw-headline">3.2.1.1 RDF and RIF Interpretations </span></h5>
<p>The notions of RDF interpretation and RIF semantic structure (interpretation) are briefly reviewed below.
</p><p>As defined in [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>], a <i><b><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#interp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#interp">Simple interpretation</a></b></i> of a Vocabulary <i>V</i> is a tuple I=< IR, IP, IEXT, IS, IL, LV >, where
</p>
<ul><li> IR is a non-empty set of resources (the domain),
</li><li> IP is a set of properties,
</li><li> IEXT is an extension function, which is a mapping from IP into the power set of IR × IR,
</li><li> IS is a mapping from IRIs in <i>V</i> into (IR union IP),
</li><li> IL is a mapping from typed literals in <i>V</i> into IR, and
</li><li> LV is the set of literal values, which is a subset of IR, and includes all plain literals in <i>V</i>.
</li></ul>
<p>RDF-, RDFS-, and D-interpretations are Simple interpretations that satisfy certain conditions:
</p>
<ul><li> A Simple interpretation I of a Vocabulary <i>V</i> is an <i><b><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfinterpdef" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfinterpdef">RDF-interpretation</a></b></i> if <i>V</i> includes the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defRDFV" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defRDFV">RDF Vocabulary</a> and I satisfies the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDF_axiomatic_triples" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDF_axiomatic_triples">RDF axiomatic triples</a> and the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsemcond1" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsemcond1">RDF semantic conditions</a>.
</li><li> An RDF-interpretation I of a Vocabulary <i>V</i> is an <i><b><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsinterpdef" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsinterpdef">RDFS-interpretation</a></b></i> if <i>V</i> includes the RDFS Vocabulary and I satisfies the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFS_axiomatic_triples" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFS_axiomatic_triples">RDFS axiomatic triples</a> and the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfssemcond1" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfssemcond1">RDFS semantic conditions</a>.
</li><li> Given a datatype map D, an RDFS-interpretation I of a Vocabulary <i>V</i> is a <i><b><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp">D-interpretation</a></b></i> if <i>V</i> includes the IRIs in the domain of D and I satisfies the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp">general semantic conditions for datatypes</a> for every pair <d, D(d)> such that d is in the domain of D.
</li></ul>
<p>As defined in [<a href="#ref-rif-bld" title="">RIF-BLD</a>], a <i><b><a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-sem-struct" title="BLD">semantic structure</a></b></i> <i><b>I</b></i> is a tuple of the form <<i><b>TV</b></i>, <i><b>DTS</b></i>, <i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>V</sub>,
<i><b>I</b></i><sub>F</sub>, <i><b>I</b></i><sub>NF</sub>, <i><b>I</b></i><sub>list</sub>, <i><b>I</b></i><sub>tail</sub>, <i><b>I</b></i><sub>frame</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>, <i><b>I</b></i><sub>=</sub>,
<i><b>I</b></i><sub>external</sub>, <i><b>I</b></i><sub>truth</sub>>. The specification of RIF-RDF compatibility is only concerned with <i><b>DTS</b></i>, <i><b>D</b></i>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>list</sub>, <i><b>I</b></i><sub>tail</sub>, <i><b>I</b></i><sub>frame</sub>, <i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>, and <i><b>I</b></i><sub>truth</sub>. The other mappings that are parts of a semantic structure are not used in the definition of combinations.
</p><p>Recall that <tt>Const</tt> is the set of <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-alphabet" title="BLD">constant symbols</a> and <tt>Var</tt> is the set of <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-alphabet" title="BLD">variable symbols</a> in RIF.
</p>
<ul><li> <i><b>DTS</b></i> is the set of datatypes, which have associated datatype identifiers,
</li><li> <i><b>D</b></i> is a set (the domain),
</li><li> <i><b>D</b></i><sub>ind</sub> is a non-empty subset of <i><b>D</b></i>,
</li><li> <i><b>D</b></i><sub>func</sub> is a non-empty subset of <i><b>D</b></i>,
</li><li> <i><b>I</b></i><sub>C</sub> is a mapping from constants to <i><b>D</b></i> such that constants in individual position are mapped to <i><b>D</b></i><sub>ind</sub> and constants in function positions are mapped to <i><b>D</b></i><sub>func</sub>,
</li><li> <i><b>I</b></i><sub>V</sub> is a mapping from <tt>Var</tt> to <i><b>D</b></i><sub>ind</sub>,
</li><li> <i><b>I</b></i><sub>list</sub> is an injective mapping from <i><b>D</b></i><sub>ind</sub><sup>*</sup> to <i><b>D</b></i><sub>ind</sub>,
</li><li> <i><b>I</b></i><sub>tail</sub> is a mapping from <i><b>D</b></i><sub>ind</sub><sup>+</sup>×<i><b>D</b></i><sub>ind</sub> to <i><b>D</b></i><sub>ind</sub>,
</li><li> <i><b>I</b></i><sub>frame</sub> is a mapping from <i><b>D</b></i><sub>ind</sub> to functions of the form <tt>SetOfFiniteBags</tt>(<i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub>) → <i><b>D</b></i>,
</li><li> <i><b>I</b></i><sub>sub</sub> is a mapping from <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> to <i><b>D</b></i>,
</li><li> <i><b>I</b></i><sub>isa</sub> is a mapping from <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> to <i><b>D</b></i>, and
</li><li> <i><b>I</b></i><sub>truth</sub> is a mapping from <i><b>D</b></i> to <i><b>TV</b></i>.
</li></ul>
<p>For the purpose of the interpretation of imported documents, RIF BLD defines the notion of <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-semantic-multistruct" title="BLD"><i><b>semantic multi-structures</b></i></a>, which are nonempty sets of semantic structures of the form {<i><b>J</b></i>,<i><b>I</b></i>; <i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, ...} that differ only in interpretation of local constants. The structure <i><b>I</b></i> in the above is used to interpret document formulas, and will be used to specify RIF combinations.
</p>
<a id="RDF_Lists" name="RDF_Lists"></a><h5> <span class="mw-headline">3.2.1.2 RDF Lists </span></h5>
<p>Syntactically speaking, an RDF list is a set of triples of the form
</p>
<pre> i1 rdf:first d1 .
i1 rdf:rest i2 .
...
in rdf:first dn .
in rdf:rest rdf:nil .
</pre>
<p><br />
Here, <tt>i1</tt> ... <tt>in</tt> provide the structure of the linked list and <tt>d1</tt> ... <tt>dn</tt> are the items. The above list would be written in RIF syntax as <tt>List(d1 ... dn)</tt>.
</p><p>Given an RDF interpretation I=< IR, IP, IEXT, IS, IL, LV >, we say that an element <tt>l1</tt> ∈ IR refers to an <span id="def-rdf-list"><i><b>RDF list</b></i></span> (<tt>y1</tt>,...,<tt>yn</tt>) if <tt>l1</tt>=IS(<tt>rdf:nil</tt>), in case <tt>n=0</tt>; otherwise, ∃ <tt>l2</tt>, ..., <tt>ln</tt> such that
<<tt>l1</tt>,<tt>y1</tt>> ∈ IEXT(IS(rdf:first)), <<tt>l1</tt>,<tt>l2</tt>> ∈ IEXT(IS(rdf:rest)), ...,
<<tt>ln</tt>,<tt>yn</tt>> ∈ IEXT(IS(rdf:first)), and <<tt>ln</tt>,IS(rdf:nil)> ∈ IEXT(IS(rdf:rest)).
</p><p>Note that, if <tt>n > 0</tt>, there may be several lists referred to by <tt>l1</tt>, since there is no restriction, in general, on the <tt>rdf:first</tt> elements and the <tt>rdf:rest</tt> successors.
</p>
<a id="Common_RIF-RDF_Interpretations" name="Common_RIF-RDF_Interpretations"></a><h5> <span class="mw-headline">3.2.1.3 Common RIF-RDF Interpretations </span></h5>
<p><b>Definition.</b> A <span id="def-common-rif-rdf-interpretation"><i><b>common-RIF-RDF-interpretation</b></i></span> is a pair (<i><b>Î</b></i>, I), where <i><b>Î</b></i> is a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-semantic-multistruct" title="BLD">semantic multi-structure</a> of the form {<i><b>J</b></i>,<i><b>I</b></i>; <i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, ...}, and I is a <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#interp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#interp">Simple interpretation</a> of a Vocabulary <i>V</i>, such that the following conditions hold:
</p>
<ol><li> (IR union IP) = <i><b>D</b></i><sub>ind</sub>;
</li><li> IP is a superset of the set of all <tt>k</tt> in <i><b>D</b></i><sub>ind</sub> such that there exist some <tt>a</tt>, <tt>b</tt> in <i><b>D</b></i><sub>ind</sub> and <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>a</tt>)(<tt>k</tt>,<tt>b</tt>))=<b>t</b>;
</li><li> LV is a superset of (union of the value spaces of all <a href="#def-considered-datatypes" title="">considered datatypes</a>);
</li><li> IEXT(<tt>k</tt>) = the set of all pairs (<tt>a</tt>, <tt>b</tt>), with <tt>a</tt>, <tt>b</tt>, and <tt>k</tt> in <i><b>D</b></i><sub>ind</sub>, such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>a</tt>)(<tt>k</tt>,<tt>b</tt>))=<b>t</b>;
</li><li> IS(<tt>i</tt>) = <i><b>I</b></i><sub>C</sub>(<tt><i></tt>) for every IRI <tt>i</tt> in <i>V<sub>U</sub></i>;
</li><li> IL((<tt>s</tt>, <tt>d</tt>)) = <i><b>I</b></i><sub>C</sub>(<tt>"s"^^d</tt>) for every <a href="#def-well-typed-literal" title="">well-typed literal</a> (<tt>s</tt>, <tt>d</tt>) in <i>V<sub>TL</sub></i>;
</li><li> IEXT(IS(<tt>rdf:type</tt>)) is equal to the set of all pairs (<tt>a</tt>, <tt>b</tt>) in <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>isa</sub>(<tt>a</tt>,<tt>b</tt>))=<b>t</b>; and
</li><li> IEXT(IS(<tt>rdfs:subClassOf</tt>)) is a superset of the set of all pairs (<tt>a</tt>, <tt>b</tt>) in <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>sub</sub>(<tt>a</tt>,<tt>b</tt>))=<b>t</b>;
</li><li> For any nonnegative integer <tt>n</tt> and any <tt>y1</tt>,...,<tt>yn</tt> ∈ IR, if some <tt>l1</tt> ∈ IR refers to the <a href="#def-rdf-list" title="">RDF list</a> (<tt>y1</tt>,...,<tt>yn</tt>), then <i><b>I</b></i><sub>list</sub>(<tt>y1</tt>,...,<tt>yn</tt>)=<tt>l1</tt>; and
</li><li> For any nonnegative integer <tt>n</tt> and any sequence of elements <tt>y1</tt>,...,<tt>yn</tt> ∈ IR, an element <tt>l1</tt> ∈ IR refers to the <a href="#def-rdf-list" title="">RDF list</a> (<tt>y1</tt>,...,<tt>yn</tt>) iff <i><b>I</b></i><sub>list</sub>(<tt>y1</tt>,...,<tt>yn</tt>)=<tt>l1</tt>. ☐
</li></ol>
<p>Condition 1 ensures that the combination of resources and properties corresponds exactly to the RIF domain; note that if I is an RDF-, RDFS-, or D-interpretation, IP is a subset of IR, and thus IR=<i><b>D</b></i><sub>ind</sub>. Condition 2 ensures that the set of RDF properties at least includes all elements that are used as properties in frames in the RIF domain. Condition 3 ensures that all concrete values in <i><b>D</b></i><sub>ind</sub> are included in LV (by definition, the value spaces of all considered datatypes are included in <i><b>D</b></i><sub>ind</sub>). Condition 4 ensures that RDF triples are interpreted in the same way as frame formulas. Condition 5 ensures that IRIs are interpreted in the same way. Condition 6 ensures that typed literals are interpreted in the same way. Note that no correspondences are defined for the mapping of names in RDF that are not symbols of RIF, e.g., ill-typed literals and RDF URI references that are not absolute IRIs. Condition 7 ensures that typing in RDF and typing in RIF correspond, i.e., <tt>a rdf:type b</tt> is true iff <tt>a # b</tt> is true. Condition 8 ensures that whenever a RIF subclass statement holds, the corresponding RDF subclass statement holds as well, i.e., <tt>a rdfs:subClassOf b</tt> is true if <tt>a ## b</tt> is true. Finally, condition 9 requires the existence of an RIF list for every RDF list and condition 10 in addition requires the existence of an RDF list for every RIF list.
</p>
<a id="Satisfaction_and_Models" name="Satisfaction_and_Models"></a><h4> <span class="mw-headline">3.2.2 Satisfaction and Models </span></h4>
<p>The notion of satisfiability refers to the conditions under which a common-RIF-RDF-interpretation (<i><b>Î</b></i>, I) is a model of a combination < <i>R</i>, <b>S</b>>. The notion of satisfiability is defined for all four entailment regimes of RDF (i.e., Simple, RDF, RDFS, and D). The definitions are all analogous. Intuitively, a common-RIF-RDF-interpretation (<i><b>Î</b></i>, I) satisfies a combination < <i>R</i>, <b>S</b>> if <i><b>Î</b></i> is a model of <i>R</i> and I satisfies <b>S</b>. Formally:
</p><p><b>Definition.</b> A <a href="#def-common-rif-rdf-interpretation" title="">common-RIF-RDF-interpretation</a> (<i><b>Î</b></i>, I) <i><b><span id="def-rif-rdf-satisfies">satisfies</span></b></i> a <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> C=< <i>R</i>, <b>S</b> > if <i><b>Î</b></i> is a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-model-formula" title="BLD">model</a> of <i>R</i> and I <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defsatis" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defsatis">satisfies</a> every RDF graph <i>S</i> in <b>S</b>; in this case (<i><b>Î</b></i>, I) is called a <span id="def-simple-model"><i><b>RIF-Simple-model</b></i></span>, or <i><b>model</b></i>, of C, and C is <i><b>satisfiable</b></i>. (<i><b>Î</b></i>, I) satisfies a <a href="#def-generalized-rdf-graph" title="">generalized RDF graph</a> <i>S</i> if I satisfies <i>S</i>. (<i><b>Î</b></i>, I) satisfies a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a> φ if <i>TVal</i><sub>Î</sub>(φ)=<i>t</i>. ☐
</p><p>RDF-, RDFS-, and RIF-D-satisfiability are defined through additional restrictions on I:
</p><p><b>Definition.</b> A <a href="#def-simple-model" title="">model</a> (<i><b>Î</b></i>, I) of a combination C is an <span id="def-rdf-model"><i><b>RIF-RDF-model</b></i></span> of C if I is an <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfinterpdef" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfinterpdef">RDF-interpretation</a>; in this case C is <i><b><span id="def-rdf-satisfiable">RIF-RDF-satisfiable</span></b></i>.
</p><p>A <a href="#def-simple-model" title="">model</a> (<i><b>Î</b></i>, I) of a combination C is an <span id="def-rdfs-model"><i><b>RIF-RDFS-model</b></i></span> of C if I is an <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsinterpdef" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsinterpdef">RDFS-interpretation</a>; in this case C is <i><b><span id="def-rdfs-satisfiable">RIF-RDFS-satisfiable</span></b></i>.
</p><p>Let (<i><b>Î</b></i>, I) be a <a href="#def-simple-model" title="">model</a> of a combination C and let D be a datatype map <a href="#def-conforming-datatype-map" title="">conforming</a> with the set <i><b>DTS</b></i> of datatypes in <i><b>I</b></i>. (<i><b>Î</b></i>, I) is a <span id="def-d-model"><i><b>RIF-D-model</b></i></span> of C if I is a <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp">D-interpretation</a>; in this case C is <i><b><span id="def-d-satisfiable">RIF-D-satisfiable</span></b></i>. ☐
</p>
<a id="Entailment" name="Entailment"></a><h4> <span class="mw-headline">3.2.3 Entailment </span></h4>
<p>Using the notions of models defined above, entailment is defined in the usual way, i.e., through inclusion of sets of models.
</p><p><b>Definition.</b> Let C be a RIF-RDF combination, let <i>S</i> be a <a href="#def-generalized-rdf-graph" title="">generalized RDF graph</a>, let φ be a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a>, and let D be a datatype map <a href="#def-conforming-datatype-map" title="">conforming</a> with the set of <a href="#def-considered-datatypes" title="">considered datatypes</a>. C <span id="def-d-entails"><i><b>RIF-D-entails</b></i></span> <i>S</i> if every <a href="#def-d-model" title="">RIF-D-model</a> of C <a href="#def-rif-rdf-satisfies" title="">satisfies</a> <i>S</i>. Likewise, C <i><b>RIF-D-entails</b></i> φ if every <a href="#def-d-model" title="">RIF-D-model</a> of C <a href="#def-rif-rdf-satisfies" title="">satisfies</a> φ. ☐
</p><p>The other notions of entailment are defined analogously:
</p><p><b>Definition.</b> A combination C <span id="def-simple-entails"><i><b>RIF-Simple-entails</b></i></span> <i>S</i> (resp., φ) if every <a href="#def-simple-model" title="">Simple model</a> of C <a href="#def-rif-rdf-satisfies" title="">satisfies</a> <i>S</i> (resp., φ).
</p><p>A combination C <span id="def-rdf-entails"><i><b>RIF-RDF-entails</b></i></span> <i>S</i> (resp., φ) if every <a href="#def-rdf-model" title="">RIF-RDF-model</a> of C <a href="#def-rif-rdf-satisfies" title="">satisfies</a> <i>S</i> (resp., φ).
</p><p>A combination C <span id="def-rdfs-entails"><i><b>RIF-RDFS-entails</b></i></span> <i>S</i> (resp., φ) if every <a href="#def-rdfs-model" title="">RIF-RDFS-model</a> of C <a href="#def-rif-rdf-satisfies" title="">satisfies</a> <i>S</i> (resp., φ). ☐
</p><p>Note that simple entailment in combination with an empty ruleset is not the same as simple entailment in RDF, since certain entailments involving datatypes are enforced by the RIF semantics in combinations, cf. the <a href="#ex-strings" title="">example</a> involving strings and plain literals above.
</p>
<a id="OWL_Compatibility" name="OWL_Compatibility"></a><h2> <span class="mw-headline">4 OWL Compatibility </span></h2>
<p>This section specifies how a RIF document interacts with a set
of OWL ontologies in a RIF-OWL combination. The semantics of
combinations is defined for OWL 2
[<a href="#ref-owl2-syntax" title="">OWL2-Syntax</a>]. Since OWL
2 is an extension of OWL 1
[<a href="#ref-owl-reference" title="">OWL-Reference</a>], the
specification in this section applies also to combinations of
RIF documents with OWL 1 ontologies.
</p><p>OWL 2 specifies two different variants of the language: OWL 2 DL
[<a href="#ref-owl2-syntax" title="">OWL2-Syntax</a>] and OWL 2 Full
[<a href="#ref-owl2-rdf-based-semantics" title="">OWL2-RDF-Based-Semantics</a>], where the latter are RDF graphs that use OWL Vocabulary; the RDF representation of an OWL 2 DL ontology is also an OWL 2 Full ontology.
<a class="external text" href="http://www.w3.org/TR/2004/REC-owl-ref-20040210/#OWLLite" title="http://www.w3.org/TR/2004/REC-owl-ref-20040210/#OWLLite">OWL 1 Lite</a> and
<a class="external text" href="http://www.w3.org/TR/2004/REC-owl-ref-20040210/#OWLDL" title="http://www.w3.org/TR/2004/REC-owl-ref-20040210/#OWLDL">OWL 1 DL</a> [<a href="#ref-owl-reference" title="">OWL-Reference</a>],
which are sublanguages of OWL 1, can be seen as syntactical
subsets of OWL 2 DL. OWL 2 ontologies may be interpreted under one of two semantics: the Direct Semantics
[<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>], which is only defined for OWL 2 DL and is
based on standard Description Logic semantics, and the RDF-Based Semantics [<a href="#ref-owl2-rdf-based-semantics" title="">OWL2-RDF-Based-Semantics</a>], which is defined for arbitrary OWL 2 Full ontologies.
</p><p>The syntax of OWL 2 DL is defined in terms of a Structural
Specification, and there is a mapping to an RDF representation
for interchange. The RDF representation of OWL 2 DL [<a href="#ref-owl2-rdf-mapping" title="">OWL2-RDF-Mapping</a>] does not
extend the RDF syntax, but rather restricts it: every OWL 2 DL
ontology in RDF form is an RDF graph, but not every RDF graph
is an OWL 2 DL ontology. OWL 2 Full and RDF have the same
syntax: every RDF graph is an OWL 2 Full ontology and vice
versa. This syntactical difference is reflected in the
definition of RIF-OWL compatibility: combinations of RIF with
OWL 2 DL are based on the OWL 2 Structural Specification, whereas
combinations with OWL 2 Full are based on the RDF syntax.
</p><p>Since the OWL 2 Full syntax is the same as the RDF syntax and
the OWL 2 RDF-Based Semantics is an extension of the RDF Semantics,
the definition of RIF-OWL 2 Full compatibility is an extension
of RIF-RDF compatibility. However, defining RIF-OWL DL
compatibility in the same way would entail losing certain
properties of the Direct Semantics. One of the main reasons for
this is the difference in the way classes and properties are
interpreted in the RDF-Based and Direct Semantics. In the RDF-Based Semantics,
classes and properties are interpreted as objects in the domain
of interpretation, which are then associated with subsets of,
respectively binary relations over the domain of
interpretation, using the <tt>rdf:type</tt> property and the
extension function IEXT, as in RDF. In the Direct Semantics, classes
and properties are directly interpreted as subsets of,
respectively binary relations over the domain. This is a key
property of the first-order logic nature of Description Logic
semantics and enables the use of Description Logic reasoning
techniques for processing OWL 2 DL descriptions. Defining
RIF-OWL DL compatibility as an extension of RIF-RDF
compatibility would define a correspondence between OWL 2 DL
statements and RIF frame formulas. Since RIF frame formulas
are interpreted using an extension function, as in RDF,
defining the correspondence between them and OWL 2 DL
statements would change the semantics of OWL statements, even
if the RIF document were empty.
</p><p>A RIF-OWL combination that is faithful to the first-order
nature of the OWL 2 Direct Semantics requires interpreting classes
and properties as sets and binary relations, respectively,
suggesting that a correspondence could be defined with unary
and binary predicates. It is, however, also desirable that
there be uniform syntax for the RIF component of both RIF-OWL 2 DL
and RIF-RDF/OWL 2 Full combinations, because one may not know at
the time of constructing the rules which type of inference will
be used. Consider, for example, an RDF graph S consisting of
the following statements
</p>
<pre>_:x rdf:type owl:Ontology .
a rdf:type C .
</pre>
<p>and a RIF document with the rule
</p>
<pre>Forall ?x (?x[rdf:type -> D] :- ?x[rdf:type -> C])
</pre>
<p>The combination of the two, according to the specification of
<a href="#RDF_Compatibility" title="">RDF Compatibility</a>, allows deriving the
triple
</p>
<pre>a rdf:type D .
</pre>
<p>Now, the RDF graph S is also an OWL 2 DL ontology. Therefore,
one would expect the triple to be implied according to the
semantics of RIF-OWL DL combinations as well.
</p><p>To ensure that the RIF-OWL DL combination is faithful to the
OWL 2 Direct Semantics and to enable using the same, or similar,
RIF rules in combinations with both OWL 2 DL and RDF/OWL 2
Full, the interpretation of frame formulas <tt>s[p -> o]</tt>
in RIF-OWL DL combinations is slightly different from
their interpretation in RIF and syntactical restrictions are
imposed on the use of variables and function terms in frame
formulas.
</p><p><br />
The remainder of this section formally defines combinations of
RIF rules with OWL 2 DL and OWL 2 Full ontologies and the
semantics of such combinations. A combination consists of a RIF
document and a set of OWL ontologies. The semantics of
combinations is defined in terms of combined models, which are
pairs of RIF semantic multi-structures and OWL 2 Direct, respectively OWL 2 RDF-Based interpretations. The interaction between the structures and interpretations is defined through a number of conditions. Entailment is defined as model inclusion, as usual.
</p>
<a id="Syntax_of_RIF-OWL_Combinations" name="Syntax_of_RIF-OWL_Combinations"></a><h3> <span class="mw-headline">4.1 Syntax of RIF-OWL Combinations </span></h3>
<p>Since RDF graphs and OWL 2 Full ontologies cannot be
distinguished, the syntax of RIF-OWL 2 Full combinations is the
same as the syntax of <a href="#def-rif-rdf-combination" title="">RIF-RDF combinations</a>.
</p><p>The syntax of <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#def_ontology" title="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#def_ontology">OWL ontologies</a> in RIF-OWL DL combinations is
given by the Structural Specification of OWL 2 and the restrictions on OWL 2 DL ontologies [<a href="#ref-owl2-syntax" title="">OWL2-Syntax</a>]. Certain
restrictions are imposed on the syntax of the RIF rules in
combinations with OWL 2 DL. Specifically, the only terms
allowed in class and property positions in class membership frame formulas are
constant symbols. A DL-frame formula is a frame formula
<tt>a[b<sub>1</sub> -> c<sub>1</sub> ... b<sub>n</sub> ->
c<sub>n</sub>]</tt> such that <tt>n</tt>≥1 and for every
<tt>b<sub>i</sub></tt>, with 1≤<tt>i</tt>≤<tt>n</tt>, it
holds that <tt>b<sub>i</sub></tt> is a constant symbol and if
<tt>b<sub>i</sub> </tt>=<tt> rdf:type</tt>, then
<tt>c<sub>i</sub></tt> is a constant symbol. A DL-class membership formula is a class membership formula <tt>a#b</tt> such that <tt>b</tt> is a constant symbol.
A DL-subclass formula is a subclass formula <tt>b##c</tt> such that <tt>b</tt> and <tt>c</tt> are constant symbols.
</p><p>We do not allow subclass formulas in rule conditions in RIF-OWL DL combinations, since at the time of writing there are no known effective and efficient ways of dealing with such subclass formulas in conditions in reasoners.
</p><p><br />
<b>Definition.</b> A <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a>
φ is a <span id="def-dl-condition"><i><b>DL-condition</b></i></span> if every
frame formula in φ is a DL-frame formula, every class membership formula
in φ is a DL-class membership formula, and φ does not contain subclass formulas.
</p><p>A <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-rif-bld-document" title="BLD">RIF-BLD document formula</a> <i>R</i>
is a <span id="def-dl-document"><i><b>RIF-BLD DL-document formula</b></i></span> if every frame formula in <i>R</i> is a
DL-frame formula, every class membership formula
in <i>R</i> is a DL-class membership formula, every subclass formula
in <i>R</i> is a DL-subclass formula, and <i>R</i>does not contain any rules with subclass formulas.
</p><p>A <span id="def-rif-owl-dl-combination"><i><b>RIF-OWL DL-combination</b></i></span>
is a pair < <i>R</i>,<b>O</b>>, where <i>R</i> is a
<a href="#def-dl-document" title="">RIF-BLD DL-document formula</a> and <b>O</b> is
a set of
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#def_ontology" title="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#def_ontology">OWL 2 DL ontologies</a> of a
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_vocabulary" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_vocabulary">Vocabulary</a> <i>V</i> over an <a href="#def-owl2-datatype-map" title="">OWL 2 datatype map</a> <i>D</i>.
☐
</p><p>When clear from the context, RIF-OWL DL-combinations are
referred to simply as <i>combinations</i>.
</p><p><br />
</p>
<a id="Safeness_Restrictions" name="Safeness_Restrictions"></a><h4> <span class="mw-headline">4.1.1 Safeness Restrictions </span></h4>
<p>In the literature, several restrictions on the use of variables
in combinations of rules and Description Logics have been
identified [<a href="#ref-motik05" title="">Motik05</a>,
<a href="#ref-rosati06" title="">Rosati06</a>] for the purpose of decidable
reasoning. This section specifies such safeness restrictions
for RIF-OWL DL combinations.
</p><p>Given a set of OWL 2 DL ontologies <b>O</b>, a variable
<tt>?x</tt> in a RIF rule <b>Q</b> <i>H</i> :- <i>B</i> is
<i><b>DL-safe</b></i> if it occurs in an atomic formula in <i>B</i>
that is not of the form <tt><i>s</i>[<i>P</i> -> <i>o</i>]</tt> or <tt><i>s</i>[rdf:type ->
<i>A</i>]</tt>, where <tt><i>s</i></tt>, <tt><i>P</i></tt>, <tt><i>o</i></tt>, and <tt><i>A</i></tt> are terms (possibly including <tt>?x</tt>) and <tt><i>P</i></tt> or <tt><i>A</i></tt> occurs in one of the
ontologies in <b>O</b>. A disjunction-free RIF rule <b>Q</b> (<i>H</i> :- <i>B</i>) is
<i><b>DL-safe</b></i>, given <b>O</b>, if every variable that occurs
in <i>H</i> :- <i>B</i> is DL-safe. A disjunction-free RIF rule <b>Q</b> (<i>H</i> :- <i>B</i>)
is <i><b>weakly DL-safe</b></i>, given <b>O</b>, if every variable
that occurs in <i>H</i> is DL-safe.
</p><p><b>Definition.</b> A
<a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> <<i>R</i>,<b>O</b>> is <i><b>DL-safe</b></i> if every rule in <i>R</i>
is DL-safe, given <b>O</b>. A
<a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> <<i>R</i>,<b>O</b>> is <i><b>weakly DL-safe</b></i> if every rule in
<i>R</i> is weakly DL-safe, given <b>O</b>. ☐
</p>
<a id="Datatypes_in_OWL_2" name="Datatypes_in_OWL_2"></a><h4> <span class="mw-headline">4.1.2 Datatypes in OWL 2 </span></h4>
<p>Compared with RDF and the RIF, OWL 2 uses a slightly extended
notion of datatype.
</p><p>In the remainder of this section, a <span id="def-extended-datatype">datatype</span> <i>d</i> contains, in
addition to the lexical space, value space, and
lexical-to-value mapping, a <i><b>facet space</b></i>, which is a
set of pairs of the form (<i>F</i>, <i>v</i>), where <i>F</i> is an IRI
and <i>v</i> is a data value, and a <i><b>facet-to-value mapping</b></i>,
which is a mapping from facets to subsets of the value space of
<i>d</i>.
</p><p>An <span id="def-owl2-datatype-map"><i><b>OWL 2 datatype map</b></i></span> D is a datatype map that maps the IRIs of the
datatypes specified in
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Datatype_Maps" title="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#Datatype_Maps">Section 4</a> of
[<a href="#ref-owl2-syntax" title="">OWL2-Syntax</a>] to the
corresponding datatypes such that the domain of D does not
include <tt>rdfs:Literal</tt>.
</p><p><br />
We note here that the <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_datatype_map" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_datatype_map">definitions of datatype and datatype map in the OWL 2 Direct Semantics</a> specification
[<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>] are somewhat different.
There, a datatype is some entity with some associated IRIs, and
the datatype map assigns lexical value, and facet spaces, as
well as lexical-to-value and facet-to-value mappings. The
definitions of datatype and datatype map we use are isomorphic,
and, indeed, the same as in the <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#def-owldatatypemap" title="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#def-owldatatypemap">OWL 2 RDF-Based Semantics</a>
specification
[<a href="#ref-owl2-rdf-based-semantics" title="">OWL2-RDF-Based-Semantics</a>].
The latter does not preclude the use of <tt>rdfs:Literal</tt>
in datatype maps. Note that we do not restrict the use of
<tt>rdfs:Literal</tt> in OWL 2 ontologies or RDF graphs.
</p>
<a id="Semantics_of_RIF-OWL_Combinations" name="Semantics_of_RIF-OWL_Combinations"></a><h3> <span class="mw-headline">4.2 Semantics of RIF-OWL Combinations </span></h3>
<p>The semantics of RIF-OWL 2 Full combinations is a
straightforward extension of the <a href="#Semantics_of_RIF-RDF_Combinations" title="">Semantics of RIF-RDF Combinations</a>.
</p><p>The semantics of RIF-OWL 2 DL combinations cannot
straightforwardly extend the semantics of RIF-RDF combinations,
because the OWL 2 Direct Semantics does not extend the RDF Semantics. In order
to keep the syntax of the rules uniform between RIF-OWL 2 Full
and RIF-OWL DL combinations, the semantics of RIF frame
formulas is slightly altered in RIF-OWL DL combinations.
</p>
<a id="OWL_RDF-Based_Semantics" name="OWL_RDF-Based_Semantics"></a><h4> <span class="mw-headline">4.2.1 OWL RDF-Based Semantics </span></h4>
<p>Given an <a href="#def-owl2-datatype-map" title="">OWL 2 datatype map D</a> and a
Vocabulary <i>V</i> that includes the domain of D and the OWL 2
RDF-Based Vocabulary
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#Vocabulary" title="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#Vocabulary">Vocabulary</a>, a
<a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defDinterp">D-interpretation</a> I is an <i><b>OWL 2 RDF-Based Interpretation</b></i>
of <i>V</i> with respect to D if it satisfies the semantic
conditions in
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#Semantic_Conditions" title="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#Semantic_Conditions">Section 5</a> of
[<a href="#ref-owl2-rdf-based-semantics" title="">OWL2-RDF-Based-Semantics</a>].
</p><p>The semantics of RIF-OWL 2 Full combinations is a
straightforward extension of the semantics of RIF-RDF
combinations. It is based on the same notion of
<a href="#def-common-rif-rdf-interpretation" title="">common interpretations</a>,
but defines additional notions of satisfiability and
entailment.
</p><p><b>Definition.</b> Let (<i><b>Î</b></i>, I) be a
<a href="#def-common-rif-rdf-interpretation" title="">common-RIF-RDF-interpretation</a>
that is a <a href="#def-simple-model" title="">model</a> of a
<a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> C=< <i>R</i>,
<b>S</b> > and let D be an <a href="#def-owl2-datatype-map" title="">OWL 2 datatype map</a> <a href="#def-conforming-datatype-map" title="">conforming</a>
with the set of datatypes in <i><b>I</b></i>. (<i><b>Î</b></i>, I) is
an <span id="def-owl-full-model"><i><b>RIF-OWL RDF-Based-model</b></i></span> of C
if I is an
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#def-owlinterpretation" title="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/#def-owlinterpretation">OWL 2 RDF-Based Interpretation</a> with respect to D; in this case C is
<span id="def-owl-full-satisfiable"><i><b>RIF-OWL RDF-Based-satisfiable</b></i></span>
with respect to D.
</p><p>Let C be a RIF-RDF combination, let <i>S</i> be a
<a href="#def-generalized-rdf-graph" title="">generalized RDF graph</a>, let φ
be a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a>, and let D be
an <a href="#def-owl2-datatype-map" title="">OWL 2 datatype map D</a>
<a href="#def-conforming-datatype-map" title="">conforming</a> with the set of
<a href="#def-considered-datatypes" title="">considered datatypes</a>. C <span id="def-owl-full-entails"><i><b>RIF-OWL RDF-Based-entails</b></i></span>
<i>S</i> with respect to D if every
<a href="#def-owl-full-model" title="">RIF-OWL RDF-Based-model</a> of C
<a href="#def-rif-rdf-satisfies" title="">satisfies</a> <i>S</i>. Likewise, C
<i><b>RIF-OWL RDF-Based-entails</b></i> φ with respect to D if every
<a href="#def-owl-full-model" title="">RIF-OWL RDF-Based-model</a> of C
<a href="#def-rif-rdf-satisfies" title="">satisfies</a> φ. ☐
</p>
<a id="OWL_Direct_Semantics" name="OWL_Direct_Semantics"></a><h4> <span class="mw-headline">4.2.2 OWL Direct Semantics </span></h4>
<p>The semantics of RIF-OWL DL-combinations is similar in spirit
to the semantics of RIF-RDF combinations. Analogous to
common-RIF-RDF-interpretations, there is the notion of
common-RIF-OWL Direct-interpretations, which are pairs of RIF and
OWL 2 Direct interpretations, and which define a number of
conditions that relate these interpretations to each other.
</p>
<a id="Modified_Semantics_for_RIF_Subclass.2C_Membership.2C_and_Frame_Formulas" name="Modified_Semantics_for_RIF_Subclass.2C_Membership.2C_and_Frame_Formulas"></a><h5> <span class="mw-headline">4.2.2.1 Modified Semantics for RIF Subclass, Membership, and Frame Formulas </span></h5>
<p>The modification of the semantics of RIF subclass, membership, and frame formulas is
achieved by modifying the respective mapping functions (<i><b>I</b></i><sub>sub</sub>), (<i><b>I</b></i><sub>isa</sub>) and
(<i><b>I</b></i><sub>frame</sub>). In addition, a new mapping function for constants (<i><b>I</b></i><sub>C'</sub>) is used whenever constants appear in class or property positions.
</p><p>Frame formulas of the form <tt>s[rdf:type -> o]</tt> and class membership formulas of the form <tt>s#o</tt> are interpreted as membership of <tt>s</tt> in the set denoted by <tt>o</tt> and frame formulas of the form <tt>s[p -> o]</tt>, where <tt>p</tt> is not <tt>rdf:type</tt>, as
membership of the pair (<tt>s, o</tt>) in the binary relation
denoted by <tt>p</tt>.
</p><p><br />
<b>Definition.</b> A <i><b><span id="def-rif-dl-struct">dl-semantic structure</span></b></i> is a
tuple <i><b>I</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>C'</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>F</sub>,
<i><b>I</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>>, where
</p>
<ul><li> <i><b>I</b></i><sub>C'</sub> is a mapping from <tt>Const</tt> to <i><b>D</b></i>;
</li><li> <i><b>I</b></i><sub>frame</sub> is a mapping from <i><b>D</b></i><sub>ind</sub> to total functions of the form <tt>SetOfFiniteBags</tt>(<i><b>D</b></i> × <i><b>D</b></i>) → <i><b>D</b></i> such that for each pair (<tt>u, v</tt>) ∈ <tt>SetOfFiniteBags</tt>(<i><b>D</b></i> × <i><b>D</b></i>) it holds that if <tt>u</tt> ≠ <i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>), then <tt>v</tt> ∈ <i><b>D</b></i><sub>ind</sub>;
</li><li> <i><b>I</b></i><sub>sub</sub> is a mapping <i><b>D</b></i> × <i><b>D</b></i> → <i><b>D</b></i>;
</li><li> <i><b>I</b></i><sub>isa</sub> is a mapping <i><b>D<sub>ind</sub></b></i> × <i><b>D</b></i> → <i><b>D</b></i>;
</li><li> all other elements of the structure are defined as in <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-sem-struct" title="BLD">RIF semantic structures</a>.
</li></ul>
<p>The mapping <i><b>I</b></i> from terms to <i><b>D</b></i> is defined as follows:
</p>
<ul><li> <i><b>I</b></i>(<tt>o[a<sub>1</sub>->v<sub>1</sub> ... a<sub>k</sub>->v<sub>k</sub>]</tt>) = <i><b>I</b></i><sub>frame</sub>(<i><b>I</b></i>(<tt>o</tt>))({<<i><b>I</b></i><sub>C'</sub>(<tt>a<sub>1</sub></tt>),<i><b>I</b></i><sub><tt>a<sub>1</sub></tt></sub>(<tt>v<sub>1</sub></tt>)>, ..., <<i><b>I</b></i><sub>C'</sub>(<tt>a<sub>n</sub></tt>),<i><b>I</b></i><sub><tt>a<sub>n</sub></tt></sub>(<tt>v<sub>n</sub></tt>)>}), where <i><b>I</b></i><sub><tt>a<sub>i</sub></tt></sub>=<i><b>I</b></i><sub>C'</sub> if <tt>a<sub>i</sub></tt>=<tt>rdf:type</tt>; otherwise <i><b>I</b></i><sub><tt>a<sub>i</sub></tt></sub>=<i><b>I</b></i>.
</li><li> <i><b>I</b></i>(<tt>c1##c2</tt>) = <i><b>I</b></i><sub>sub</sub>(<i><b>I</b></i><sub>C'</sub>(<tt>c1</tt>), <i><b>I</b></i><sub>C'</sub>(<tt>c2</tt>)).
</li><li> <i><b>I</b></i>(<tt>o#c</tt>) = <i><b>I</b></i><sub>isa</sub>(<i><b>I</b></i>(<tt>o</tt>), <i><b>I</b></i><sub>C'</sub>(<tt>c</tt>))
</li><li> the mapping of other terms is defined as in <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-sem-struct" title="BLD">RIF semantic structures</a>.
</li></ul>
<p>The truth valuation function <i>TVal</i><sub>I</sub> is defined
as in <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#Semantic_Structures" title="BLD">BLD semantic structures</a>.
</p><p>Dl-semantic multi-structures are defined analogous to <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-semantic-multistruct" title="BLD">RIF-BLD semantic multi-structures</a> [<a href="#ref-rif-bld" title="">RIF-BLD</a>]. Formally, a <i><b><span id="def-rif-dl-multi-struct">dl-semantic multi-structure</span></b></i> <b>Î</b> is a set of dl-semantic structures {<i><b>J</b></i>,<i><b>I</b></i>; <i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, ...}, where
</p>
<ul>
<li>
<i><b>I</b></i> and <i><b>J</b></i> are dl-semantic structures; and
</li>
<li>
<i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, etc., are dl-semantic structures <i><b>adorned</b></i> with the <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#ref-locator" title="BLD">locators</a> of <i>distinct</i> RIF-BLD formulas (one can think of these adorned structures as locator-structure pairs).
</li>
</ul>
<p>All the structures in <b>Î</b> (adorned and non-adorned) are identical in all respects except for the following:
</p>
<ul>
<li>
The mappings <i><b>J</b></i><sub>C</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>C</sub><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sub>C</sub><sup><tt>i<sub>2</sub></tt></sup>, ... may differ on the constants in <tt>Const</tt> that belong to the <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-local-space" title="DTB">rif:local</a></tt> symbol space.
</li>
<li>
The mappings <i><b>J</b></i><sub>V</sub>, <i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>V</sub><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sub>V</sub><sup><tt>i<sub>2</sub></tt></sup> may differ.
</li>
</ul>
<p>The truth valuation function <i>TVal</i><sub>Î</sub> is defined
as in <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#Semantic_Structures" title="BLD">BLD semantic structures</a>.
</p><p><b>Definition.</b> A <a href="#def-rif-dl-multi-struct" title="">dl-semantic multi-structure</a> <i><b>Î</b></i> is a <span id="def-dl-model"><i><b>model</b></i></span> of a
<a href="#def-dl-document" title="">RIF-BLD DL-document formula</a> <i>R</i> if
<i>TVal</i><sub>Î</sub>(<i>R</i>)=<b>t</b>. ☐
</p>
<a id="Semantics_of_RIF-OWL_DL_Combinations" name="Semantics_of_RIF-OWL_DL_Combinations"></a><h5> <span class="mw-headline">4.2.2.2 Semantics of RIF-OWL DL Combinations </span></h5>
<p>As defined in
[<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>], an
<i><b><a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_interpretation" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_interpretation">interpretation</a></b></i> for a Vocabulary <i>V</i> over a datatype map
D is a tuple <i>I</i>=< IR, LV, C, OP, DP, I, DT, LT, FA >,
where
</p>
<ul><li> IR is a non-empty set, called the object domain,
</li><li> LV is a non-empty set, called the data domain, which includes all value spaces of the datatypes in the range of D,
</li><li> C is a mapping from classes to subsets of IR,
</li><li> OP is a mapping from object properties to subsets of IR × IR,
</li><li> DP is a mapping from object properties to subsets of IR × LV,
</li><li> I is a mapping from individuals into IR,
</li><li> DT is a mapping from datatypes to subsets of LV,
</li><li> LT is a mapping from typed literals in <i>V</i> into LV, and
</li><li> FA is a mapping from IRI, literal pairs to subsets of value spaces in D.
</li></ul>
<p>The OWL semantics imposes a number of
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Interpretations" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Interpretations">further restrictions</a> on the mapping functions to ensure the
interpretation of datatypes, literals, and facets conforms with
the given datatype map D and to define the semantics of
built-in classes and properties (e.g., <tt>owl:Thing</tt>).
The mappings DT, LT, and FA are essentially given by the
datatype map.
</p><p><b>Definition.</b> Given a Vocabulary <i>V</i> over an
<a href="#def-owl2-datatype-map" title="">OWL 2 datatype map</a> D, a <span id="def-common-dl-interpretation"><i><b>common-RIF-OWL Direct-interpretation</b></i></span>
for <i>V</i> over D is a pair (<i><b>Î</b></i>, <i>I</i>), where
<i><b>Î</b></i> is a <a href="#def-rif-dl-multi-struct" title="">dl-semantic multi-structure</a> of the form {<i><b>J</b></i>,<i><b>I</b></i>; <i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, ...}, and <i>I</i> is an
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_interpretation" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_interpretation">interpretation</a> for <i>V</i> over D, such that the following
conditions hold.
</p>
<ol><li> D is conforming with the datatypes in <i><b>I</b></i>;
</li><li> (IR union LV) is <i><b>D<sub>ind</sub></b></i> ;
</li><li> C(<tt>c</tt>) is the set of all objects <tt>k</tt> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)({(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>))})) = <b>t</b>, for every IRI <tt>c</tt> identifying a class in <i>V</i>;
</li><li> DT(<tt>c</tt>) is the set of all objects <tt>k</tt> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)({(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>))})) = <b>t</b>, for every IRI <tt>c</tt> identifying a datatype in <i>V</i>;
</li><li> OP(<tt>p</tt>) is the set of all pairs (<tt>k</tt>, <tt>l</tt>) such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)({(<i><b>I</b></i><sub>C'</sub>(<tt><p></tt>), <tt>l</tt>)})) = <b>t</b> (true), for every IRI <tt>p</tt> identifying an object property in <i>V</i>;
</li><li> DP(<tt>p</tt>) is the set of all pairs (<tt>k</tt>, <tt>l</tt>) such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)({(<i><b>I</b></i><sub>C'</sub>(<tt><p></tt>), <tt>l</tt>)})) = <b>t</b> (true), for every IRI <tt>p</tt> identifying a data property in <i>V</i>;
</li><li> I(<tt>i</tt>) = <i><b>I</b></i><sub>C</sub>(<tt><i></tt>) for every IRI <tt>i</tt> identifying an individual in <i>V</i>;
</li><li> C(<tt>c</tt>) is the set of all objects <tt>k</tt> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>isa</sub>(<tt>k</tt>,<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>))) = <b>t</b>, for every IRI <tt>c</tt> identifying a class in <i>V</i>;
</li><li> DT(<tt>c</tt>) is the set of all objects <tt>k</tt> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>isa</sub>(<tt>k</tt>,<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>))) = <b>t</b>, for every IRI <tt>c</tt> identifying a datatype in <i>V</i>;
</li><li> C(<tt>c</tt>) is a subset of C(<tt>d</tt>) whenever <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>sub</sub>(<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>),<i><b>I</b></i><sub>C'</sub>(<tt><d></tt>))) = <b>t</b>, for any two IRIs <tt>c</tt> and <tt>d</tt> identifying classes in <i>V</i>. ☐
</li></ol>
<p>Condition 2 ensures that the relevant parts of the domains of
interpretation are the same. Conditions 3 and 4 ensures that the
interpretation (extension) of an OWL class or datatype identified by an IRI
<tt>u</tt> corresponds to the interpretation of frames of the
form <tt>?x[rdf:type -> <u>]</tt>. Conditions 5 and 6
ensure that the interpretation (extension) of an OWL object or
data property identified by an IRI <tt>u</tt> corresponds to
the interpretation of frames of the form <tt>?x[<u> ->
?y]</tt>. Condition 7 ensures that individual
identifiers in the OWL ontologies and the RIF documents are
interpreted in the same way. Conditions 8 and 9 ensure that typing in OWL and typing in RIF correspond, i.e., <tt>ClassAssertion(b a)</tt> is true iff <tt>a # b</tt> is true. Finally, 10 ensures that whenever a RIF subclass statement holds, the corresponding OWL subclass statement holds as well, i.e., <tt>SubClassOf(a b)</tt> is true if <tt>a ## b</tt> is true.
</p><p><br />
Using the definition of common-RIF-OWL Direct-interpretation,
satisfaction, models, and entailment are defined in the usual
way:
</p><p><b>Definition.</b> A
<a href="#def-common-dl-interpretation" title="">common-RIF-OWL Direct-interpretation</a>
(<i><b>Î</b></i>, <i>I</i>) for a Vocabulary <i>V</i> over an
<a href="#def-owl2-datatype-map" title="">OWL 2 datatype map</a> D is an <span id="def-owl-direct-model"><i><b>RIF-OWL Direct-model</b></i></span> of a
<a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> C=<
<i>R</i>, <b>O</b> > if <i><b>Î</b></i> is a <a href="#def-dl-model" title="">model</a>
of <i>R</i> and <i>I</i> is a <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Models" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Models">model</a> of every ontology <i>O</i> in
<b>O</b>; in this case C is <i><b><span id="def-owl-direct-satisfiable">RIF-OWL Direct-satisfiable</span></b></i> for
<i>V</i> over D. (<i><b>Î</b></i>, <i>I</i>) is an
<i><b>RIF-OWL Direct-model</b></i> of an OWL 2 DL ontology <i>O</i> if <i>I</i> is a
<a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Models" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Models">model</a> of <i>O</i>. (<i><b>Î</b></i>, <i>I</i>) is an
<i><b>RIF-OWL DL-model</b></i> of a <a href="#def-dl-condition" title="">DL-condition formula</a> φ if <i>TVal</i><sub>Î</sub>(φ)=<b>t</b>.
</p><p>Let C be a RIF-OWL DL-combination, let <i>O</i> be an OWL 2 DL
ontology, let φ be a <a href="#def-dl-condition" title="">DL-condition
formula</a>, and let D be an <a href="#def-owl2-datatype-map" title="">OWL 2
datatype map</a> <a href="#def-conforming-datatype-map" title="">conforming</a> with
the set of <a href="#def-considered-datatypes" title="">considered datatypes</a>,
and let <i>V</i> be a Vocabulary over D for every ontology in C
and for <i>O</i>. C <span id="def-owl-direct-entails"><i><b>RIF-OWL Direct-entails</b></i></span> <i>O</i>
with respect to D if every common-RIF-OWL Direct-interpretation
for <i>V</i> over D that is an <a href="#def-owl-direct-model" title="">RIF-OWL Direct-model</a>
of C is an <a href="#def-owl-direct-model" title="">RIF-OWL Direct-model</a> of <i>O</i>.
Likewise, C <i><b>RIF-OWL Direct-entails</b></i> φ with respect to D
if every common-RIF-OWL Direct-interpretation for <i>V</i> over D
that is an <a href="#def-owl-direct-model" title="">RIF-OWL Direct-model</a> of C is an
<a href="#def-owl-direct-model" title="">RIF-OWL Direct-model</a> of φ.
☐
</p><p><br />
<b>Example.</b> In the OWL 2 Direct Semantics, the domains for interpreting
individuals respectively, literals (data values), are disjoint.
The disjointness entails that data values cannot be members of
a class and individuals cannot be members of a datatype.
</p><p>RIF does not make such distinctions; variable quantification
ranges over the entire domain. So, the same variable may be
assigned to an abstract individual or a concrete data value.
Additionally, RIF constants (e.g., IRIs) denoting individuals
can be written in place of a data value, such as the value of a
data-valued property or in datatype membership statements;
similarly for constants denoting data values. Such statements
cannot be satisfied in any common-RIF-OWL Direct-interpretation.
The following example illustrates several such statements.
</p><p>Consider the datatype <tt>xs:string</tt> and a RIF-OWL DL
combination consisting of the set containing only an OWL 2 DL ontology that contains
</p>
<pre>ex:myiri rdf:type ex:A .
</pre>
<p>and a RIF document containing the following fact
</p>
<pre>ex:myiri[rdf:type -> xs:string]
</pre>
<p>This combination is not
<a href="#def-owl-direct-satisfiable" title="">RIF-OWL Direct-satisfiable</a>, because
ex:myiri is an individual identifier and S maps individual
identifiers to elements in O, which is disjoint from the
elements in the datatype <tt>xs:string</tt>.
</p><p>Consider a RIF-OWL DL combination consisting of the set
containing only the OWL 2 DL ontology
</p>
<pre>ex:hasChild rdf:type owl:ObjectProperty .
</pre>
<p>and a RIF document containing the following fact
</p>
<pre>ex:myiri[ex:hasChild -> "John"]
</pre>
<p>This combination is not
<a href="#def-owl-direct-satisfiable" title="">RIF-OWL Direct-satisfiable</a>, because
ex:hasChild is an object property, and values of object
properties may not be concrete data values.
</p><p>Consider a RIF-OWL DL combination consisting of the OWL DL
ontology
</p>
<pre>SubClassof(ex:A ex:B)
</pre>
<p>and a RIF document containing the following rule
</p>
<pre>Forall ?x (?x[rdf:type -> ex:A])
</pre>
<p>This combination is not
<a href="#def-owl-direct-satisfiable" title="">RIF-OWL Direct-satisfiable</a>, because the
rule requires every element, including every concrete data
value, to be a member of the class <tt>ex:A</tt>. However,
since every OWL interpretation requires every member of
<tt>ex:A</tt> to be an element of the object domain, concrete
data values cannot be members of the object domain. ☐
</p>
<a id="Importing_RDF_and_OWL_in_RIF" name="Importing_RDF_and_OWL_in_RIF"></a><h2> <span class="mw-headline">5 Importing RDF and OWL in RIF </span></h2>
<p>In the preceding sections, <a href="#RIF-RDF_Combinations" title="">RIF-RDF Combinations</a> and <a href="#Syntax_of_RIF-OWL_Combinations" title="">RIF-OWL combinations</a> were defined in an abstract way, as pairs consisting of a RIF document and a set of RDF graphs/OWL ontologies. In addition, different semantics were specified based on the various RDF and OWL entailment regimes.
RIF provides a mechanism for explicitly referring to (importing) RDF graphs from documents and specifying the intended profile (entailment regime) through the use of <tt>Import</tt> statements.
</p><p>This section specifies how RIF documents with such import statements must be interpreted.
</p><p><br />
A <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-wff" title="BLD">RIF document</a> contains a number of <tt>Import</tt> statements. Unary <tt>Import</tt> statements are used for importing RIF documents, and the interpretation of these statements is defined in <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#Interpretation_of_Documents" title="BLD">Section 3.5</a> of [<a href="#ref-rif-bld" title="">RIF-BLD</a>]. This section defines the interpretation of binary <tt>Import</tt> statements:
</p>
<pre>Import(<t1> <p1>)
...
Import(<tn> <pn>)
</pre>
<p>Here, <tt>ti</tt> is an absolute IRI referring to an RDF graph to be imported and <tt>pi</tt> is an absolute IRI denoting the profile to be used for the import.
</p><p>The profile determines which notions of model, satisfiability and entailment must be used. For example, if a RIF document <i>R</i> imports an RDF graph <i>S</i> with the profile <i>RDFS</i>, the notions of <a href="#def-rdfs-model" title="">RIF-RDFS-model</a>, <a href="#def-rdfs-satisfiable" title="">RIF-RDFS-satisfiability</a>, and <a href="#def-rdfs-entails" title="">RIF-RDFS-entailment</a> must be used for the combination <<i>R</i>, {<i>S</i>}>.
</p><p>Profiles are ordered as specified in <a href="#Specific_Profiles" title="">Section 5.1.1</a>. If several graphs are imported in a document, and these imports specify different profiles, the highest of these profiles is used. For example, if a RIF document <i>R</i> imports an RDF graph <i>S</i><sub>1</sub> with the profile <i>RDF</i> and an RDF graph <i>S</i><sub>2</sub> with the profile <i>OWL RDF-Based</i>, the notions of <a href="#def-owl-full-model" title="">RIF-OWL RDF-Based-model</a>, <a href="#def-owl-full-satisfiable" title="">RIF-OWL RDF-Based-satisfiability</a>, and <a href="#def-owl-full-entails" title="">RIF-OWL RDF-Based-entailment</a> must be used with the combination <<i>R</i>, {<i>S</i><sub>1</sub>, <i>S</i><sub>2</sub>}>.
</p><p>Finally, if a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-wff" title="BLD">RIF document</a> <i>R</i> imports an RDF graph <i>S</i> with the profile <i>OWL Direct</i>, <i>R</i> must be a <a href="#def-dl-document" title="">RIF-BLD DL-document formula</a>, <i>S</i> must be
the <a class="external text" href="http://www.w3.org/TR/2008/WD-owl2-mapping-to-rdf-20081202/#Mapping_from_the_Structural_Specification_to_RDF_Graphs" title="http://www.w3.org/TR/2008/WD-owl2-mapping-to-rdf-20081202/#Mapping_from_the_Structural_Specification_to_RDF_Graphs">RDF representation</a> of an OWL 2 DL ontology <i>O</i>, and the notions of <a href="#def-owl-direct-model" title="">RIF-OWL Direct-model</a>, <a href="#def-owl-direct-satisfiable" title="">RIF-OWL Direct-satisfiability</a>, and <a href="#def-owl-direct-entails" title="">RIF-OWL Direct-entailment</a> must be used with the combination <<i>R</i>, {<i>O</i>}>.
</p>
<a id="Profiles_of_Imports" name="Profiles_of_Imports"></a><h3> <span class="mw-headline">5.1 Profiles of Imports </span></h3>
<p>RIF defines specific profiles for the different notions of model, satisfiability and entailment of combinations, as well as one generic profile. The use of a specific profile specifies how a combination should be interpreted. If a specific profile cannot be handled by a receiver, the combination should be rejected. The use of a generic profile implies that a receiver may interpret the combination to the best of its ability.
</p><p>The use of profiles is not restricted to the profiles specified in this document. Any specific profile that is used with RIF must specify an IRI that identifies it, as well as associated notions of model, satisfiability, and entailment for combinations.
</p>
<a id="Specific_Profiles" name="Specific_Profiles"></a><h4> <span class="mw-headline">5.1.1 Specific Profiles </span></h4>
<p>The following table lists the specific profiles defined by RIF, the IRIs of these profiles, and the notions of model, satisfiability, and entailment that must be used with the profile.
</p>
<table border="1" id="tab-specific-profiles">
<caption>Specific profiles in RIF.</caption>
<tr>
<th>Profile</th>
<th>IRI of the Profile</th>
<th>Model</th>
<th>Satisfiability</th>
<th>Entailment</th>
</tr>
<tr>
<td>Simple</td>
<td>http://www.w3.org/ns/entailment/Simple</td>
<td><a href="#def-simple-model" title="">RIF-Simple-model</a></td>
<td><a href="#def-rif-rdf-satisfies" title="">satisfiability</a></td>
<td><a href="#def-simple-entails" title="">RIF-Simple-entailment</a></td>
</tr>
<tr>
<td>RDF</td>
<td>http://www.w3.org/ns/entailment/RDF</td>
<td><a href="#def-rdf-model" title="">RIF-RDF-model</a></td>
<td><a href="#def-rdf-satisfiable" title="">RIF-RDF-satisfiability</a></td>
<td><a href="#def-rdf-entails" title="">RIF-RDF-entailment</a></td>
</tr>
<tr>
<td>RDFS</td>
<td>http://www.w3.org/ns/entailment/RDFS</td>
<td><a href="#def-rdfs-model" title="">RIF-RDFS-model</a></td>
<td><a href="#def-rdfs-satisfiable" title="">RIF-RDFS-satisfiability</a></td>
<td><a href="#def-rdfs-entails" title="">RIF-RDFS-entailment</a></td>
</tr>
<tr>
<td>D</td>
<td>http://www.w3.org/ns/entailment/D</td>
<td><a href="#def-d-model" title="">RIF-D-model</a></td>
<td><a href="#def-d-satisfiable" title="">RIF-D-satisfiability</a></td>
<td><a href="#def-d-entails" title="">RIF-D-entailment</a></td>
</tr>
<tr>
<td>OWL Direct</td>
<td>http://www.w3.org/ns/entailment/OWL-Direct</td>
<td><a href="#def-owl-direct-model" title="">RIF-OWL Direct-model</a></td>
<td><a href="#def-owl-direct-satisfiable" title="">RIF-OWL Direct-satisfiability</a></td>
<td><a href="#def-owl-direct-entails" title="">RIF-OWL Direct-entailment</a></td>
</tr>
<tr>
<td>OWL RDF-Based</td>
<td>http://www.w3.org/ns/entailment/OWL-RDF-Based</td>
<td><a href="#def-owl-full-model" title="">RIF-OWL RDF-Based-model</a></td>
<td><a href="#def-owl-full-satisfiable" title="">RIF-OWL RDF-Based-satisfiability</a></td>
<td><a href="#def-owl-full-entails" title="">RIF-OWL RDF-Based-entailment</a></td>
</tr>
</table>
<p>Profiles that are defined for combinations of DL-document formulas and OWL ontologies in abstract syntax form are called <i>DL profiles</i>. Of the mentioned profiles, the profile <i>OWL Direct</i> is a DL profile.
</p><p>The profiles are ordered as follows, where '<tt><</tt>' reads "is lower than":
</p><p>Simple <tt> < </tt> RDF <tt> < </tt> RDFS <tt> < </tt> D <tt> < </tt> OWL RDF-Based
</p><p>OWL Direct <tt> < </tt> OWL RDF-Based
</p>
<a id="Generic_Profile" name="Generic_Profile"></a><h4> <span class="mw-headline">5.1.2 Generic Profile </span></h4>
<p>RIF specifies one generic profile. The use of the generic profile does not imply the use of a specific notion of model, satisfiability, and entailment.
</p>
<table border="1" id="tab-generic-profiles">
<caption>Generic profile in RIF.</caption>
<tr>
<th>Profile</th>
<th>IRI of the Profile</th>
</tr>
<tr>
<td>Generic</td>
<td><http://www.w3.org/2007/rif-import-profile#Generic></td>
</tr>
</table>
<a id="Interpretation_of_Profiles" name="Interpretation_of_Profiles"></a><h3> <span class="mw-headline">5.2 Interpretation of Profiles </span></h3>
<p>Let <i>R</i> be a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-wff" title="BLD">RIF document</a> such that
</p>
<pre>Import(<u1> <p1>)
...
Import(<un> <pn>)
</pre>
<p>are all the two-ary import statements in <i>R</i> and the documents <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-imported-doc" title="BLD">imported</a> into <i>R</i> and let <tt>Profile</tt> be the set of profiles corresponding to the IRIs <tt>p1,...,pn</tt>.
</p><p>If <tt>pi</tt>, <tt>1 ≤ i ≤ n</tt>, corresponds to a DL profile and <tt>ui</tt> refers to an RDF graph that is not the RDF representation of an OWL (2) DL ontology, the document should be rejected.
</p><p>If <tt>ui</tt>, <tt>1 ≤ i ≤ n</tt>, refers to an RDF graph that uses a typed literal of the form <tt>"s"^^rif:iri</tt> or <tt>"s"^^rdf:PlainLiteral</tt>, the document must be rejected.
</p><p>If <tt>Profile</tt> contains only specific profiles, then:
</p>
<ul><li> If <tt>Profile</tt> does not have a single highest profile, the document must be rejected.
</li></ul>
<ul><li> If <tt>Profile</tt> contains only DL profiles and <i>R</i> is not a DL-document formula, it must be rejected.
</li></ul>
<ul><li> If <tt>Profile</tt> contains only DL profiles and the RDF graphs referred to by <tt>u<sub>1</sub>,...,u<sub>n</sub></tt> are RDF representations of the OWL 2 ontologies <i>O</i><sub>1</sub>,....,<i>O</i><sub>n</sub>, then the combination C=<<i>R</i>,{<i>O</i><sub>1</sub>,....,<i>O</i><sub>n</sub>}> must be interpreted according to the highest among the profiles in <tt>Profile</tt>.
</li></ul>
<ul><li> Otherwise, the combination C=<<i>R</i>,{<i>S</i><sub>1</sub>,....,<i>S</i><sub>n</sub>}>, where <i>S</i><sub>1</sub>,....,<i>S</i><sub>n</sub> are the RDF graphs referred to by <tt>u<sub>1</sub>,...,u<sub>n</sub></tt>, must be interpreted according to the highest among the profiles in <tt>Profile</tt>.
</li></ul>
<p>If <tt>Profile</tt> contains a generic profile, then the combination C=<<i>R</i>,{<i>S</i><sub>1</sub>,....,<i>S</i><sub>n</sub>}>, where <i>S</i><sub>1</sub>,....,<i>S</i><sub>n</sub> are the RDF graphs referred to by <tt>u<sub>1</sub>,...,u<sub>n</sub></tt>, may be interpreted according to the highest among the specific profiles in <tt>Profile</tt>, if there is one.
</p>
<a id="Conformance_Clauses" name="Conformance_Clauses"></a><h2> <span class="mw-headline">6 Conformance Clauses </span></h2>
<p>We define notions of conformance for RIF-RDF and RIF-OWL combinations. We define these notions both for the RIF Core [<a href="#ref-rif-core" title="">RIF-Core</a>] and RIF BLD [<a href="#ref-rif-bld" title="">RIF-BLD</a>] dialects.
</p><p>Conformance is described in terms of semantics-preserving transformations between the native syntax of a compliant processor and the XML syntax of RIF Core and BLD.
</p><p>We say that an RDF graph <i>S</i> is a <i>standard RDF graph</i> if for every triple <tt>s p o</tt> in <i>S</i>, <tt>s</tt> is an IRI or blank node, <tt>p</tt> is an IRI, and <tt>o</tt> is an IRI, literal, or blank node. A combination < <i>R</i>, <b>S</b> > is <i>standard</i> if every graph in <b>S</b> is standard.
</p><p>Each RIF processor has sets Τ, of supported datatypes and symbol spaces that include the <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#Symbol_Spaces" title="DTB">symbol spaces</a> listed in
[<a href="#ref-rif-dtb" title="">RIF-DTB</a>], and Ε, of supported external terms that include the built-ins listed in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]. The datatype map of a RIF processor is the smallest datatype map conforming with the set of datatypes in Τ.
</p><p>Now, let <tt>P</tt> ∈ {Simple, RDF, RDFS, D, OWL RDF-Based} be a <a href="#Specific_Profiles" title="">specific RDF profile</a>. A <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> C=< <i>R</i>, <b>S</b> > is a <i>BLD</i><sub>Τ,Ε</sub>-<tt>P</tt> combination if <i>R</i> is a <i>BLD</i><sub>Τ,Ε</sub> formula and C is a <i>Core</i><sub>Τ,Ε</sub>-<tt>P</tt> combination if <i>R</i> is a <i>Core</i><sub>Τ,Ε</sub> formula.
</p><p>A <a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> C=<
<i>R</i>, <b>O</b> > is a <i>BLD</i><sub>Τ,Ε</sub>-OWL Direct combination if <i>R</i> is a <i>BLD</i><sub>Τ,Ε</sub> formula and C is a <i>Core</i><sub>Τ,Ε</sub>-OWL Direct combination if <i>R</i> is a <i>Core</i><sub>Τ,Ε</sub> formula.
</p><p><span class="anchor" id="def-conformance"></span>
A RIF processor is a <i><b>conformant</b></i> <i>BLD</i><sub>Τ,Ε</sub>-<tt>P</tt> <i><b>consumer</b></i>, for <tt>P</tt> ∈ {Simple, RDF, RDFS, D, OWL Direct, OWL RDF-Based}, iff it implements a <span class="anchor" id="def-sem-preserving-map-to"><i>semantics-preserving mapping</i></span>, μ, from the set of standard <i>BLD</i><sub>Τ,Ε</sub>-<tt>P</tt> combinations, standard RDF graphs, OWL 2 ontologies, and <i>BLD</i><sub>Τ,Ε</sub> formulas to the language <i>L</i> of the processor (μ does not need to be an "onto" mapping) and, in case <tt>P</tt> ∈ {OWL Direct, OWL RDF-Based}, its datatype map is an <a href="#def-owl2-datatype-map" title="">OWL 2 datatype map</a>.
</p><p>We say that a RIF document <i>R</i> is list-safe if <i>R</i> is <a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/#Safeness" title="Core">safe</a> and it contains no occurrences of <tt>rdf:first</tt>, <tt>rdf:rest</tt>, or <tt>rdf:nil</tt> in rule consequents. An RDF graph <i>S</i> is list-safe if it contains no occurrences of <tt>rdf:first</tt> or <tt>rdf:rest</tt> outside of the property positions, it contains no occurrences of <tt>rdf:nil</tt> outside of triples of the form <tt>... rdf:rest rdf:nil</tt>, and there are no two triples <tt>s rdf:first o1 . s rdf:first o2 .</tt> or <tt>s rdf:rest o1 . s rdf:rest o2 .</tt> in <i>S</i>, where <tt>s, o1, o2</tt> are RDF terms and <tt>o1≠o2</tt>. A combination < <i>R</i>, <b>S</b> > is <i><b>list-safe</b></i> if <i>R</i> is list-safe and the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defmerge" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#defmerge">merge</a> of the graphs in <b>S</b> is list-safe.
</p><p>A RIF processor is a <i><b>conformant</b></i> <i>Core</i><sub>Τ,Ε</sub>-<tt>P</tt> <i><b>consumer</b></i>, for <tt>P</tt> ∈ {Simple, RDF, RDFS, D, OWL Direct, OWL RDF-Based}, iff it implements a <span class="anchor" id="def-sem-preserving-map-to2"><i>semantics-preserving mapping</i></span>, μ, from the set of standard list-safe <i>Core</i><sub>Τ,Ε</sub>-<tt>P</tt> combinations, standard RDF graphs, OWL 2 ontologies, and <i>Core</i><sub>Τ,Ε</sub> formulas to the language <i>L</i> of the processor (μ does not need to be an "onto" mapping) and, in case <tt>P</tt> ∈ {OWL Direct, OWL RDF-Based}, its datatype map is an <a href="#def-owl2-datatype-map" title="">OWL 2 datatype map</a>.
</p><p>Formally, this means that for any pair (φ, ψ), where φ is a <i>BLD</i><sub>Τ,Ε</sub>-<tt>P</tt> combination and ψ is an RDF graph, OWL 2 ontology, or <i>BLD</i><sub>Τ,Ε</sub> formula such that φ |=<sub><tt>P</tt></sub> ψ is defined, φ |=<sub><tt>P</tt></sub> ψ iff μ(φ) |=<sub><tt><i>L</i></tt></sub> μ(ψ). Here |=<sub><tt>P</tt></sub> denotes <tt>P</tt>-entailment and |=<sub><tt><i>L</i></tt></sub> denotes the logical entailment in the language <i>L</i> of the RIF processor.
</p><p>A RIF processor is a <i><b>conformant</b></i> <i>BLD</i><sub>Τ,Ε</sub>-<tt>P</tt> <i><b>producer</b></i> iff it implements a <span class="anchor" id="def-sem-preserving-map-from"><i>semantics-preserving mapping</i></span>, ν, from the language <i>L</i> of the processor to the set of all <i>BLD</i><sub>Τ,Ε</sub> formulas, RDF graphs, OWL 2 ontologies, and <i>BLD</i><sub>Τ,Ε</sub>-<tt>P</tt> combinations (ν does not need to be an "onto" mapping).
</p><p>A RIF processor is a <i><b>conformant</b></i> <i>Core</i><sub>Τ,Ε</sub>-<tt>P</tt> <i><b>producer</b></i> iff it implements a <span class="anchor" id="def-sem-preserving-map-from2"><i>semantics-preserving mapping</i></span>, ν, from the language <i>L</i> of the processor to the set of all <i>Core</i><sub>Τ,Ε</sub> formulas, RDF graphs, OWL 2 ontologies, and <i>Core</i><sub>Τ,Ε</sub>-<tt>P</tt> combinations (ν does not need to be an "onto" mapping).
</p><p>Formally, this means that for any pair (φ, ψ) of formulas in <i>L</i> such that φ |=<sub><tt><i>L</i></tt></sub> ψ is defined, φ |=<sub><tt><i>L</i></tt></sub> ψ iff ν(φ) |=<sub><tt>P</tt></sub> ν(ψ). Here |=<sub><tt>P</tt></sub> denotes <tt>P</tt>-entailment and |=<sub><tt><i>L</i></tt></sub> denotes the logical entailment in the language <i>L</i> of the RIF processor.
</p>
<a id="Acknowledgements" name="Acknowledgements"></a><h2> <span class="mw-headline">7 Acknowledgements </span></h2>
<p>This document is the product of the Rules Interchange Format (RIF) Working Group (see below),
the members of which deserve recognition for their time and commitment
to RIF. The editors extend special thanks to: Mike Dean, Michael Kifer, Stella Mitchell, Axel Polleres, and Dave Reynolds, for their thorough reviews and insightful discussions;
the working group chairs, Chris Welty and Christian de Sainte-Marie, for their invaluable technical help and inspirational leadership; and W3C staff contact Sandro Hawke, a constant source of ideas, help, and feedback.
</p><p>The following members of the joint RIF-OWL task force have contributed to the <a href="#OWL_Compatibility" title="">OWL Compatibility</a> section in this document: Mike Dean, Peter F. Patel-Schneider, and Ulrike Sattler.
</p><p><br />
The regular attendees at meetings of the Rule Interchange Format (RIF) Working Group at the time of the publication were:
Adrian Paschke (Freie Universitaet Berlin),
Axel Polleres (DERI),
Changhai Ke (IBM),
Chris Welty (IBM),
Christian de Sainte Marie (IBM),
Dave Reynolds (HP),
Gary Hallmark (ORACLE),
Harold Boley (NRC),
Hassan Aït-Kaci (IBM),
Jos de Bruijn (FUB),
Leora Morgenstern (IBM),
Michael Kifer (Stony Brook),
Mike Dean (BBN),
Sandro Hawke (W3C/MIT), and
Stella Mitchell (IBM).
</p>
<a id="References" name="References"></a><h2> <span class="mw-headline">8 References </span></h2>
<a id="Normative_References" name="Normative_References"></a><h3> <span class="mw-headline">8.1 Normative References </span></h3>
<dl><dt><span id="ref-owl2-rdf-based-semantics">[OWL2-RDF-Based-Semantics]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/">OWL 2 Web Ontology Language: RDF-Based Semantics</a></i>, M. Schneider, Editor, W3C Candidate Recommendation, 27 October 2009, <a class="external free" href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/">http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/</a>. <a class="external text" href="http://www.w3.org/TR/owl2-rdf-based-semantics/" title="http://www.w3.org/TR/owl2-rdf-based-semantics/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl2-rdf-based-semantics/" title="http://www.w3.org/TR/owl2-rdf-based-semantics/">http://www.w3.org/TR/owl2-rdf-based-semantics/</a>.
</dd><dt><span id="ref-owl2-semantics">[OWL2-Semantics]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/">OWL 2 Web Ontology Language: Direct Semantics</a></i>, B. Motik, P. F. Patel-Schneider, B. Cuenca Grau, Editors, W3C Candidate Recommendation, 27 October 2009, <a class="external free" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/">http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/</a>. <a class="external text" href="http://www.w3.org/TR/owl2-direct-semantics/" title="http://www.w3.org/TR/owl2-direct-semantics/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl2-direct-semantics/" title="http://www.w3.org/TR/owl2-direct-semantics/">http://www.w3.org/TR/owl2-direct-semantics/</a>.
</dd><dt><span id="ref-owl2-syntax">[OWL2-Syntax]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/">OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax</a></i>, B. Motik, P. F. Patel-Schneider, B. Parsia, Editors, W3C Candidate Recommendation, 27 October 2009, <a class="external free" href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/">http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/</a>. <a class="external text" href="http://www.w3.org/TR/owl2-syntax/" title="http://www.w3.org/TR/owl2-syntax/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl2-syntax/" title="http://www.w3.org/TR/owl2-syntax/">http://www.w3.org/TR/owl2-syntax/</a>.
</dd><dt><span id="ref-rdf-concepts">[RDF-Concepts]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">Resource Description Framework (RDF): Concepts and Abstract Syntax</a></i>, G. Klyne, J. Carrol, Editors, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/</a>. <a class="external text" href="http://www.w3.org/TR/rdf-concepts/" title="http://www.w3.org/TR/rdf-concepts/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/rdf-concepts/" title="http://www.w3.org/TR/rdf-concepts/">http://www.w3.org/TR/rdf-concepts/</a>.
</dd><dt><span id="ref-rdf-semantics">[RDF-Semantics]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/">RDF Semantics</a></i>, P. Hayes, Editor, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/">http://www.w3.org/TR/2004/REC-rdf-mt-20040210/</a>. <a class="external text" href="http://www.w3.org/TR/rdf-mt/" title="http://www.w3.org/TR/rdf-mt/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/rdf-mt/" title="http://www.w3.org/TR/rdf-mt/">http://www.w3.org/TR/rdf-mt/</a>.
</dd><dt><span id="ref-rif-core">[RIF-Core]</span></dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/"><span>RIF Core Dialect</span></a></cite> Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, Dave Reynolds, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/">http://www.w3.org/TR/2010/REC-rif-core-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-core/">http://www.w3.org/TR/rif-core/</a>.</span></dd><dt><span id="ref-rif-bld">[RIF-BLD]</span></dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/"><span>RIF Basic Logic Dialect</span></a></cite> Harold Boley, Michael Kifer, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/">http://www.w3.org/TR/2010/REC-rif-bld-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-bld/">http://www.w3.org/TR/rif-bld/</a>.</span></dd><dt><span id="ref-rif-dtb">[RIF-DTB]</span></dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/"><span>RIF Datatypes and Built-Ins 1.0</span></a></cite> Axel Polleres, Harold Boley, Michael Kifer, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/">http://www.w3.org/TR/2010/REC-rif-dtb-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-dtb/">http://www.w3.org/TR/rif-dtb/</a>.</span></dd></dl>
<a id="Informational_References" name="Informational_References"></a><h3> <span class="mw-headline">8.2 Informational References </span></h3>
<dl><dt><span id="ref-curie">[CURIE]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2009/CR-curie-20090116" title="http://www.w3.org/TR/2009/CR-curie-20090116">CURIE Syntax 1.0</a></i>, M. Birbeck, S. McCarron, W3C Candidate Recommendation, 16 January 2009, <a class="external free" href="http://www.w3.org/TR/2009/CR-curie-20090116" title="http://www.w3.org/TR/2009/CR-curie-20090116">http://www.w3.org/TR/2009/CR-curie-20090116</a>. <a class="external text" href="http://www.w3.org/TR/curie/" title="http://www.w3.org/TR/curie/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/curie/" title="http://www.w3.org/TR/curie/">http://www.w3.org/TR/curie/</a>.
</dd><dt><span id="ref-dlp">[DLP]</span></dt><dd> <i><a class="external text" href="http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/p117-grosof.pdf" title="http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/p117-grosof.pdf">Description Logic Programs: Combining Logic Programs with Description Logics</a></i>, B. Grosof, R. Volz, I. Horrocks, S. Decker. In Proc. of the 12th International World Wide Web Conference (WWW 2003), 2003.
</dd><dt><span id="ref-motik05">[Motik05]</span></dt><dd> <i>Query Answering for OWL-DL with rules</i>, B. Motik, U. Sattler, R. Studer, Journal of Web Semantics 3(1): 41-60, 2005.
</dd><dt><span id="ref-owl-reference">[OWL-Reference]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-owl-ref-20040210/" title="http://www.w3.org/TR/2004/REC-owl-ref-20040210/">OWL Web Ontology Language Reference</a></i>, M. Dean, G. Schreiber, Editors, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-owl-ref-20040210/" title="http://www.w3.org/TR/2004/REC-owl-ref-20040210/">http://www.w3.org/TR/2004/REC-owl-ref-20040210/</a>. <a class="external text" href="http://www.w3.org/TR/owl-ref/" title="http://www.w3.org/TR/owl-ref/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl-ref/" title="http://www.w3.org/TR/owl-ref/">http://www.w3.org/TR/owl-ref/</a>.
</dd><dt><span id="ref-owl-semantics">[OWL-Semantics]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/" title="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/">OWL Web Ontology Language Semantics and Abstract Syntax</a></i>, P. F. Patel-Schneider, P. Hayes, I. Horrocks, Editors, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/" title="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/">http://www.w3.org/TR/2004/REC-owl-semantics-20040210/</a>. <a class="external text" href="http://www.w3.org/TR/owl-semantics/" title="http://www.w3.org/TR/owl-semantics/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl-semantics/" title="http://www.w3.org/TR/owl-semantics/">http://www.w3.org/TR/owl-semantics/</a>.
</dd><dt><span id="ref-owl2-profiles">[OWL2-Profiles]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/">OWL 2 Web Ontology Language: Profiles</a></i>, B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, Editors, W3C Recommendation, 27 October 2009, <a class="external free" href="http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/">http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/</a>. <a class="external text" href="http://www.w3.org/TR/owl2-profiles/" title="http://www.w3.org/TR/owl2-profiles/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl2-profiles/" title="http://www.w3.org/TR/owl2-profiles/">http://www.w3.org/TR/owl2-profiles/</a>.
</dd><dt><span id="ref-owl2-rdf-mapping">[OWL2-RDF-Mapping]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/">OWL 2 Web Ontology Language: Mapping to RDF Graphs</a></i>, P. F. Patel-Schneider, B. Motik, Editors, W3C Recommendation, 27 October 2009, <a class="external free" href="http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/" title="http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/">http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/</a>. <a class="external text" href="http://www.w3.org/TR/owl2-mapping-to-rdf/" title="http://www.w3.org/TR/owl2-mapping-to-rdf/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/owl2-mapping-to-rdf/" title="http://www.w3.org/TR/owl2-mapping-to-rdf/">http://www.w3.org/TR/owl2-mapping-to-rdf/</a>.
</dd><dt><span id="ref-rdf-schema">[RDF-Schema]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-schema-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-schema-20040210/">RDF Vocabulary Description Language 1.0: RDF Schema</a></i>, D. Brickley, R.V. Guha, Editors, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-rdf-schema-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-schema-20040210/">http://www.w3.org/TR/2004/REC-rdf-schema-20040210/</a>. <a class="external text" href="http://www.w3.org/TR/rdf-schema/" title="http://www.w3.org/TR/rdf-schema/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/rdf-schema/" title="http://www.w3.org/TR/rdf-schema/">http://www.w3.org/TR/rdf-schema/</a>.
</dd><dt><span id="ref-rdf-syntax">[RDF-Syntax]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/">RDF/XML Syntax Specification (Revised)</a></i>, D. Beckett, Editor, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/">http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/</a>. <a class="external text" href="http://www.w3.org/TR/rdf-syntax-grammar/" title="http://www.w3.org/TR/rdf-syntax-grammar/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TR/rdf-syntax-grammar/" title="http://www.w3.org/TR/rdf-syntax-grammar/">http://www.w3.org/TR/rdf-syntax-grammar/</a>.
</dd><dt><span id="ref-rfc-3066">[RFC-3066]</span></dt><dd> <i><a class="external text" href="http://www.ietf.org/rfc/rfc3066" title="http://www.ietf.org/rfc/rfc3066">RFC 3066 - Tags for the Identification of Languages</a></i>, H. Alvestrand, IETF, January 2001. This document is at <a class="external free" href="http://www.ietf.org/rfc/rfc3066" title="http://www.ietf.org/rfc/rfc3066">http://www.ietf.org/rfc/rfc3066</a>.
</dd><dt><span id="ref-rif-prd">[RIF-PRD]</span></dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-prd-20100622/"><span>RIF Production Rule Dialect</span></a></cite> Christian de Sainte Marie, Gary Hallmark, Adrian Paschke, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-prd-20100622/">http://www.w3.org/TR/2010/REC-rif-prd-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-prd/">http://www.w3.org/TR/rif-prd/</a>.</span></dd><dt><span id="ref-rif-ucr">[RIF-UCR]</span></dt><dd><span><cite><a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/">RIF Use Cases and Requirements</a></cite> Adrian Paschke, David Hirtle, Allen Ginsberg, Paula-Lavinia Patranjan, Frank McCabe, Eds. W3C Working Draft, 18 December 2008, <a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/">http://www.w3.org/TR/2008/WD-rif-ucr-20081218/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-ucr/">http://www.w3.org/TR/rif-ucr/</a>.</span></dd><dt><span id="ref-rosati06">[Rosati06]</span></dt><dd> <i>DL+log: Tight Integration of Description Logics and Disjunctive Datalog</i>, R. Rosati, Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning, pp. 68-78, 2005.
</dd><dt><span id="ref-swrl">[SWRL]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/" title="http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/">SWRL: A Semantic Web Rule Language Combining OWL and RuleML</a></i>, I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B., M. Dean, W3C Member Submission, 21 May 2004, <a class="external free" href="http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/" title="http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/">http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/</a>. <a class="external text" href="http://www.w3.org/Submission/SWRL/" title="http://www.w3.org/Submission/SWRL/">Latest version</a> available at <a class="external free" href="http://www.w3.org/Submission/SWRL/" title="http://www.w3.org/Submission/SWRL/">http://www.w3.org/Submission/SWRL/</a>.
</dd><dt><span id="ref-turtle">[Turtle]</span></dt><dd> <i><a class="external text" href="http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/" title="http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/">Turtle - Terse RDF Triple Language</a></i>, D. Beckett, T. Berners-Lee, W3C Team Submission, 14 January 2008, <a class="external free" href="http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/" title="http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/">http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/</a>. <a class="external text" href="http://www.w3.org/TeamSubmission/turtle/" title="http://www.w3.org/TeamSubmission/turtle/">Latest version</a> available at <a class="external free" href="http://www.w3.org/TeamSubmission/turtle/" title="http://www.w3.org/TeamSubmission/turtle/">http://www.w3.org/TeamSubmission/turtle/</a>.
</dd><dt> <span id="ref-xml-schema2">[XML Schema Datatypes]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/" title="http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/">W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</a></cite>. David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S. Thompson, eds. W3C Candidate Recommendation, 30 April 2009, http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/. Latest version available as http://www.w3.org/TR/xmlschema11-2/.
</dd></dl>
<a id="Appendix:_Embeddings_.28Informative.29" name="Appendix:_Embeddings_.28Informative.29"></a><h2> <span class="mw-headline">9 Appendix: Embeddings (Informative) </span></h2>
<p>RIF-RDF combinations can be embedded into RIF documents in a fairly straightforward way, thereby demonstrating how a RIF-compliant translator without native support for RDF can process RIF-RDF combinations.
RIF-OWL combinations cannot be embedded in RIF, in the general case. However, there is a subset of OWL 2 DL, namely the OWL 2 RL profile [<a href="#ref-owl2-profiles" title="">OWL2-Profiles</a>], for which RIF-OWL combinations that can be embedded.
</p><p>Simple, RDF, and RDFS entailment for RIF-RDF combinations are embedded in RIF Core. RIF-OWL 2 RL combinations require reasoning with equality, and thus could not be embedded in RIF Core; they are embedded in RIF BLD.
</p><p>The embeddings are defined using an embedding function tr that maps symbols, triples, and RDF graphs/OWL ontologies to RIF symbols, statements, and documents, respectively.
</p><p>To embed consistency checking in RDF(S) and OWL, we use a special 0-ary predicate symbol <tt>rif:error</tt>, which is assumed not to be used in the RIF documents in the combination.
</p><p><br />
Besides the namespace prefixes defined in the <a href="#Overview_of_RDF_and_OWL_Compatibility" title="">Overview</a>, the following namespace prefix is used in this appendix: <tt>pred</tt> refers to the RIF namespace for built-in predicates <tt>http://www.w3.org/2007/rif-builtin-predicate#</tt> [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p><p>To facilitate the definition of the embeddings we define the notion of a <i>merge</i> of RIF formulas.
</p><p><b>Definition.</b> Let <b>R</b>={<i>R</i><sub>1</sub>,...,<i>R</i><sub>n</sub>} be a set of <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-wff" title="BLD">document, group, and rule formulas</a>, such that there are no prefix or base directives, or relative IRIs in <b>R</b> and <tt><em>directive<sub>11</sub></em></tt>, ..., <tt><em>directive<sub>nm</sub></em></tt> are all the <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-directives" title="BLD">import directives</a> occurring in document formulas in <b>R</b>.
The <span id="def-merge"><i><b>merge</b></i></span> of <b>R</b>, denoted merge(<b>R</b>), is defined as <tt>Document(<em>directive<sub>11</sub></em></tt> ... <tt><em>directive</em><sub>nm</sub> Group(</tt><i>R*</i><sub>1</sub> ... <i>R*</i><sub>n</sub><tt>))</tt>, where <i>R*</i><sub>i</sub> is obtained from <i>R</i><sub>i</sub> in the following way:
</p>
<ul><li> if <i>R</i><sub>i</sub> is a document formula of the form <tt>Document(<em>directive<sub>i1</sub></em> ... <em>directive<sub>im</sub></em> Γ)</tt>, then <i>R*</i><sub>i</sub>=<tt>Γ</tt> and
</li><li> if <i>R</i><sub>i</sub> is a non-document formula (i.e., fact, rule, or group), then <i>R*</i><sub>i</sub>=<i>R</i><sub>i</sub>. ☐
</li></ul>
<p>Note that the requirement that no prefix or based directives, or relative IRIs are included in any of the formulas to be merged is not a limitation, since compact IRIs can be rewritten to absolutes IRIs, as can relative IRIs, by exploiting prefix and base directives, and the location of the document.
</p>
<a id="Embedding_RIF-RDF_Combinations" name="Embedding_RIF-RDF_Combinations"></a><h3> <span class="mw-headline">9.1 Embedding RIF-RDF Combinations </span></h3>
<p>RIF-RDF combinations are embedded by combining the RIF rules with embeddings of the RDF graphs and an axiomatization of Simple, RDF, and RDFS entailment.
</p><p>The embedding is not defined for combinations that include infinite RDF graphs and for combinations that include RDF graphs with RDF URI references that are not absolute IRIs (see the <a href="#note-rdf-uri-references" title="">End note on RDF URI references</a>) or plain literals without language tags that are not in the lexical space of the <tt><a class="external text" href="http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#string" title="http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#string">xs:string</a></tt> datatype [<a href="#ref-xml-schema2" title="">XML-Schema2</a>]. Also, the embedding is not defined for RDF lists.
</p><p>We define a list-free combination as a combination that does not contain any mention of the symbols <tt>rdf:first</tt>, <tt>rdf:rest</tt>, or <tt>rdf:nil</tt>.
</p><p>In the remainder of this section we first define the embedding of symbols, triples, and graphs, after which we define the axiomatization of Simple, RDF, and RDFS entailment of combinations and, finally, demonstrate faithfulness of the embeddings.
</p>
<a id="Embedding_Symbols" name="Embedding_Symbols"></a><h4> <span class="mw-headline">9.1.1 Embedding Symbols </span></h4>
<p>Given a <a href="#def-rif-rdf-combination" title="">combination</a> C=< <i>R</i>,<b>S</b>>, the function tr maps RDF symbols of a Vocabulary <i>V</i> and a set of blank nodes <i>B</i> to RIF symbols, as defined in the following table. It is assumed that the Vocabulary <i>V</i> includes all the IRIs and literals used in the RIF documents and condition formulas under consideration.
</p><p>In the table, the mapping tr' is
an injective function that maps typed literals to new constants in the <tt>rif:local</tt> symbol space, where a new constant is a constant that is not used in the document or its vicinity (i.e., imported or entailed formula, or entailing combination). It "generates" a new constant from a typed literal.
</p>
<table border="1">
<caption>Mapping RDF symbols to RIF.</caption>
<tr>
<th>RDF Symbol</th>
<th>RIF Symbol</th>
<th>Mapping</th>
</tr>
<tr><td>IRI <tt>i</tt> in <em>V<sub>U</sub></em></td><td>Constant with symbol space <tt>rif:iri</tt></td><td>tr(<tt>i</tt>) = <tt><i></tt></td></tr>
<tr><td>Blank node <tt>_:x</tt> in <em>B</em></td><td>Variable symbol <tt>?x</tt></td><td>tr(<tt>_:x</tt>) = <tt>?x</tt></td></tr>
<tr><td>Plain literal without a language tag <tt>xxx</tt> in <em>V<sub>PL</sub></em></td><td>Constant with the datatype <tt>xs:string</tt></td><td>tr(<tt>"xxx"</tt>) = <tt>"xxx"</tt></td></tr>
<tr><td>Plain literal with a language tag <tt>"xxx"@lang</tt> in <em>V<sub>PL</sub></em></td><td>Constant with the datatype <tt>rdf:PlainLiteral</tt></td><td>tr(<tt>"xxx"@lang</tt>) = <tt>"xxx@lang"^^rdf:PlainLiteral</tt></td></tr>
<tr><td>Well-typed literal <tt>"s"^^u</tt> in <em>V<sub>TL</sub></em></td><td>Constant with the symbol space <tt>u</tt></td><td>tr(<tt>"s"^^u</tt>) = <tt>"s"^^u</tt></td></tr>
<tr><td>Non-well-typed literal <tt>"s"^^u</tt> in <em>V<sub>TL</sub></em></td><td>Local constant <tt>s-u'</tt> that is not used in C and is obtained from <tt>"s"^^u</tt></td><td>tr(<tt>"s"^^u</tt>) = tr'(<tt>"s"^^u</tt>)</td></tr>
</table>
<a id="Embedding_Triples_and_Graphs" name="Embedding_Triples_and_Graphs"></a><h4> <span class="mw-headline">9.1.2 Embedding Triples and Graphs </span></h4>
<p>This section extends the mapping function tr to triples
and defines two embedding functions for RDF graphs. In one embedding (tr<sub>R</sub>), graphs are embedded as RIF documents and variables (originating from blank nodes) are skolemized, i.e., replaced with new constant symbols. In the other embedding (tr<sub>Q</sub>), graphs are embedded as condition formulas and variables (originating from blank nodes) are existentially quantified. The following sections show how these embeddings can be used for reasoning with combinations.
</p><p>For skolemization we assume a function sk that takes as argument a formula φ and returns a formula φ' that is obtained from φ by replacing every variable symbol <tt>?</tt><i>x</i> with <tt><new-iri></tt>, where <tt>new-iri</tt> is a new globally unique IRI, i.e., it does not occur in the graph or its vicinity (i.e., entailing combination or entailed graph/formula).
</p>
<table border="1">
<tr>
<th>RDF Construct</th>
<th>RIF Construct</th>
<th>Mapping</th>
</tr>
<tr>
<td>Triple <tt>s p o .</tt></td>
<td>Frame formula tr(<tt>s</tt>)<tt>[</tt>tr(<tt>p</tt>) <tt>-></tt> tr(<tt>o</tt>)<tt>]</tt></td>
<td>tr(<tt>s p o .</tt>) = tr(<tt>s</tt>)<tt>[</tt>tr(<tt>p</tt>) <tt>-></tt> tr(<tt>o</tt>)<tt>]</tt></td>
</tr>
<tr>
<td>Graph <i>S</i></td>
<td>Group formula tr<sub>R</sub>(<i>S</i>)</td>
<td>tr<sub>R</sub>(<i>S</i>) = sk(<tt>Document (Group (</tt>tr(<tt>t<sub>1</sub></tt>)<tt> ... </tt>tr(<tt>t<sub>m</sub></tt>)<tt>) )</tt>), where <tt>t<sub>1</sub></tt>, ..., <tt>t<sub>m</sub></tt> are the triples in <i>S</i></td>
</tr>
<tr>
<td>Graph <i>S</i></td>
<td>Condition formula tr<sub>Q</sub>(<i>S</i>)</td>
<td>tr<sub>Q</sub>(<i>S</i>) = <tt>Exists </tt>tr(<tt>x<sub>1</sub></tt>)<tt> ... </tt> tr(<tt>x<sub>n</sub></tt>) <tt>(And(</tt>tr(<tt>t<sub>1</sub></tt>)<tt> ... </tt>tr(<tt>t<sub>m</sub></tt>)<tt>))</tt>, where <tt>x<sub>1</sub></tt>, ..., <tt>x<sub>n</sub></tt> are the blank nodes occurring in <i>S</i> and <tt>t<sub>1</sub></tt>, ..., <tt>t<sub>m</sub></tt> are the triples in <i>S</i></td>
</tr>
</table>
<a id="Embedding_Simple_Entailment" name="Embedding_Simple_Entailment"></a><h4> <span class="mw-headline">9.1.3 Embedding Simple Entailment </span></h4>
<p>The semantics of the RDF Vocabulary does not need to be axiomatized for Simple entailment. Nonetheless, the connection between RIF class membership and subclass statements and the RDF type and subclass statements needs axiomatization. We define:
</p>
<table border="1">
<tr valign="top">
<td><em>R<sup>Simple</sup></em></td><td>=</td><td> <tt>Document( Group(</tt><br />
<p> <tt>Forall ?x ?y (?x[rdf:type -> ?y] :- ?x # ?y)</tt><br />
</p><p> <tt>Forall ?x ?y (?x # ?y :- ?x[rdf:type -> ?y])</tt><br />
</p><p> <tt>Forall ?x ?y (?x[rdfs:subClassOf -> ?y] :- ?x ## ?y]) ))</tt>
</p>
</td></tr>
</table>
<p>The following theorem shows how checking RIF-Simple-entailment of combinations can be reduced to checking entailment of RIF conditions by using the embeddings of RDF graphs defined above.
</p><p><b>Theorem</b> A list-free <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> C=<<i>R</i>, <i>R<sup>Simple</sup></i>,{<i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i>}> <a href="#def-simple-entails" title="">RIF-Simple-entails</a> a <a href="#def-generalized-rdf-graph" title="">generalized RDF graph</a> <i>T</i> if and only if merge({<i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> tr<sub>Q</sub>(<i>T</i>);
C <a href="#def-simple-entails" title="">RIF-Simple-entails</a> a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a> φ if and only if merge({<i>R</i>, <i>R<sup>Simple</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>}) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> φ.
</p>
<blockquote> <span id="proof-simple-entailment"><b>Proof.</b></span> We prove both directions through contraposition. We first consider condition formulas (the second part of the theorem), after which we consider graphs (the first part of the theorem). <br />
In the proof we abbreviate merge({<i>R</i>, <i>R<sup>Simple</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) with R'.
<br />
<br />
(=>) Assume R' does not entail φ. This means there is some semantic multi-structure <i><b>Î</b></i> that is a model of R', but not of φ.
Consider the pair (<i><b>Î</b></i>, I), where I is the interpretation defined as follows:
<ul><li> IR is <i><b>D</b></i><sub>ind</sub>,
</li><li> IP is the set of all <tt>k</tt> in <i><b>D</b></i><sub>ind</sub> such that there exist some <tt>a</tt>, <tt>b</tt> in <i><b>D</b></i><sub>ind</sub> and <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>a</tt>)(<tt>k</tt>,<tt>b</tt>))=<b>t</b>,
</li><li> LV is the union of the value spaces of all considered datatypes,
</li><li> IEXT(<tt>k</tt>) is the set of all pairs (<tt>a</tt>, <tt>b</tt>), with <tt>a</tt>, <tt>b</tt>, and <tt>k</tt> in <i><b>D</b></i><sub>ind</sub>, such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>a</tt>)(<tt>k</tt>,<tt>b</tt>))=<b>t</b>,
</li><li> IS(<tt>i</tt>) is <i><b>I</b></i><sub>C</sub>(<tt><i></tt>), for every absolute IRI <tt>i</tt> in <i>V<sub>U</sub></i>, and
</li><li> IL((<tt>s</tt>, <tt>d</tt>)) is <i><b>I</b></i><sub>C</sub>(tr(<tt>"s"^^d</tt>)), for every typed literal (<tt>s</tt>, <tt>d</tt>) in <i>V<sub>TL</sub></i>.
</li></ul>
Clearly, (<i><b>Î</b></i>, I) is a <a href="#def-common-rif-rdf-interpretation" title="">common-RIF-RDF-interpretation</a>: conditions 1-6 in the definition are satisfied by construction of I and conditions 7 and 8 are satisfied by condition 4 and by the fact that <i><b>Î</b></i> is a model of <i>R<sup>Simple</sup></i>.
<br />
<br />
Consider a graph <i>S<sub>i</sub></i> in <i>{S<sub>1</sub>,...,S<sub>n</sub>}</i>. Let <i>x<sub>1</sub>,..., x<sub>m</sub></i> be the blank nodes in <i>S<sub>i</sub></i> and let <i>u<sub>1</sub>,..., u<sub>m</sub></i> be the new IRIs that were obtained from the variables <i>?x<sub>1</sub>,..., ?x<sub>m</sub></i> through the skolemization in tr<sub>R</sub>(<i>S<sub>i</sub></i>), i.e., <i>u<sub>i</sub></i>=sk(<i>?x<sub>i</sub></i>). Now, let A be a mapping from blank nodes to elements in <i><b>D</b></i><sub>ind</sub> such that A(<i>x<sub>j</sub></i>)=<i><b>I</b></i><sub>C</sub>(<i>u<sub>j</sub></i>) for every blank node <i>x<sub>j</sub></i> in <i>S<sub>i</sub></i>. From the fact that <i><b>I</b></i> is a model of tr<sub>R</sub>(<i>S<sub>i</sub></i>) and by construction of I it follows that [I+A] <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#unlabel" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#unlabel">satisfies</a> <i>S<sub>i</sub></i> (see <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#unlabel" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#unlabel">Section 1.5</a> of [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>])), and so I satisfies <i>S<sub>i</sub></i>.
<br />
<br />
We have that <i><b>Î</b></i> is a model of <i>R</i>, by assumption. So, (<i><b>Î</b></i>, I) satisfies C. Again, by assumption, <i><b>I</b></i> is not a model of φ. Therefore, C does not entail φ.
<br />
<br />
Assume now that R' does not entail tr<sub>Q</sub>(<i>T</i>), which means there is a semantic multi-structure <i><b>Î</b></i> that is a model of R', but not of tr<sub>Q</sub>(<i>T</i>). The common-RIF-RDF-interpretation (<i><b>Î</b></i>, I) is obtained in the same way as above, and so it satisfies C.
<br /><br />
We proceed by contradiction. Assume I satisfies <i>T</i>. This means there is some mapping A from the blank nodes <i>x<sub>1</sub>,...,x<sub>m</sub></i> in <i>T</i> to objects in <i><b>D</b></i><sub>ind</sub> such that [I+A] satisfies <i>T</i>.
Consider now the semantic multi-structure <i><b>Î*</b></i>, which is the same as <i><b>Î</b></i>, with the exception of the mapping <i><b>I*</b></i><sub>V</sub> on the variables <i>?x<sub>1</sub>,...,?x<sub>m</sub></i>, which is defined as follows: <i><b>Î*</b></i><sub>V</sub>(<i>?x<sub>j</sub></i>)=A(<i>x<sub>j</sub></i>) for each blank node <i>x<sub>j</sub></i> in <i>S</i>. By construction of I and since [I+A] satisfies <i>T</i> we can conclude that <i><b>I*</b></i> is a model of <tt>And(</tt>tr(<tt>t<sub>1</sub></tt>)... tr(<tt>t<sub>m</sub></tt>)<tt>)</tt>, and so <i><b>I</b></i> is a model of tr<sub>Q</sub>(<i>T</i>), violating the assumption that it is not. Therefore, (<i><b>Î</b></i>, I) does not satisfy <i>T</i> and C does not entail <i>T</i>.
<br />
<br />
(<=) Assume C does not Simple-entail φ. This means there is some common-RIF-RDF-interpretation (<i><b>Î</b></i>, I) that satisfies C such that <i><b>I</b></i> is not a model of φ.
<br />
<br />
Consider the semantic multi-structure <i><b>Î'</b></i>, which is like <i><b>Î</b></i>, except for the mapping <i><b>I'</b></i><sub>C</sub> on the new IRIs that were introduced by the skolemization mapping sk(). The mapping of these new IRIs is defined as follows:<br />
For each graph <i>S<sub>i</sub></i> in <i>{S<sub>1</sub>,...,S<sub>n</sub>}</i>, let <i>x<sub>1</sub>,..., x<sub>m</sub></i> be the blank nodes in <i>S<sub>i</sub></i> and let <i>u<sub>1</sub>,..., u<sub>m</sub></i> be the new IRIs that were obtained from the variables <i>?x<sub>1</sub>,..., ?x<sub>m</sub></i> through the skolemization in tr<sub>R</sub>(<i>S<sub>i</sub></i>), i.e., <i>u<sub>j</sub></i>=sk(<i>?x<sub>j</sub></i>). Now, since I satisfies <i>S<sub>i</sub></i>, there must be a mapping A from blank nodes to elements in <i><b>D</b></i><sub>ind</sub> such that [I+A] satisfies <i>S<sub>i</sub></i>. We define <i><b>I'</b></i><sub>C</sub>(<i>u<sub>j</sub></i>)=A(<i>x<sub>j</sub></i>) for every blank node <i>x<sub>j</sub></i> in <i>S<sub>i</sub></i>.
<br />
<br />
By assumption, <i><b>Î'</b></i> is a model of <i>R</i> (recall that <i><b>Î'</b></i> differs from <i><b>Î</b></i> only on the new IRIs, which are not in <i>R</i>). Clearly, <i><b>I'</b></i> is also a model of <i>R<sup>Simple</sup></i>, by conditions 7, 8, and 4 in the definition of <a href="#def-common-rif-rdf-interpretation" title="">common-RIF-RDF-interpretation</a>.
From the fact that I satisfies <i>S<sub>i</sub></i> and by construction of <i><b>I'</b></i> it follows that <i><b>I'</b></i> is a model of tr<sub>R</sub>(<i>S<sub>i</sub></i>). So, <i><b>I'</b></i> is a model of R'. Since <i><b>I</b></i> is not a model of φ and φ does not contain any of the new IRIs, <i><b>I'</b></i> is not the model of φ. Therefore, R' does not entail φ.
<br />
<br />
Assume now that C does not entail <i>T</i>, which means there is a common-RIF-RDF-interpretation (<i><b>Î</b></i>, I) that satisfies C, but I does not satisfy <i>T</i>. We obtain <i><b>I'</b></i> from <i><b>I</b></i> in the same way as above, and so it satisfies R'. It can be shown analogous to the (=>) direction that if <i><b>I'</b></i> is a model of tr<sub>Q</sub>(<i>T</i>), then there is a blank node mapping A such that [I+A] satisfies <i>T</i>, and thus I satisfies <i>T</i>, violating the assumption that it does not. Therefore, <i><b>I'</b></i> is not a model of tr<sub>Q</sub>(<i>T</i>) and thus R' does not entail tr<sub>Q</sub>(<i>T</i>). ☐
</blockquote>
<p><b>Theorem</b> A list-free <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> <<i>R</i>,{<i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i>}> is <a href="#def-rif-rdf-satisfies" title="">satisfiable</a> iff there is a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-semantic-multistruct" title="BLD">semantic multi-structure</a> <i><b>Î</b></i> that is a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-model-formula" title="BLD">model</a> of merge({<i>R</i>, <i>R<sup>Simple</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}).
</p>
<blockquote> <b>Proof.</b> The theorem follows immediately from the previous theorem and the observation that a combination (respectively, RIF document) is satisfiable (respectively, has a model) if and only if it does not entail the condition formula <tt>"a"="b"</tt>. ☐
</blockquote>
<a id="Embedding_RDF_Entailment" name="Embedding_RDF_Entailment"></a><h4> <span class="mw-headline">9.1.4 Embedding RDF Entailment </span></h4>
<p>We axiomatize the semantics of the RDF Vocabulary using the following RIF rules.
</p><p>To finitely embed RDF entailment, we need to consider a subset of the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDF_axiomatic_triples" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDF_axiomatic_triples">RDF axiomatic triples</a>. Given a combination C, the <i>context</i> of C includes C and its vicinity (i.e., all graphs/formulas considered for entailment checking). The set of <i>RDF finite-axiomatic triples</i> is the smallest set such that:
</p>
<ul><li> every RDF axiomatic triple not of the form <tt>rdf:_<i>i</i> rdf:type rdf:Property</tt> is an RDF finite-axiomatic triple, where <tt><i>i</i></tt> is a positive integer,
</li><li> one triple <tt>rdf:_<i>m</i> rdf:type rdf:Property</tt>, for some positive integer <tt><i>m</i></tt> such that <tt>rdf:_<i>m</i></tt> does not occur in the context of C, is an RDF finite-axiomatic triple, and
</li><li> if <tt>rdf:_<i>j</i></tt> occurs in the context of C, for some positive integer <tt><i>j</i></tt>, then <tt>rdf:_<i>j</i> rdf:type rdf:Property</tt> is an RDF finite-axiomatic triple.
</li></ul>
<p>We assume that none of unary predicate symbols <tt>ex:wellxml</tt> and <tt>ex:illxml</tt> and no datatypes beyond those found in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>] are used in the context of the given combination and <tt>pred:is-literal-anyURI ... pred:is-literal-XMLLiteral</tt> are the positive guard predicates defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p>
<table border="1">
<tr valign="top">
<td><em>R<sup>RDF</sup></em></td><td>=</td><td>merge ((<em>R<sup>Simple</sup>)</em> union <br />
<p>((<tt></tt>tr(<tt>s p o .</tt>)) for every RDF finite-axiomatic triple <tt>s p o .</tt>) union<br />
((<tt>ex:illxml(</tt>tr(<tt>"s"^^rdf:XMLLiteral</tt>)<tt>)</tt>) for every non-<a href="#def-well-typed-literal" title="">well-typed literal</a> of the form (<tt>s</tt>, <tt>rdf:XMLLiteral</tt>) in <i>V<sub>TL</sub></i>) union<br />
((<tt>ex:wellxml(</tt>tr(<tt>"s"^^rdf:XMLLiteral</tt>)<tt>)</tt>) for every <a href="#def-well-typed-literal" title="">well-typed literal</a> of the form (<tt>s</tt>, <tt>rdf:XMLLiteral</tt>) in <i>V<sub>TL</sub></i>) union<br />(<br />
<tt>Forall ?x (?x[rdf:type -> rdf:Property] :- Exists ?y ?z (?y[?x -> ?z]))</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdf:type -> rdf:XMLLiteral] :- ex:wellxml(?x))</tt>,<br />
</p><p> <tt>Forall ?x (rif:error :- And(?x[rdf:type -> rdf:XMLLiteral] ex:illxml(?x)))</tt>,<br />
</p><p> <tt>Forall ?x (rif:error :- And(ex:illxml(?x) Or(pred:is-literal-anyURI(?x) ... pred:is-literal-XMLLiteral(?x))))</tt><br />)
</p>
</td></tr>
</table>
<p>Here, inconsistencies may occur if non-well-typed XML literals, axiomatized using the <tt>ex:illxml</tt> predicate, are in the class extension of <tt>rdf:XMLLiteral</tt>. If this situation occurs, <tt>rif:error</tt> is derived, which signifies an inconsistency in the combination.
</p><p><b>Theorem</b> An RIF-RDF-satisfiable list-free <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> C=<<i>R</i>,{<i>S<sub>1</sub>,...,S<sub>n</sub></i>}> <a href="#def-rdf-entails" title="">RIF-RDF-entails</a> a <a href="#def-generalized-rdf-graph" title="">generalized RDF graph</a> <i>T</i> iff merge({<i>R<sup>RDF</sup></i>, <i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> tr<sub>Q</sub>(<i>T</i>).
C <a href="#def-rdf-entails" title="">RIF-RDF-entails</a> a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a> φ iff merge({<i>R<sup>RDF</sup></i>, <i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> φ.
</p>
<blockquote> <span id="proof-rdf-entailment"><b>Proof.</b></span>
In the proof we abbreviate merge({<i>R<sup>RDF</sup></i>, <i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) with R'.
<br />
The proof is obtained from the <a href="#proof-simple-entailment" title="">proof of correspondence for Simple entailment</a> in the previous section with the following modifications: (*) in the (=>) direction we additionally need to ensure that <i><b>I</b></i> does not satisfy <tt>rif:error</tt>, extend I to ensure it satisfies the RDF axiomatic triples and show that I is an RDF-interpretation, and (**) in the (<=) direction we need to slightly extend the definition of <i><b>I'</b></i> to account for <tt>ex:wellxml</tt> and <tt>ex:illxml</tt>, and show that <i><b>I'</b></i> is a model of <i>R<sup>RDF</sup></i>.
<br />
<br />
(*) We assume that, for every non-well-typed literal of the form (<tt>s</tt>, <tt>rdf:XMLLiteral</tt>) in <i>V<sub>TL</sub></i>, <i><b>I</b></i><sub>C</sub>(tr(<tt>"s"^^rdf:XMLLiteral</tt>)) is not in the value space of any of the considered datatypes and tr(<tt>"s"^^rdf:XMLLiteral</tt>)<tt>[rdf:type -> rdf:XMLLiteral]</tt> is not satisfied in <i><b>I</b></i>. Since C is RIF-RDF-satisfiable, one can verify that this does not compromise satisfaction of R'. Finally, we may assume, without loss of generality, that <i><b>I</b></i> does not satisfy <tt>rif:error</tt>. See also the proof of the following theorem.
<br />
<br />
For any positive integer <tt><i>j</i></tt> such that <tt>rdf:_<i>j</i></tt> does not occur in the context of C, I and <i><b>I</b></i> are extended such that IS(<tt>rdf:_<i>j</i></tt>)=<i><b>I</b></i><sub>C</sub>(<tt>rdf:_<i>j</i></tt>)=<i><b>I</b></i><sub>C</sub>(<tt>rdf:_<i>m</i></tt>) (see the definition of finite-axiomatic triples above for the definition of <tt><i>m</i></tt>). Clearly, this does not affect satisfaction of R' or non-satisfaction of φ and tr<sub>Q</sub>(<i>T</i>).
<br />
<br />
To show that I is an RDF-interpretation, we need to show that I satisfies the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDF_axiomatic_triples" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDF_axiomatic_triples">RDF axiomatic triples</a> and the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsemcond1" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsemcond1">RDF semantic conditions</a>.
<br />
Satisfaction of the axiomatic triples follows immediately from the inclusion of tr(<tt>t</tt>) in <i>R<sup>RDF</sup></i> for every RDF finite-axiomatic triple <tt>t</tt>, the fact that <i><b>I</b></i> is a model of <i>R<sup>RDF</sup></i>, and construction of I. Consider the three <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsemcond1" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfsemcond1">RDF semantic conditions</a>:
<br />
<table border="1" summary="RDF semantic conditions">
<tr>
<td>1</td>
<td>x is
in IP if and only if <x, I(<tt>rdf:Property</tt>)> is in IEXT(I(<tt>rdf:type</tt>))</td>
</tr>
<tr>
<td>2</td>
<td>If <tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt> is in <em>V</em> and xxx is a well-typed XML literal string, then <br />
<p>(a) IL(<tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>) is the XML <span>value</span> of xxx;<br />
(b) IL(<tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>) is in LV;<br />
(c) IEXT(I(<tt>rdf:type</tt>)) contains <IL(<tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>), I(<tt>rdf:XMLLiteral</tt>)>
</p>
</td>
</tr>
<tr>
<td>3</td>
<td>If <tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt> is in <em>V</em> and xxx is an ill-typed XML literal string, then<br />
<p>(a) IL(<tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>) is not in LV;<br />
</p>
(b) IEXT(I(<tt>rdf:type</tt>)) does not contain <IL(<tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>), I(<tt>rdf:XMLLiteral</tt>)>. </td>
</tr>
</table>
<p>Satisfaction of condition 1 follows from satisfaction of the first rule in <i>R<sup>RDF</sup></i> in <i><b>I</b></i> and construction of I; specifically, the second bullet in the definition.<br />
Consider a well-typed XML literal <tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>. By the definition of satisfaction in RIF BLD, <i><b>I</b></i><sub>C</sub>(<tt>"</tt>xxx<tt>"^^rdf:XMLLiteral</tt>) is the XML value of xxx (condition 2a), and is clearly in LV (condition 2b), by definition of I. Condition 2c is satisfied by satisfaction of the second rule in <i>R<sup>RDF</sup></i> in <i><b>I</b></i>.<br />
Satisfaction of 3a and 3b follows straightforwardly from our assumptions on <i><b>I</b></i>. This establishes the fact that I is an RDF-interpretation.
<br />
<br />
(**) Recall that, by assumption, <tt>ex:wellxml</tt> and <tt>ex:illxml</tt> are not used in <i>R</i>. Therefore, changing satisfaction of atomic formulas involving <tt>ex:wellxml</tt> and <tt>ex:illxml</tt> does not affect satisfaction of <i>R</i>. We assume that <i><b>I'</b></i><sub>C</sub>(<tt>ex:wellxml</tt>)=<tt>k</tt> and <i><b>I'</b></i><sub>C</sub>(<tt>ex:illxml</tt>)=<tt>l</tt> are distinct unique elements, i.e., no other constants is mapped to <tt>k</tt> and <tt>l</tt>.<br />
We define <i><b>I'</b></i><sub>F</sub>(<tt>k</tt>) and <i><b>I'</b></i><sub>F</sub>(<tt>l</tt>) as follows:
For every typed literal of the form (<tt>s</tt>, <tt>rdf:XMLLiteral</tt>) such that <i><b>I'</b></i><sub>C</sub>(tr(<tt>s^^rdf:XMLLiteral</tt>))=<tt>u</tt>, if (<tt>s</tt>, <tt>rdf:XMLLiteral</tt>) is well-typed, <i><b>I</b></i><sub>truth</sub>(<i><b>I'</b></i><sub>F</sub>(<tt>k</tt>)(<tt>u</tt>))=<b>t</b> and <i><b>I</b></i><sub>truth</sub>(<i><b>I'</b></i><sub>F</sub>(<tt>l</tt>)(<tt>u</tt>))=<b>f</b>, otherwise <i><b>I</b></i><sub>truth</sub>(<i><b>I'</b></i><sub>F</sub>(<tt>k</tt>)(<tt>u</tt>))=<b>f</b> and <i><b>I</b></i><sub>truth</sub>(<i><b>I'</b></i><sub>F</sub>(<tt>l</tt>)(<tt>u</tt>))=<b>t</b>; <i><b>I'</b></i><sub>truth</sub>(<i><b>I'</b></i><sub>F</sub>(<tt>k</tt>)(v))=<i><b>I</b></i><sub>truth</sub>(<i><b>I'</b></i><sub>F</sub>(<tt>l</tt>)(<tt>v</tt>))=<b>f</b> for every other object <tt>v</tt> in <i><b>D</b></i><sub>ind</sub>.
</p><p>Consider <i>R<sup>RDF</sup></i>. Satisfaction of <i>R<sup>Simple</sup></i> was established in the proof in the previous section. Satisfaction of the facts corresponding to the RDF axiomatic triples in <i><b>I'</b></i> follows immediately from the definition of <a href="#def-common-rif-rdf-interpretation" title="">common-RIF-RDF-interpretation</a> and the fact that I is an RDF-interpretation, and thus satisfies all RDF axiomatic triples. <br />
Satisfaction of the <tt>ex:wellxml</tt> and <tt>ex:illxml</tt> facts in <i>R<sup>RDF</sup></i> follows immediately from the definition of <i><b>I'</b></i>. Finally, satisfaction of the rules in <i>R<sup>RDF</sup></i> follow straightforwardly from the RDF semantic conditions 1, 2, and 3. This establishes the fact that <i><b>I'</b></i> is a model of <i>R<sup>RDF</sup></i>. ☐
</p>
</blockquote>
<p><br />
<b>Theorem</b> A list-free <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> <<i>R</i>,{<i>S<sub>1</sub>,...,S<sub>n</sub></i>}> is <a href="#def-rdf-satisfiable" title="">RIF-RDF-satisfiable</a> iff merge({<i>R<sup>RDF</sup></i>, <i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) does not <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entail</a> <tt>rif:error</tt>.
</p>
<blockquote> <b>Proof.</b> Recall that we assume <tt>rif:error</tt> does not occur in <i>R</i>. If <<i>R</i>,{<i>S<sub>1</sub>,...,S<sub>n</sub></i>}> is not RIF-RDF-satisfiable, then either merge({<i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) is not consistent, or condition 3a or 3b (see previous proof) is violated. In either case, <tt>rif:error</tt> is entailed.
If <tt>rif:error</tt> is entailed, either merge({<i>R<sup>RDF</sup></i>, <i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) is inconsistent, which means merge({<i>R</i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) is not consistent and thus <<i>R</i>,{<i>S<sub>1</sub>,...,S<sub>n</sub></i>}> is not RIF-RDF-satisfiable, or the body of the second or third rule in <i>R<sup>RDF</sup></i> is satisfied in every model, which means either condition 3a or 3b is violated, and so <<i>R</i>,{<i>S<sub>1</sub>,...,S<sub>n</sub></i>}> is not RIF-RDF-satisfiable. ☐
</blockquote>
<a id="Embedding_RDFS_Entailment" name="Embedding_RDFS_Entailment"></a><h4> <span class="mw-headline">9.1.5 Embedding RDFS Entailment </span></h4>
<p>We axiomatize the semantics of the RDF(S) Vocabulary using the following RIF rules.
</p><p>Similar to the RDF case, the set of <i>RDFS finite-axiomatic triples</i> is the smallest set such that:
</p>
<ul><li> every <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFS_axiomatic_triples" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFS_axiomatic_triples">RDFS axiomatic triple</a> not of the form <tt>rdf:_<i>i</i> ... ...</tt>, where <tt><i>i</i></tt> is a positive integer, is an RDFS finite-axiomatic triple,
</li><li> the triples <tt>rdf:_<i>m</i> rdf:type rdfs:ContainerMembershipProperty</tt>, <tt>rdf:_<i>m</i> rdfs:domain rdfs:Resource</tt>, and <tt>rdf:_<i>m</i> rdfs:range rdfs:Resource</tt>, for some positive integer <tt><i>m</i></tt> such that <tt>rdf:_<i>m</i></tt> does not occur in the context of C, are RDFS finite-axiomatic triples, and
</li><li> if <tt>rdf:_<i>j</i></tt> occurs in the context of the combination C, for some positive integer <tt><i>j</i></tt>, then <tt>rdf:_<i>j</i> rdf:type rdfs:ContainerMembershipProperty</tt>, <tt>rdf:_<i>j</i> rdfs:domain rdfs:Resource</tt>, and <tt>rdf:_<i>j</i> rdfs:range rdfs:Resource</tt> are RDFS finite-axiomatic triples.
</li></ul>
<p>We assume that the unary predicate symbol <tt>ex:welllit</tt> is not used in the context of the given combination.
</p>
<table border="1">
<tr valign="top">
<td><em>R<sup>RDFS</sup></em></td><td>=</td><td>merge((<em>R<sup>RDF</sup></em>) union<br />
<p>((<tt></tt>tr(<tt>s p o .</tt>) for every RDFS finite-axiomatic triple <tt>s p o .</tt>) union<br />
((<tt>ex:welllit("s"^^u)</tt>) for every well-typed literal (<tt>s</tt>,<tt>u</tt>) in <i>V<sub>TL</sub></i>) union<br />
((sk(tr(<tt>s</tt>))<tt>[rdf:type -> rdfs:Resource</tt>) for every name or blank node <tt>s</tt>) union<br />
(<br />
<tt>Forall ?x (?x[rdf:type -> rdfs:Resource] :- Exists ?y ?z (?x[?y -> ?z]))</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdf:type -> rdfs:Resource] :- Exists ?y ?z (?z[?y -> ?x]))</tt>,<br />
</p><p> <tt>Forall ?u ?v ?x ?y (?u[rdf:type -> ?y] :- And(?x[rdfs:domain -> ?y] ?u[?x -> ?v]))</tt>,<br />
</p><p> <tt>Forall ?u ?v ?x ?y (?v[rdf:type -> ?y] :- And(?x[rdfs:range -> ?y] ?u[?x -> ?v]))</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdfs:subPropertyOf -> ?x] :- ?x[rdf:type -> rdf:Property])</tt>,<br />
</p><p> <tt>Forall ?x ?y ?z (?x[rdfs:subPropertyOf -> ?z] :- And (?x[rdfs:subPropertyOf -> ?y] ?y[rdfs:subPropertyOf -> ?z]))</tt>,<br />
</p><p> <tt>Forall ?x ?y ?z1 ?z2 (?z1[?y -> ?z2] :- And (?x[rdfs:subPropertyOf -> ?y] ?z1[?x -> ?z2]))</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdfs:subClassOf -> rdfs:Resource] :- ?x[rdf:type -> rdfs:Class])</tt>,<br />
</p><p> <tt>Forall ?x ?y ?z (?z[rdf:type -> ?y] :- And (?x[rdfs:subClassOf -> ?y] ?z[rdf:type -> ?x]))</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdfs:subClassOf -> ?x] :- ?x[rdf:type -> rdfs:Class])</tt>,<br />
</p><p> <tt>Forall ?x ?y ?z (?x[rdfs:subClassOf -> ?z] :- And (?x[rdfs:subClassOf -> ?y] ?y[rdfs:subClassOf -> ?z]))</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdfs:subPropertyOf -> rdfs:member] :- ?x[rdf:type -> rdfs:ContainerMembershipProperty])</tt>,<br />
</p><p> <tt>Forall ?x (?x[rdfs:subClassOf -> rdfs:Literal] :- ?x[rdf:type -> rdfs:Datatype])</tt>,<br />
</p><p> <tt>Forall ?x (rif:error :- And(?x[rdf:type -> rdfs:Literal] ex:illxml(?x)))</tt><br />
</p><p> <tt>Forall ?x (?x[rdf:type -> rdfs:Literal] :- ex:welllit(?x))</tt><br />
</p>
)</td></tr>
</table>
<p>In the following theorems it is assumed that, in combinations C=<<i>R</i>,{<i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i>}>, <i>R</i> does not have mentions of <tt>rdfs:Resource</tt>, <i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i> do not have mentions of <tt>rdfs:Resource</tt> beyond triples of the form <tt>xxx rdf:type rdfs:Resource</tt>, and entailed graphs <i>T</i> and formulas φ do not have mentions of <tt>rdfs:Resource</tt>.
</p><p><b>Theorem</b> A RIF-RDFS-satisfiable list-free <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> C=<<i>R</i>,{<i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i>}> <a href="#def-rdfs-entails" title="">RIF-RDFS-entails</a> a <a href="#def-generalized-rdf-graph" title="">generalized RDF graph</a> <i>T</i> if and only if merge({<i>R</i>, <i>R<sup>RDFS</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> tr<sub>Q</sub>(<i>T</i>);
C <a href="#def-rdfs-entails" title="">RIF-RDFS-entails</a> a <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-condition" title="BLD">condition formula</a> φ if and only if merge({<i>R</i>, <i>R<sup>RDFS</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> φ.
</p>
<blockquote> <span id="proof-rdfs-entailment"><b>Proof.</b></span>
In the proof we abbreviate merge({<i>R</i>, <i>R<sup>RDFS</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) with R'.
<br />
The proof is then obtained from the <a href="#proof-rdf-entailment" title="">proof of correspondence for RDF entailment</a> in the previous section with the following modifications: (*) in the (=>) direction we need to slightly amend the definition of I to account for <tt>rdfs:Literal</tt> and <tt>rdfs:Resource</tt>, and show that I is an RDFS-interpretation and (**) in the (<=) direction we need to show that <i><b>I'</b></i> is a model of <i>R<sup>RDFS</sup></i>.
<br />
<br />
(*) In addition to the earlier assumptions about <i><b>I</b></i>, we assume that tr(<tt>"s"^^rdf:XMLLiteral</tt>)<tt>[rdf:type -> rdfs:Literal]</tt> is not satisfied in <i><b>I</b></i>, for any typed literal of the form (<tt>s</tt>, <tt>rdf:XMLLiteral</tt>) in <i>V<sub>TL</sub></i>.
We amend the definition of I by changing the definitions of LV and IEXT to the following:
<ul><li> LV is (union of the value spaces of all considered datatypes) union (set of all <tt>k</tt> in <i><b>D</b></i><sub>ind</sub> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C</sub>(<tt>rdfs:Literal</tt>)))=<b>t</b>).
</li></ul>
Clearly, this change does not affect satisfaction of the RDF axiomatic triples and the semantic conditions 1 and 2. To see that condition 3 is still satisfied, consider some non-well-typed XML literal <tt>t</tt>. By assumption, tr(<tt>t</tt>)<tt>[rdf:type -> rdfs:Literal]</tt> is not satisfied and thus IL(<tt>t</tt>) is not in ICEXT(<tt>rdfs:Literal</tt>). And, since IL(<tt>t</tt>) is not in the value space of any considered datatype, it is not in LV.
<ul><li> For every <tt>k</tt>, <tt>a</tt>, and <tt>b</tt> ∈ <i><b>D</b></i><sub>ind</sub> such that <tt>k</tt>≠<i><b>I</b></i><sub>C</sub>(<tt>rdf:type</tt>) or <tt>b</tt>≠<i><b>I</b></i><sub>C</sub>(<tt>rdfs:Resource</tt>), (<tt>a</tt>, <tt>b</tt>) ∈ IEXT(<tt>k</tt>) iff <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>a</tt>)(<tt>k</tt>,<tt>b</tt>))=<b>t</b>;
</li><li> for every <tt>a</tt> ∈ <i><b>D</b></i><sub>ind</sub>, (<tt>a</tt>, <i><b>I</b></i><sub>C</sub>(<tt>rdfs:Resource</tt>)) ∈ IEXT(<i><b>I</b></i><sub>C</sub>(<tt>rdf:type</tt>)).
</li></ul>
Clearly, this change does not affect satisfaction of the RDF axiomatic triples and semantic conditions, nor does it affect satisfaction of the graphs <i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i>. It also does not affect satisfaction of the entailed graph or condition, since (by assumption) this does not contain a mention of <tt>rdfs:Resource</tt>.
To show that I is an RDFS-interpretation, we need to show that I satisfies the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFS_axiomatic_triples" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFS_axiomatic_triples">RDFS axiomatic triples</a> and the <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfssemcond1" title="http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfssemcond1">RDFS semantic conditions</a>.
<br />
Satisfaction of the axiomatic triples follows immediately from the inclusion of tr(<tt>t</tt>) in <i>R<sup>RDFS</sup></i> for every RDFS finite-axiomatic triple <tt>t</tt>, the fact that <i><b>I</b></i> is a model of <i>R<sup>RDFS</sup></i>, construction of I, and the extension of I in the <a href="#proof-rdf-entailment" title="SWC">proof of the RDF entailment embedding</a>. Consider the RDFS semantic conditions:
<br />
<table border="1" summary="RDFS semantic conditions">
<tr><td>1</td>
<td>(a) x is in ICEXT(y) if and only if <x,y> is in IEXT(I(<tt>rdf:type</tt>))<br />(b) IC = ICEXT(I(<tt>rdfs:Class</tt>))<br />(c) IR = ICEXT(I(<tt>rdfs:Resource</tt>))<br />(d) LV = ICEXT(I(<tt>rdfs:Literal</tt>))</td>
</tr>
<tr> <td>2</td>
<td>If <x,y> is in IEXT(I(<tt>rdfs:domain</tt>)) and <u,v> is in IEXT(x) then u is in ICEXT(y)</td>
</tr>
<tr> <td>3</td>
<td>If <x,y> is in IEXT(I(<tt>rdfs:range</tt>)) and <u,v> is in IEXT(x) then v is in ICEXT(y)</td>
</tr>
<tr> <td>4</td>
<td>IEXT(I(<tt>rdfs:subPropertyOf</tt>)) is transitive and reflexive on IP</td>
</tr>
<tr> <td>5</td>
<td>If <x,y> is in IEXT(I(<tt>rdfs:subPropertyOf</tt>)) then x and y are in IP and IEXT(x) is a subset of IEXT(y)
</td>
</tr>
<tr> <td>6</td>
<td>If x is in IC then <x, I(<tt>rdfs:Resource</tt>)> is in IEXT(I(<tt>rdfs:subClassOf</tt>))</td>
</tr>
<tr> <td>7</td>
<td>If <x,y> is in IEXT(I(<tt>rdfs:subClassOf</tt>)) then x and y are in IC and ICEXT(x) is a subset of ICEXT(y)</td>
</tr>
<tr> <td>8</td>
<td>IEXT(I(<tt>rdfs:subClassOf</tt>)) is transitive and reflexive on IC</td>
</tr>
<tr> <td>9</td>
<td>If x is in ICEXT(I(<tt>rdfs:ContainerMembershipProperty</tt>)) then:<br />
< x, I(<tt>rdfs:member</tt>)> is in IEXT(I(<tt>rdfs:subPropertyOf</tt>))</td>
</tr>
<tr> <td>10</td>
<td>If x is in ICEXT(I(<tt>rdfs:Datatype</tt>)) then <span><x, I(<tt>rdfs:Literal</tt>)> is in IEXT(I(<tt>rdfs:subClassOf</tt>))</span></td>
</tr>
</table>
<p>Conditions 1a and 1b are simply definitions of ICEXT and IC, respectively. By definition it is the case that every element <tt>k</tt> in <i><b>D</b></i><sub>ind</sub> is in ICEXT(I(<tt>rdfs:Resource</tt>)). Since IR=<i><b>D</b></i><sub>ind</sub>, it follows that IR = ICEXT(I(<tt>rdfs:Resource</tt>)), establishing 1c. Clearly, every object in ICEXT(I(<tt>rdfs:Literal</tt>)) is in LV, by definition. Consider any value <tt>k</tt> in LV. By definition, either <tt>k</tt> is in the value space of some considered datatype or <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C</sub>(<tt>rdfs:Literal</tt>)))=<b>t</b>. In the latter case, clearly <tt>k</tt> is in ICEXT(I(<tt>rdfs:Literal</tt>)). In the former case, <tt>k</tt> is in the value space of some datatype with some label <i>D</i>, and thus <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<i><b>I</b></i><sub>C</sub>(<tt>pred:is<i>D</i></tt>))(<tt>k</tt>))=<b>t</b>. By the last rule in <i>R<sup>RDFS</sup></i>, it must consequently be the case that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C</sub>(<tt>rdfs:Literal</tt>)))=<b>t</b>, and thus <tt>k</tt> is in ICEXT(I(<tt>rdfs:Literal</tt>)). This establishes satisfaction of condition 1d in I.
</p><p><br />
</p><p>Satisfaction in I of conditions 2 through 10 follows immediately from satisfaction in <i><b>I</b></i> of the 2nd through the 12th rule in the definition of <i>R<sup>RDFS</sup></i>.
</p><p>This establishes the fact that I is an RDFS-interpretation.
</p><p><br />
</p><p><br />
</p><p>(**) Consider <i>R<sup>RDFS</sup></i>. Satisfaction of <i>R<sup>RDF</sup></i> was established in the <a href="#proof-rdf-entailment" title="SWC">proof</a> in the previous section. Satisfaction of the facts corresponding to the RDFS axiomatic triples in <i><b>I'</b></i> follows immediately from the definition of <a href="#def-common-rif-rdf-interpretation" title="">common-RIF-RDF-interpretation</a> and the fact that I is an RDFS-interpretation, and thus satisfies all RDFS axiomatic triples. <br />
</p><p>Satisfaction of the 1st through the 12th rule in <i>R<sup>RDFS</sup></i> follow straightforwardly from the RDFS semantic conditions 1 through 10. Satisfaction of the 13th rule follows from the fact that, given an ill-typed XML literal <tt>t</tt>, IL(<tt>t</tt>) is not in LV (by RDF semantic condition 3), ICEXT(<tt>rdfs:Literal</tt>)=LV, and the fact that the <tt>ex:illxml</tt> predicate is only true for ill-typed XML literals. Finally, satisfaction of the last rule in <i>R<sup>RDFS</sup></i> follows from the fact that ICEXT(<tt>rdfs:Literal</tt>)=LV, the definition of LV as a superset of the union of the value spaces of all datatypes, and the definition of the <tt>pred:is<i>D</i></tt> predicates. This establishes the fact that <i><b>I'</b></i> is a model of <i>R<sup>RDFS</sup></i>. ☐
</p>
</blockquote>
<p><br />
<b>Theorem</b> A list-free <a href="#def-rif-rdf-combination" title="">RIF-RDF combination</a> <<i>R</i>,{<i>S<sub>1</sub></i>,...,<i>S<sub>n</sub></i>}> is <a href="#def-rdfs-satisfiable" title="">RIF-RDFS-satisfiable</a> if and only if merge({<i>R</i>, <i>R<sup>RDFS</sup></i>, tr<sub>R</sub>(<i>S<sub>1</sub></i>), ..., tr<sub>R</sub>(<i>S<sub>n</sub></i>)}) does not entail <tt>rif:error</tt>.
</p>
<blockquote> <b>Proof.</b> The theorem follows immediately from the previous theorem and the observations in the proof of the second theorem in the previous section. ☐
</blockquote>
<a id="Embedding_RIF-OWL_2_RL_Combinations" name="Embedding_RIF-OWL_2_RL_Combinations"></a><h3> <span class="mw-headline">9.2 Embedding RIF-OWL 2 RL Combinations </span></h3>
<p>It is known that expressive Description Logic languages such as OWL 2 DL cannot be straightforwardly embedded into typical rules languages such as RIF BLD [<a href="#ref-rif-bld" title="">RIF-BLD</a>], because of features such as disjunction and negation.
</p><p>In this section we consider a subset of OWL 2 DL in RIF-OWL DL combinations, namely, the OWL 2 RL profile [<a href="#ref-owl2-profiles" title="">OWL2-Profiles</a>], and show how reasoning with RIF-OWL 2 RL combinations can be reduced to reasoning with RIF.
</p><p>The embedding of RIF-OWL 2 RL combinations is not defined for combinations that include infinite OWL ontologies.
</p><p>Since OWL 2 RL includes equality through <tt>ObjectMaxCardinality</tt> and <tt>DataMaxCardinality</tt> restrictions, as well as <tt>FunctionalObjectProperty</tt> <tt>UniverseFunctionalObjectProperty</tt>, <tt>SameIndividual</tt>, and <tt>HasKey</tt> axioms, and there is non-trivial interaction between such equality and the predicates in the RIF rules in the combination, embedding RIF-OWL 2 RL combinations into RIF requires equality. Therefore, the embedding presented in this appendix is not in RIF Core, even if the RIF document in the combination is. If the ontologies in the combination do not contain any of the mentioned constructs, the embedding is in Core. Also, it is well-known that adding equality to a rules language does not increase its expressiveness in the absence of function symbols: one can replace equality <tt>=</tt> with a new binary predicate symbol, and add rules for reflexivity and the principle of substitutivity (also called the replacement property).
</p>
<a id="Embedding_RIF_DL-document_formulas_into_RIF_BLD" name="Embedding_RIF_DL-document_formulas_into_RIF_BLD"></a><h4> <span class="mw-headline">9.2.1 Embedding RIF DL-document formulas into RIF BLD </span></h4>
<p>Recall that the semantics of frame formulas in <a href="#def-dl-document" title="">DL-document formulas</a> is different from the semantics of frame formulas in RIF documents.
Nonetheless, DL-document formulas can be embedded into RIF documents, by translating frame formulas to predicate formulas.
The mapping tr is the identity mapping on all RIF formulas, with the exception of frame formulas, as defined in the following table.
</p><p>In the table, the mapping tr' is
an injective function that maps constants to new constants, i.e., constants that are not used in the original document or its vicinity (i.e., imported, entailed or entailing formula). It "generates" a new constant from an existing one.
</p>
<table border="1" id="tab-rif-dl-rif-mapping">
<caption>Mapping RIF DL-document formulas to RIF documents.</caption>
<tr>
<th>RIF Construct</th>
<th>Mapping</th>
</tr>
<tr>
<td>Term <tt>t</tt></td>
<td>tr(<tt>t</tt>)=<tt>t</tt></td>
</tr>
<tr>
<td>Atomic formula φ that is not a frame formula</td>
<td>tr(φ)=φ</td>
</tr>
<tr>
<td><tt>a[b<sub>1</sub>->c<sub>1</sub> ... b<sub>n</sub>->c<sub>n</sub>]</tt>, with <tt>n</tt>≥2</td>
<td>tr(<tt>a[b<sub>1</sub>->c<sub>1</sub> ... b<sub>n</sub>->c<sub>n</sub>]</tt>)=<tt>And(</tt> tr(<tt>a[b<sub>1</sub>->c<sub>1</sub>]</tt>) ... tr(<tt>a[b<sub>n</sub>->c<sub>n</sub>]</tt>)<tt>)</tt></td>
</tr>
<tr>
<td><tt>a[b -> c]</tt>, where <tt>a</tt> and <tt>c</tt> are terms and <tt>b</tt> ≠ <tt>rdf:type</tt> is a constant</td>
<td>tr(<tt>a[b -> c]</tt>)=tr'(<tt>b</tt>)<tt>(a c)</tt></td>
</tr>
<tr>
<td><tt>a[rdf:type -> c]</tt>, where <tt>a</tt> is a term and <tt>c</tt> is a constant</td>
<td>tr(<tt>a[rdf:type -> c]</tt>)=tr'(<tt>c</tt>)<tt>(a)</tt></td>
</tr>
<tr>
<td><tt>a#c</tt>, where <tt>a</tt> is a term and <tt>c</tt> is a constant</td>
<td>tr(<tt>a#c</tt>)=tr'(<tt>c</tt>)<tt>(a)</tt></td>
</tr>
<tr>
<td><tt>b##c</tt>, where <tt>a,b</tt> are constants</td>
<td>tr(<tt>b##c</tt>) = <tt>Forall ?x (</tt>tr'(<tt>c</tt>)<tt>(?x) :- </tt>tr'(<tt>b</tt>)<tt>(?x))</tt></td>
</tr>
<tr>
<td><tt>Exists ?V1 ... ?Vn(φ)</tt></td>
<td>tr(<tt>Exists ?V1 ... ?Vn(φ)</tt>)=<tt>Exists ?V1 ... ?Vn(</tt>tr<tt>(φ))</tt></td>
</tr>
<tr>
<td><tt>And(φ<sub>1</sub> ... φ<sub>n</sub>)</tt></td>
<td>tr(<tt>And(φ<sub>1</sub> ... φ<sub>n</sub>)</tt>)=<tt>And(</tt>tr<tt>(φ<sub>1</sub>) ... </tt>tr<tt>(φ<sub>n</sub>))</tt></td>
</tr>
<tr>
<td><tt>Or(φ<sub>1</sub> ... φ<sub>n</sub>)</tt></td>
<td>tr(<tt>Or(φ<sub>1</sub> ... φ<sub>n</sub>)</tt>)=<tt>Or(</tt>tr<tt>(φ<sub>1</sub>) ... </tt>tr<tt>(φ<sub>n</sub>))</tt></td>
</tr>
<tr>
<td><tt>φ<sub>1</sub> :- φ<sub>2</sub></tt></td>
<td>tr(<tt>φ<sub>1</sub> :- φ<sub>2</sub></tt>)=<tt></tt>tr<tt>(φ<sub>1</sub>) :- </tt>tr<tt>(φ<sub>2</sub></tt>)</td>
</tr>
<tr>
<td><tt>Forall ?V1 ... ?Vn(φ)</tt></td>
<td>tr(<tt>Forall ?V1 ... ?Vn(φ)</tt>)=<tt>Forall ?V1 ... ?Vn(</tt>tr<tt>(φ))</tt></td>
</tr>
<tr>
<td><tt>Group(φ<sub>1</sub> ... φ<sub>n</sub>)</tt></td>
<td>tr(<tt>Group(φ<sub>1</sub> ... φ<sub>n</sub>)</tt>)=<tt>Group(</tt>tr<tt>(φ<sub>1</sub>) ... </tt>tr<tt>(φ<sub>n</sub>))</tt></td>
</tr>
<tr>
<td><tt>Document(<em>directive<sub>1</sub></em> ... <em>directive<sub>n</sub></em> Γ)</tt></td>
<td>tr(<tt>Document(<em>directive<sub>1</sub></em> ... <em>directive<sub>n</sub></em> Γ)</tt>)=<tt>Document(<em>directive<sub>1</sub></em> ... <em>directive<sub>n</sub></em> </tt>tr<tt>(Γ))</tt></td>
</tr>
</table>
<p>For the purpose of making statements about this embedding, we define a notion of entailment for DL-document formulas.
</p><p><b>Definition.</b> A <a href="#def-dl-document" title="">RIF-BLD DL-document formula</a> <i>R</i> <span id="def-dl-entails"><i><b>dl-entails</b></i></span> a <a href="#def-dl-condition" title="">DL-condition</a> φ if for every dl-semantic multi-structure <i><b>Î</b></i> that is a <a href="#def-dl-model" title="">model</a> of <i>R</i> it holds that <i>TVal</i><sub>Î</sub>(φ)=<b>t</b>. ☐
</p><p>The following lemma establishes faithfulness with respect to entailment of the embedding.
</p><p><span id="lem-dl-document"><b>RIF-BLD DL-document formula Lemma</b></span> A <a href="#def-dl-document" title="">RIF-BLD DL-document formula</a> <i>R</i> <a href="#def-dl-entails" title="">dl-entails</a> a <a href="#def-dl-condition" title="">DL-condition</a> φ if and only if tr(<i>R</i>) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> tr(φ).
</p>
<blockquote>
<span id="proof-lem-dl-document"><b>Proof.</b></span> We prove both directions by contraposition.
<br />
<br />
(=>) Assume tr(<i>R</i>) does not entail tr(φ). This means there is some semantic multi-structure <i><b>Î</b></i> that is a model of tr(R'), but <i><b>I</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>F</sub>,
<i><b>I</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>> is not a model of tr(φ).
<br />
Consider the dl-semantic multi-structure <i><b>Î*</b></i>, which is obtained from <i><b>Î</b></i> as follows: <i><b>I*</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I*</b></i><sub>C</sub>, <i><b>I*</b></i><sub>C'</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>F</sub>,
<i><b>I*</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I*</b></i><sub>sub</sub>, <i><b>I*</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>>, with <i><b>I*</b></i><sub>C'</sub>, <i><b>I*</b></i><sub>frame</sub>, <i><b>I*</b></i><sub>sub</sub>, and <i><b>I*</b></i><sub>isa</sub> defined as follows: Let <tt>t</tt> be an element in <i><b>D</b></i> such that <i><b>I</b></i><sub>truth</sub>(<tt>t</tt>)=<b>t</b> and let <tt>f</tt> in <i><b>D</b></i> be such that <i><b>I</b></i><sub>truth</sub>(<tt>f</tt>)=<b>f</b>.
<ul><li> for every constant <tt>c</tt>, with <tt>c'</tt>=tr'(<tt>c</tt>), <i><b>I*</b></i><sub>C'</sub>(<tt>c</tt>)=<i><b>I</b></i><sub>C</sub>(<tt>c'</tt>);
</li><li> for every constant <tt>c'</tt> used as unary predicate symbol in tr(<i>R</i>) or tr(φ) such that <tt>c'</tt>=tr'(<tt>c</tt>) for some constant <tt>c</tt>, and every object <tt>k</tt> in <i><b>D</b></i><sub>ind</sub>, <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<i><b>I</b></i><sub>C</sub>(<tt>c'</tt>))(<tt>k</tt>))=<b>t</b> iff <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)((<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>), <i><b>I</b></i><sub>C'</sub>(<tt>c</tt>))=<tt>t</tt>;
</li><li> for every constant <tt>b'</tt> used as binary predicate symbol in tr(<i>R</i>) or tr(φ) such that <tt>b'</tt>=tr'(<tt>b</tt>) for some constant <tt>b</tt>, and every pair (<tt>k, l</tt>) in <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub>, <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<i><b>I</b></i><sub>C</sub>(<tt>b'</tt>))(<tt>k</tt>,<tt>l</tt>))=<b>t</b> iff <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)((<i><b>I</b></i><sub>C'</sub>(<tt>b</tt>),<tt>l</tt>))=<tt>t</tt>,
</li><li> if <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)((<i>b<sub>1</sub></i>,...,<i>b<sub>n</sub></i>))=<tt>t</tt> and <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)((<i>c<sub>1</sub></i>,...,<i>c<sub>m</sub></i>))=<tt>t</tt> for any two finite bags (<i>b<sub>1</sub></i>,...,<i>b<sub>n</sub></i>) and (<i>c<sub>1</sub></i>,...,<i>c<sub>m</sub></i>), then <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)((<i>b<sub>1</sub></i>,...,<i>b<sub>n</sub></i>,<i>c<sub>1</sub></i>,...,<i>c<sub>m</sub></i>))=<tt>t</tt>;
</li><li> <i><b>I*</b></i><sub>frame</sub>(b)=<tt>f</tt> for any other bag b;
</li><li> for any two <tt>k</tt>, <tt>l</tt> ∈ <i><b>D</b></i>, <i><b>I*</b></i><sub>sub</sub>(<tt>k</tt>,<tt>l</tt>)=<tt>t</tt> if for every <tt>u</tt> ∈ <i><b>D</b></i>, <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<tt>k</tt>)(<tt>u</tt>))=<b>t</b> implies <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<tt>l</tt>)(<tt>u</tt>))=<b>t</b>, otherwise <i><b>I*</b></i><sub>sub</sub>(<tt>k</tt>,<tt>l</tt>)=<tt>f</tt>;
</li><li> for any two <tt>k</tt>, <tt>l</tt> ∈ <i><b>D</b></i>, <i><b>I*</b></i><sub>isa</sub>(<tt>k</tt>,<tt>l</tt>)=<tt>t</tt> if <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<tt>k</tt>)(<tt>u</tt>))=<b>t</b>, otherwise <i><b>I*</b></i><sub>isa</sub>(<tt>k</tt>,<tt>l</tt>)=<tt>f</tt>.
</li></ul>
Observe that tr(<i>R</i>) and tr(φ) do not include frame formulas.
<br />
To show that <i><b>Î*</b></i> is a model of <i>R</i> and <i><b>I*</b></i> is not a model of φ, we only need to show that (+) for any frame formula <tt>a[b -> c]</tt> that is a DL-condition, <i><b>I*</b></i> is a model of <tt>a[b -> c]</tt> iff <i><b>I</b></i> is a model of tr(<tt>a[b -> c]</tt>). This argument straightforwardly extends to the case of frames with multiple <tt>b<sub>i</sub></tt>s and <tt>c<sub>i</sub></tt>s, since in RIF semantic structures the following condition is required to hold: <i>TVal</i><sub>I</sub>(<tt>a[b<sub>1</sub>->c<sub>1</sub> ... b<sub>n</sub>->c<sub>n</sub>]</tt>) = <b>t</b> if and only if <i>TVal</i><sub>I</sub>(<tt>a[b<sub>1</sub>->c<sub>1</sub>]</tt>) = ... = <i>TVal</i><sub>I</sub>(<tt>a[b<sub>n</sub>->c<sub>n</sub>]</tt>) = <b>t</b> [<a href="#ref-rif-bld" title="">RIF-BLD</a>]. The argument for formulas <tt>a # b</tt> and <tt>a ## b</tt> is analogous.
<br />
<br />
Consider the case <tt>b</tt>=<tt>rdf:type</tt>. Then,
<br />
<i><b>I*</b></i> is a model of <tt>a[b -> c]</tt> iff <i><b>I</b></i><sub>truth</sub>(<i><b>I*</b></i><sub>frame</sub>(<i><b>I</b></i>(<tt>a</tt>))(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt>c</tt>)))=<b>t</b>.
<br />
From the definition of <i><b>I*</b></i> we obtain
<br />
<i><b>I</b></i><sub>truth</sub>(<i><b>I*</b></i><sub>frame</sub>(<i><b>I</b></i>(<tt>a</tt>))(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt>c</tt>)))=<b>t</b> iff <i><b>I*</b></i><sub>frame</sub>(<i><b>I</b></i>(<tt>a</tt>))(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt>c</tt>))=<tt>t</tt>.
<br />
By definition of the embedding, we know that tr'(<tt>c</tt>) is used as unary predicate symbol in tr(<i>R</i>) or tr(φ). From the definition of <i><b>I*</b></i> we obtain
<br />
<i><b>I*</b></i><sub>frame</sub>(<i><b>I</b></i>(<tt>a</tt>))(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt>c</tt>))=<tt>t</tt> iff <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<i><b>I</b></i><sub>C</sub>(tr'(<tt>c</tt>)))(<i><b>I</b></i>(<tt>a</tt>)))=<b>t</b>.
<br />
Finally, since tr(<tt>a[b -> c]</tt>)=tr'(<tt>c</tt>)<tt>(a)</tt>, we obtain
<br />
<i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>F</sub>(<i><b>I</b></i><sub>C</sub>(tr'(<tt>c</tt>)))(<i><b>I</b></i>(<tt>a</tt>)))=<b>t</b> iff <i><b>I</b></i> is a model of tr(<tt>a[b -> c]</tt>).
<br />
From this chain of equivalences follows that <i><b>I*</b></i> is a model of <tt>a[b -> c]</tt> iff <i><b>I</b></i> is a model of tr(<tt>a[b -> c]</tt>).
<br />
<br />
The argument for the case <tt>b</tt>≠<tt>rdf:type</tt> is analogous, thereby obtaining (+).
<br />
<br />
(<=) Assume <i>R</i> does not dl-entail φ. This means there is some dl-semantic multi-structure <i><b>Î</b></i> that is a model of <i>R</i>, but <i><b>I</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>C'</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>F</sub>,
<i><b>I</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>>, is not a model of φ. Let <i><tt>B</tt></i> be the set of constant symbols occurring in the frame formulas of the forms <tt>a[rdf:type -> b]</tt> and <tt>a[b -> c]</tt> in <i>R</i> or φ.
<br />
Consider the semantic multi-structure <i><b>Î*</b></i>, which is obtained from <i><b>Î</b></i> as follows: <i><b>I*</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I*</b></i><sub>C</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I*</b></i><sub>F</sub>,
<i><b>I*</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>>. Let <tt>t</tt> and <tt>f</tt> in <i><b>D</b></i> be such that <i><b>I</b></i><sub>truth</sub>(<tt>t</tt>)=<b>t</b> and <i><b>I</b></i><sub>truth</sub>(<tt>f</tt>)=<b>f</b>. We define <i><b>I*</b></i><sub>C</sub>, <i><b>I*</b></i><sub>frame</sub>, and <i><b>I*</b></i><sub>F</sub> as follows:
<ul><li> <i><b>I*</b></i><sub>C</sub>(tr'(<tt>c</tt>))=<i><b>I</b></i><sub>C'</sub>(<tt>c</tt>) and <i><b>I*</b></i><sub>C</sub>(<tt>c</tt>)=<i><b>I</b></i><sub>C</sub>(<tt>c</tt>), for any constant <tt>c</tt> not in the range of tr';
</li><li> <i><b>I*</b></i><sub>frame</sub>(b)=<tt>f</tt> for any finite bag b of <i><b>D</b></i>, and
</li><li> <i><b>I*</b></i><sub>F</sub> is defined as follows:
<ul><li> for every constant <tt>c</tt>, given an object <tt>k</tt> in <i><b>D</b></i><sub>ind</sub>, if <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)((<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>), <i><b>I</b></i><sub>C'</sub>(<tt>c</tt>)))=<b>t</b>, <i><b>I*</b></i><sub>F</sub>(<i><b>I*</b></i><sub>C</sub>(tr'(<tt>c</tt>)))(<tt>k</tt>)=<tt>t</tt>; <i><b>I*</b></i><sub>F</sub>(<i><b>I*</b></i><sub>C</sub>(tr'(<tt>c</tt>)))(<tt>k'</tt>)=<tt>f</tt> for any other <tt>k'</tt> in <i><b>D</b></i><sub>ind</sub>,
</li><li> for every constant <tt>c</tt>, given a pair (<tt>k, l</tt>) in <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub>, if <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)((<i><b>I</b></i><sub>C'</sub>(<tt>c</tt>),<tt>l</tt>)))=<b>t</b>, <i><b>I*</b></i><sub>F</sub>(tr'(<tt>c</tt>))(<tt>k</tt>,<tt>l</tt>)=<tt>t</tt>;<i><b>I*</b></i><sub>F</sub>(tr'(<tt>c</tt>))(<tt>k'</tt>,<tt>l'</tt>)=<tt>f</tt> for any other pair (<tt>k', l'</tt>) in <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub>, and
</li><li> <i><b>I*</b></i><sub>F</sub>(<tt>c</tt>)=<i><b>I</b></i><sub>F</sub>(<tt>c</tt>) for every other constant <tt>c</tt>.
</li></ul>
</li></ul>
Observe that <i>R</i> and φ do not include predicate formulas involving derived constant symbols tr'(<tt>c</tt>). The remainder of the proof is analogous to the (=>) direction.
☐
</blockquote>
<a id="Embedding_OWL_2_RL_into_RIF_BLD" name="Embedding_OWL_2_RL_into_RIF_BLD"></a><h4> <span class="mw-headline">9.2.2 Embedding OWL 2 RL into RIF BLD </span></h4>
<p>The embedding of OWL 2 RL into RIF BLD has two stages: normalization and embedding.
</p><p>The OWL 2 syntax is given in terms of a Structural Specification, and there is a functional-style syntax that is a serialization of this Structural Specification. For convenience, normalization and embedding in this section are done in terms of the functional-style syntax. That is, the normalization mapping takes as input a functional-style syntax ontology document and produces a normalized ontology document. The embedding mapping takes as input a normalized ontology document and produces an RIF document. We refer to <a class="external text" href="http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/#Profile_Specification_3" title="http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/#Profile_Specification_3">Section 4.2</a> of [<a href="#ref-owl2-profiles" title="">OWL2-Profiles</a>] for the specification of the OWL 2 RL syntax.
</p>
<a id="Normalization_of_OWL_2_RL" name="Normalization_of_OWL_2_RL"></a><h5> <span class="mw-headline">9.2.2.1 Normalization of OWL 2 RL </span></h5>
<p>Normalization splits the OWL axioms so that the later mapping to RIF of the individual axioms results in rules. Additionally, it simplifies the axioms and removes annotations.
</p><p>It is assumed that the normalization process is preceded by a simplification process that removes all namespace prefixes, turns all CURIEs and relative IRIs into absolute IRIs, and removes all annotations, import statements, entity declarations, and annotation axioms.
</p><p>We note here that, strictly speaking, simplified OWL 2 RL ontologies are not OWL 2 RL ontologies in the general case, because certain entity declarations are required (e.g., those distinguishing data from object properties). It is assumed that such entity declarations are present implicitly, i.e., they do not appear explicitly in the simplified ontology, but they are known.
We also note that removing import statements in the simplification does not prohibit importing ontologies in practice; since combinations contain sets of ontologies, all imported ontologies may be added to these sets.
The normalization mapping tr<sub>N</sub> takes as input a simplified ontology O and produces an equivalent normalized ontology O'.
</p><p>The names of variables used in the mapping generally correspond to the names of productions in the <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/#OWL_2_RL_2" title="http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/#OWL_2_RL_2">OWL 2 RL grammar</a>.
</p>
<table border="1" id="tab-owl-normalization">
<caption>Normalization of OWL 2 RL ontologies.</caption>
<tr>
<th>#</th>
<th>Statement</th>
<th>Normalized Statement</th>
<th>Condition on translation</th>
</tr>
<tr>
<td>1</td>
<td>tr<sub>N</sub>(<br />
<p><tt> Ontology( [ ontologyIRI [ versionIRI ] ] <br />
<span>axiom<sub>1</sub><br />
... <br />
axiom<sub>n</sub></span> )</tt><br />
</p>
)</td>
<td>
<p><tt>Ontology( </tt><br />
tr<sub>N</sub>(<tt>axiom<sub>1</sub></tt>)<br />
<tt> ...</tt><br />
tr<sub>N</sub>(<tt>axiom<sub>n</sub></tt>)<br />
<tt>)</tt>
</p>
</td>
</tr>
<tr>
<td>2</td>
<td>tr<sub>N</sub>(<br />
<p><tt>SubClassOf(subClassExpression <br />
...ObjectIntersectionOf(<br />
<span>superClassExpression<sub>1</sub> <br />
...<br />
superClassExpression<sub>n</sub></span><br />
)...)</tt>
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(subClassExpression ...superClassExpression<sub>1</sub>...)</tt>)<br />
<tt> ...</tt><br />
tr<sub>N</sub>(<tt>SubClassOf(subClassExpression ...superClassExpression<sub>n</sub>...)</tt>)
</p>
</td>
</tr>
<tr>
<td>3</td>
<td>tr<sub>N</sub>(<br />
<p><tt>SubClassOf(subClassExpression<sub>1</sub> ObjectComplementOf(<span>subClassExpression<sub>1</sub></span>))</tt>
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(ObjectIntersectionof(subClassExpression<sub>1</sub> subClassExpression<sub>2</sub>) owl:Nothing)</tt>)
</p>
</td>
</tr>
<tr>
<td>4</td>
<td>tr<sub>N</sub>(<tt>SubClassOf(subClassExpression <i>X</i>)</tt>)</td>
<td>
<p><tt>SubClassOf(subClassExpression <i>X</i>)</tt>
</p>
</td>
<td><i>X</i> is a superClassExpression that does not contain <tt>ObjectIntersectionOf</tt> or <tt>ObjectComplementOf</tt></td>
</tr>
<tr>
<td>5</td>
<td>tr<sub>N</sub>(<br />
<p><tt>EquivalentClasses(<br />
<span>equivClassExpression<sub>1</sub><br />
...<br />
equivClassExpression<sub>m</sub></span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(equivClassExpression<sub>1</sub> equivClassExpression<sub>2</sub>)</tt>)<br />
<tt> ...</tt><br />
tr<sub>N</sub>(<tt>SubClassOf(equivClassExpression<sub>m-1</sub> equivClassExpression<sub>m</sub>)</tt>)<br />
tr<sub>N</sub>(<tt>SubClassOf(equivClassExpression<sub>m</sub> equivClassExpression<sub>1</sub>)</tt>)
</p>
</td>
</tr>
<tr>
<td>6</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DisjointClasses(<br />
<span>subClassExpression<sub>1</sub><br />
...<br />
subClassExpression<sub>m</sub></span> )</tt><br />
</p>
)</td>
<td>tr<sub>N</sub>(<tt>SubClassOf(ObjectIntersectionOf(subClassExpression<sub>1</sub> subClassExpression<sub>2</sub>) owl:Nothing)</tt>)<br />
<p><tt> ...</tt><br />
tr<sub>N</sub>(<tt>SubClassOf(ObjectIntersectionOf(subClassExpression<sub>1</sub> subClassExpression<sub>m</sub>) owl:Nothing)</tt>)<br />
<tt> ...</tt><br />
tr<sub>N</sub>(<tt>SubClassOf(ObjectIntersectionOf(subClassExpression<sub>m-1</sub> subClassExpression<sub>m</sub>) owl:Nothing)</tt>)
</p>
</td>
</tr>
<tr>
<td>7</td>
<td>tr<sub>N</sub>(<br />
<p><tt>SubObjectPropertyOf(<br />
<span>subPropertyExpression <br />
superPropertyExpression</span> )</tt><br />
</p>
)</td>
<td>
<p><tt>SubObjectPropertyOf(<br />
<span>subPropertyExpression <br />
superPropertyExpression</span> )</tt>
</p>
</td>
</tr>
<tr>
<td>8</td>
<td>tr<sub>N</sub>(<br />
<p><tt>SubDataPropertyOf(<br />
<span>subPropertyExpression <br />
superPropertyExpression</span> )</tt><br />
</p>
)</td>
<td>
<p><tt>SubDataPropertyOf(<br />
<span>subPropertyExpression <br />
superPropertyExpression</span> )</tt>
</p>
</td>
</tr>
<tr>
<td>9</td>
<td>tr<sub>N</sub>(<br />
<p><tt>EquivalentObjectProperties(<br />
<span>ObjectPropertyExpression<sub>1</sub><br />
...<br />
ObjectPropertyExpression<sub>m</sub></span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubObjectPropertyOf(ObjectPropertyExpression<sub>1</sub> ObjectPropertyExpression<sub>2</sub>)</tt>)<br />
<tt> ...</tt><br />
tr<sub>N</sub>(<tt>SubObjectPropertyOf(ObjectPropertyExpression<sub>m-1</sub> ObjectPropertyExpression<sub>m</sub>)</tt>)<br />
tr<sub>N</sub>(<tt>SubObjectPropertyOf(ObjectPropertyExpression<sub>m</sub> ObjectPropertyExpression<sub>1</sub>)</tt>)
</p>
</td>
</tr>
<tr>
<td>10</td>
<td>tr<sub>N</sub>(<br />
<p><tt>EquivalentDataProperties(<br />
<span>DataPropertyExpression<sub>1</sub><br />
...<br />
DataPropertyExpression<sub>m</sub></span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubDataPropertyOf(PropertyExpression<sub>1</sub> DataPropertyExpression<sub>2</sub>)</tt>)<br />
<tt> ...</tt><br />
tr<sub>N</sub>(<tt>SubDataPropertyOf(PropertyExpression<sub>m-1</sub> DataPropertyExpression<sub>m</sub>)</tt>)<br />
tr<sub>N</sub>(<tt>SubDataPropertyOf(PropertyExpression<sub>m</sub> DataPropertyExpression<sub>1</sub>)</tt>)
</p>
</td>
</tr>
<tr>
<td>11</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DisjointObjectProperties(<br />
<span>ObjectPropertyExpression<sub>1</sub><br />
...<br />
ObjectPropertyExpression<sub>m</sub></span> )</tt><br />
</p>
)</td>
<td>
<p><tt>DisjointObjectProperties(ObjectPropertyExpression<sub>1</sub> ObjectPropertyExpression<sub>2</sub>)</tt><br />
<tt> ...</tt><br />
<tt>DisjointObjectProperties(ObjectPropertyExpression<sub>1</sub> ObjectPropertyExpression<sub>m</sub>)</tt><br />
<tt> ...</tt><br />
<tt>DisjointObjectProperties(ObjectPropertyExpression<sub>m-1</sub> ObjectPropertyExpression<sub>m</sub>)</tt>
</p>
</td>
</tr>
<tr>
<td>12</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DisjointDataProperties(<br />
<span>DataPropertyExpression<sub>1</sub><br />
...<br />
DataPropertyExpression<sub>m</sub></span> )</tt><br />
</p>
)</td>
<td>
<p><tt>DisjointDataProperties(DataPropertyExpression<sub>1</sub> DataPropertyExpression<sub>2</sub>)</tt><br />
<tt> ...</tt><br />
<tt>DisjointDataProperties(DataPropertyExpression<sub>1</sub> DataPropertyExpression<sub>m</sub>)</tt><br />
<tt> ...</tt><br />
<tt>DisjointDataProperties(DataPropertyExpression<sub>m-1</sub> DataPropertyExpression<sub>m</sub>)</tt>
</p>
</td>
</tr>
<tr>
<td>13</td>
<td>tr<sub>N</sub>(<br />
<p><tt>InverseObjectProperties(<br />
<span>PropertyExpression<sub>1</sub> <br />
PropertyExpression<sub>2</sub></span> )</tt><br />
</p>
)</td>
<td>
<p><tt>InverseObjectProperties(<br />
<span>PropertyExpression<sub>1</sub> <br />
PropertyExpression<sub>2</sub></span> )</tt>
</p>
</td>
</tr>
<tr>
<td>14</td>
<td>tr<sub>N</sub>(<br />
<p><tt>ObjectPropertyDomain(<br />
<span>PropertyExpression <br />
superClassExpression</span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(<br />
<span>ObjectSomeValuesFrom(PropertyExpression owl:Thing) <br />
superClassExpression</span> )</tt>
</p>
</td>
</tr>
<tr>
<td>15</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DataPropertyDomain(<br />
<span>DataProperty <br />
superClassExpression</span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(<br />
<span>ObjectSomeValuesFrom(DataProperty owl:Thing) <br />
superClassExpression</span> )</tt>
</p>
</td>
</tr>
<tr>
<td>16</td>
<td>tr<sub>N</sub>(<br />
<p><tt>ObjectPropertyRange(<br />
<span>ObjectInverseOf(Property) <br />
superClassExpression</span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(<br />
<span>ObjectSomeValuesFrom(Property owl:Thing) <br />
superClassExpression</span> )</tt>
</p>
</td>
</tr>
<tr>
<td>17</td>
<td>tr<sub>N</sub>(<br />
<p><tt>ObjectPropertyRange(<br />
<span>Property <br />
superClassExpression</span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(<br />
<span>ObjectSomeValuesFrom(ObjectInverseOf(Property) owl:Thing) <br />
superClassExpression</span> )</tt>
</p>
</td>
<td><tt>Property</tt> is not an inverse property expression</td>
</tr>
<tr>
<td>18</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DataPropertyRange(<br />
<span>DataProperty <br />
superClassExpression</span> )</tt><br />
</p>
)</td>
<td>
<p>tr<sub>N</sub>(<tt>SubClassOf(<br />
<span>owl:Thing <br />
DataAllValuesFrom(DataProperty superClassExpression)</span> )</tt>
</p>
</td>
<td> </td>
</tr>
<tr>
<td>19</td>
<td>tr<sub>N</sub>(<br />
<p><tt>FunctionalObjectProperty(<br />
PropertyExpression )</tt><br />
</p>
)</td>
<td>
<p><tt>FunctionalObjectProperty(</tt><br />
</p>
<tt> PropertyExpression )</tt></td>
</tr>
<tr>
<td>20</td>
<td>tr<sub>N</sub>(<br />
<p><tt>FunctionalDataProperty(</tt><br />
<tt> DataProperty )</tt><br />
</p>
)</td>
<td>
<p><tt>FunctionalDataProperty(</tt><br />
</p>
<tt> DataProperty )</tt></td>
</tr>
<tr>
<td>21</td>
<td>tr<sub>N</sub>(<br />
<p><tt>InverseFunctionalObjectProperty(</tt><br />
<tt> PropertyExpression )</tt><br />
</p>
)</td>
<td>
<p><tt>InverseFunctionalObjectProperty(</tt><br />
</p>
<tt> PropertyExpression )</tt></td>
</tr>
<tr>
<td>22</td>
<td>tr<sub>N</sub>(<br />
<p><tt>IrreflexiveObjectProperty(</tt><br />
<tt> PropertyExpression )</tt><br />
</p>
)</td>
<td>
<p><tt>IrreflexiveObjectProperty(</tt><br />
</p>
<tt> PropertyExpression )</tt></td>
</tr>
<tr>
<td>23</td>
<td>tr<sub>N</sub>(<br />
<p><tt>SymmetricObjectProperty(</tt><br />
<tt> PropertyExpression )</tt><br />
</p>
)</td>
<td>
<p><tt>SymmetricObjectProperty(</tt><br />
</p>
<tt> PropertyExpression )</tt></td>
</tr>
<tr>
<td>24</td>
<td>tr<sub>N</sub>(<br />
<p><tt>AsymmetricObjectProperty(</tt><br />
<tt> PropertyExpression )</tt><br />
</p>
)</td>
<td>
<p><tt>AsymmetricObjectProperty(</tt><br />
</p>
<tt> PropertyExpression )</tt></td>
</tr>
<tr>
<td>25</td>
<td>tr<sub>N</sub>(<br />
<p><tt>TransitiveObjectProperty(</tt><br />
<tt> PropertyExpression )</tt><br />
</p>
)</td>
<td>
<p><tt>TransitiveObjectProperty(</tt><br />
</p>
<tt> PropertyExpression )</tt></td>
</tr>
<tr>
<td>26</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DatatypeDefinition( ... )</tt><br />
</p>
)</td>
<td>
<tt>DatatypeDefinition( ... )</tt></td>
</tr>
<tr>
<td>27</td>
<td>tr<sub>N</sub>(<br />
<p><tt>HasKey( ... )</tt><br />
</p>
)</td>
<td>
<tt>HasKey( ... )</tt></td>
</tr>
<tr>
<td>28</td>
<td>tr<sub>N</sub>(<br />
<p><tt>SameIndividual(</tt><br />
<tt> Individual<sub>1</sub> </tt><br />
<tt> ... </tt><br />
<tt> Individual<sub>m</sub>)</tt><br />
</p>
)</td>
<td>
<p><tt>SameIndividual(Individual<sub>1</sub> Individual<sub>2</sub>)</tt><br />
<tt> ... </tt><br />
<tt>SameIndividual(Individual<sub>m-1</sub> Individual<sub>m</sub>)</tt><br />
</p>
<tt>SameIndividual(Individual<sub>m</sub> Individual<sub>1</sub>)</tt></td>
</tr>
<tr>
<td>29</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DifferentIndividuals(</tt><br />
<tt> Individual<sub>1</sub> </tt><br />
<tt> ... </tt><br />
<tt> Individual<sub>m</sub>)</tt><br />
</p>
)</td>
<td>
<p><tt>DifferentIndividuals(Individual<sub>1</sub> Individual<sub>2</sub>)</tt><br />
<tt> ... </tt><br />
<tt>SameIndividual(Individual<sub>1</sub> Individual<sub>m</sub>)</tt><br />
<tt> ... </tt><br />
</p>
<tt>SameIndividual(Individual<sub>m-1</sub> Individual<sub>m</sub>)</tt></td>
</tr>
<tr>
<td>30</td>
<td>tr<sub>N</sub>(<br />
<p><tt>ClassAssertion(</tt><br />
<tt> superClassExpression </tt><br />
<tt> Individual)</tt><br />
</p>
)</td>
<td>
<tt>SubClassOf(ObjectOneOf( Individual ) superClassExpression )</tt></td>
</tr>
<tr>
<td>31</td>
<td>tr<sub>N</sub>(<br />
<p><tt>ObjectPropertyAssertion(</tt><br />
<tt> ObjectPropertyExpression </tt><br />
<tt> source</tt><br />
<tt> target)</tt><br />
</p>
)</td>
<td>
<tt>SubClassOf(ObjectOneOf( source ) ObjectHasValue(ObjectPropertyExpression target) )</tt></td>
</tr>
<tr>
<td>32</td>
<td>tr<sub>N</sub>(<br />
<p><tt>NegativeObjectPropertyAssertion(</tt><br />
<tt> ObjectPropertyExpression </tt><br />
<tt> source</tt><br />
<tt> target)</tt><br />
</p>
)</td>
<td>
<tt>SubClassOf(ObjectOneOf( source ) ObjectComplementOf(ObjectHasValue(ObjectPropertyExpression target) ) )</tt></td>
</tr>
<tr>
<td>33</td>
<td>tr<sub>N</sub>(<br />
<p><tt>DataPropertyAssertion(</tt><br />
<tt> DataProperty </tt><br />
<tt> source</tt><br />
<tt> target)</tt><br />
</p>
)</td>
<td>
<tt>SubClassOf(ObjectOneOf( source ) DataHasValue(DataProperty target) )</tt></td>
</tr>
<tr>
<td>34</td>
<td>tr<sub>N</sub>(<br />
<p><tt>NegativeDataPropertyAssertion(</tt><br />
<tt> DataProperty </tt><br />
<tt> source</tt><br />
<tt> target)</tt><br />
</p>
)</td>
<td>
<tt>SubClassOf(ObjectOneOf( source ) ObjectComplementOf(DataHasValue(DataProperty target) ) )</tt></td>
</tr>
</table>
<p>We note that normalized OWL 2 RL ontologies are not necessarily OWL 2 RL ontologies, since <tt>owl:Thing</tt> may appear in subclass expressions, as a result of the transformation of <tt>DataPropertyRange</tt> axioms.
</p><p>The following lemma establishes the fact that, for the purpose of entailment, the ontologies in a combination may be replaced with their normalization.
</p><p><span id="lem-normalization"><b>Normalization Lemma</b></span> Given a combination C=<<i>R</i>,{<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}>, where <i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i> are simplified OWL 2 RL ontologies that do not import ontologies, C RIF-OWL Direct-entails φ iff C'=<<i>R</i>,{tr<sub>N</sub>(<i>O<sub>1</sub></i>),...,tr<sub>N</sub>(<i>O<sub>n</sub></i>)}> RIF-OWL Direct-entails φ.
</p>
<blockquote> <b>Proof.</b> We prove both directions by contradiction: if the entailment does not hold on the one side, we show that it also does not hold on the other.
<br />
<br />
(=>) Assume C' does not RIF-OWL Direct-entail φ. This means there is a common-RIF-OWL Direct-interpretation (<i><b>Î</b></i>, I) that is a model of C', but <i><b>I</b></i> is not a model of φ.
<br />
By the definition of satisfaction of axioms and assertions in <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Satisfaction_in_an_Interpretation" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Satisfaction_in_an_Interpretation">Section 2.3</a> and the interpretation of object property, data range, and class expressions in <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Interpretations" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Interpretations">Section 2.2</a> in [<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>] it is easy to verify that, if for every axiom d appearing in {<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}, I satisfies tr<sub>N</sub>(d), then I satisfies <i>O<sub>1</sub></i>,..., and <i>O<sub>n</sub></i>, and thus (<i><b>I</b></i>, I) satisfies C. Since <i><b>I</b></i> is not a model of φ, C does not RIF-OWL Direct-entail φ.
<br />
<br />
(<=) Assume C does not RIF-OWL Direct-entail φ. This means there is a common-RIF-OWL Direct-interpretation (<i><b>Î</b></i>, I) that is a model of C, but <i><b>I</b></i> is not a model of φ. It is easy to verify, by the definition of satisfaction of axioms and assertions in <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Satisfaction_in_an_Interpretation" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Satisfaction_in_an_Interpretation">Section 2.3</a> and the interpretation of object property, data range, and class expressions in <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Interpretations" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Interpretations">Section 2.2</a> in [<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>], that I satisfies tr<sub>N</sub>(<i>O<sub>1</sub></i>),..., and tr<sub>N</sub>(<i>O<sub>n</sub></i>). So, (<i><b>Î</b></i>, I) is a model of C', and thus C' does not RIF-OWL Direct-entail φ.
☐</blockquote>
<a id="Embedding_Normalized_OWL_2_RL" name="Embedding_Normalized_OWL_2_RL"></a><h5> <span class="mw-headline">9.2.2.2 Embedding Normalized OWL 2 RL </span></h5>
<p>We now proceed with the embedding of normalized OWL 2 RL ontologies into RIF DL-document formulas. The embedding function tr<sub>O</sub> takes as input a normalized OWL 2 RL ontology and returns a RIF-BLD DL-document formula. The embeddings of IRIs and literals is as defined in Section 9.1.1 <a href="#Embedding_Symbols" title="">Embedding Symbols</a>. It is assumed that the Vocabulary <i>V</i> of the ontologies includes all the constants used in the RIF documents and condition formulas under consideration.
</p>
<table border="1" id="tab-owl-embedding">
<caption>Embedding Normalized OWL 2 RL</caption>
<tr>
<th>#</th>
<th>Normalized OWL</th>
<th>RIF-BLD DL-document formula</th>
<th>Condition on translation</th>
</tr>
<tr>
<td>1</td>
<td>tr<sub>O</sub>(<br />
<p><tt>Ontology(<br />
<span>axiom<sub>1</sub><br />
... <br />
axiom<sub>n</sub></span><br />
)</tt><br />
</p>
)</td>
<td><tt>Document(Group(</tt><br />
<p>tr<sub>O</sub>(<tt>axiom<sub>1</sub></tt>)<br />
<tt> ...</tt><br />
tr<sub>O</sub>(<tt>axiom<sub>n</sub></tt>)<br />
</p>
<tt>))</tt></td>
</tr>
<tr>
<td>2</td>
<td>tr<sub>O</sub>(<br />
<p><tt>SubClassOf(subClassExpression superClassExpression)</tt><br />
</p>
)</td>
<td>
<p>tr<sub>O</sub>(<tt>subClassExpression</tt>,<tt>superClassExpression</tt>)
</p>
</td>
</tr>
<tr>
<td>3</td>
<td>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>[Object|Data]AllValuesFrom(property<sub>1</sub> ...[Object|Data]AllValuesFrom(property<sub>n</sub> <i>X</i>) ...)</tt>)</td>
<td>
<p><tt>Forall ?x ?y<sub>1</sub> ... ?y<sub>n</sub> (</tt>tr<sub>O</sub>(<tt><i>X</i></tt>, <tt>?y<sub>n</sub></tt>) <tt>:- And( </tt><br /> tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?x</tt>)<br />
tr<sub>O</sub>(<tt>property<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>property<sub>2</sub></tt>, <tt>?y<sub>1</sub></tt>, <tt>?y<sub>2</sub></tt>)<br />
...<br />
tr<sub>O</sub>(<tt>property<sub>n</sub></tt>, <tt>?y<sub>n-1</sub></tt>, <tt>?y<sub>n</sub></tt>)<br />
tr<sub>O</sub>(<tt><i>X</i></tt>, <tt>?y<sub>n</sub></tt>)<tt>))</tt>
</p>
</td>
<td><tt>n</tt>≥1 and <tt><i>X</i></tt> is not an <tt>[Object|Data]AllValuesFrom</tt> or <tt>[Object|Data]MaxCardinality</tt> expression.</td>
</tr>
<tr>
<td>3a</td>
<td>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt><i>X</i></tt>)</td>
<td>
<p><tt>Forall ?x (</tt>tr<sub>O</sub>(<tt><i>X</i></tt>, <tt>?y<sub>n</sub></tt>) <tt>:- And( </tt><br /> tr<sub>O</sub>(<tt>subClassExpression<sub>1</sub></tt>, <tt>?x</tt>)<br />
tr<sub>O</sub>(<tt><i>X</i></tt>, <tt>?x</tt>)<tt>))</tt>
</p>
</td>
<td><tt><i>X</i></tt> is not an <tt>[Object|Data]AllValuesFrom</tt> or <tt>[Object|Data]MaxCardinality</tt> expression.</td>
</tr>
<tr>
<td>4</td>
<td>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>[Object|Data]AllValuesFrom(property<sub>1</sub> ...[Object|Data]AllValuesFrom(property<sub>n</sub> [Object|Data]MaxCardinality(0 PropertyExpression ClassExpression) ...)</tt>)</td>
<td>
<p><tt>Forall ?x ?y<sub>1</sub> ... ?y<sub>n</sub> ?z (rif:error:- And( </tt><br /> tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?x</tt>)<br />
tr<sub>O</sub>(<tt>property<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>property<sub>2</sub></tt>, <tt>?y<sub>1</sub></tt>, <tt>?y<sub>2</sub></tt>)<br />
...<br />
tr<sub>O</sub>(<tt>property<sub>n</sub></tt>, <tt>?y<sub>n-1</sub></tt>, <tt>?y<sub>n</sub></tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?y<sub>n</sub></tt>, <tt>?z</tt>)<br />
tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?z</tt>)<tt>))</tt>
</p>
</td>
<td><tt>n</tt>≥1.</td>
</tr>
<tr>
<td>4a</td>
<td>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>[Object|Data]MaxCardinality(0 PropertyExpression ClassExpression)</tt>)</td>
<td>
<p><tt>Forall ?x ?y (rif:error :- And( </tt><br /> tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?x</tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y</tt>)<br />
tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?y</tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>5</td>
<td>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>[Object|Data]AllValuesFrom(property<sub>1</sub> ...[Object|Data]AllValuesFrom(property<sub>n</sub> [Object|Data]MaxCardinality(1 PropertyExpression ClassExpression) ...)</tt>)</td>
<td>
<p><tt>Forall ?x ?y<sub>1</sub> ... ?y<sub>n</sub> ?z<sub>1</sub> ?z<sub>2</sub> (?z<sub>1</sub>=?z<sub>2</sub> :- And( </tt><br /> tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?x</tt>)<br />
tr<sub>O</sub>(<tt>property<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>property<sub>2</sub></tt>, <tt>?y<sub>1</sub></tt>, <tt>?y<sub>2</sub></tt>)<br />
<tt> ...</tt><br />
tr<sub>O</sub>(<tt>property<sub>n</sub></tt>, <tt>?y<sub>n-1</sub></tt>, <tt>?y<sub>n</sub></tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?y<sub>n</sub></tt>, <tt>?z<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?y<sub>n</sub></tt>, <tt>?z<sub>2</sub></tt>)<br />
tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?z<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?z<sub>2</sub></tt>)<tt>))</tt>
</p>
</td>
<td><tt>n</tt>≥1.</td>
</tr>
<tr>
<td>5a</td>
<td>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>[Object|Data]MaxCardinality(1 PropertyExpression ClassExpression)</tt>)</td>
<td>
<p><tt>Forall ?x ?y<sub>1</sub> ?y<sub>2</sub> (?y<sub>1</sub>=?y<sub>2</sub> :- And( </tt><br /> tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?x</tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y<sub>2</sub></tt>)<br />
tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?y<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?y<sub>2</sub></tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>6</td>
<td>tr<sub>O</sub>(<tt>A</tt>,<tt>?<i>x</i></tt>)</td>
<td>
<p><tt>?<i>x</i>[rdf:type -> </tt>tr(<tt>A</tt>)<tt>]</tt>
</p>
</td>
<td><tt>A</tt> is a Class or Datatype; <tt><i>x</i></tt> is a variable name</td>
</tr>
<tr>
<td>7</td>
<td>tr<sub>O</sub>(<tt>[Object|Data]IntersectionOf(ClassExpression<sub>1</sub> ... ClassExpression<sub>n</sub>)</tt>, <tt>?<i>x</i></tt>)</td>
<td>
<p><tt>And(</tt>tr<sub>O</sub>(<tt>ClassExpression<sub>1</sub></tt>, <tt>?<i>x</i></tt>) ... tr<sub>O</sub>(<tt>ClassExpression<sub>n</sub></tt>, <tt>?<i>x</i></tt>)<tt>)</tt>
</p>
</td>
<td><tt><i>x</i></tt> is a variable name</td>
</tr>
<tr>
<td>8</td>
<td>tr<sub>O</sub>(<tt>ObjectUnionOf(ClassExpression<sub>1</sub> ... ClassExpression<sub>n</sub>)</tt>, <tt>?<i>x</i></tt>)</td>
<td>
<p><tt>Or(</tt>tr<sub>O</sub>(<tt>ClassExpression<sub>1</sub></tt>, <tt>?<i>x</i></tt>) ... tr<sub>O</sub>(<tt>ClassExpression<sub>n</sub></tt>, <tt>?<i>x</i></tt>)<tt>)</tt>
</p>
</td>
<td><tt><i>x</i></tt> is a variable name</td>
</tr>
<tr>
<td>9</td>
<td>tr<sub>O</sub>(<tt>[Object|Data]OneOf(Individual<sub>1</sub> ... Individual<sub>n</sub>)</tt>, <tt>?<i>x</i></tt>)</td>
<td>
<p><tt>Or( ?<i>x</i> =</tt> tr(<tt>Individual<sub>1</sub></tt>) <tt> ... ?<i>x</i> =</tt> tr(<tt>Individual<sub>n</sub></tt>)<tt>)</tt>
</p>
</td>
<td><tt><i>x</i></tt> is a variable name</td>
</tr>
<tr>
<td>10</td>
<td>tr<sub>O</sub>(<tt>[Object|Data]SomeValuesFrom(PropertyExpression ClassExpression))</tt>, <tt>?<i>x</i></tt>)</td>
<td>
<p><tt>Exists ?y(And(</tt> tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?<i>x</i></tt>, <tt>?y</tt>)<tt>]</tt> tr<sub>O</sub>(<tt>ClassExpression</tt>, <tt>?y</tt>) <tt>))</tt>
</p>
</td>
<td><tt><i>x</i></tt> is a variable name</td>
</tr>
<tr>
<td>11</td>
<td>tr<sub>O</sub>(<tt><i>X</i></tt>, <tt>?<i>x</i></tt>, <tt>?<i>y</i></tt>)</td>
<td>
<p><tt>?<i>x</i>[</tt>tr(<tt><i>X</i></tt>) <tt>-> ?<i>y</i>]</tt>
</p>
</td>
<td><tt><i>X</i></tt> is a Property; <tt><i>x</i>, <i>y</i></tt> are variable names</td>
</tr>
<tr>
<td>12</td>
<td>tr<sub>O</sub>(<tt>ObjectInverseOf(<i>X</i>)</tt>, <tt>?<i>x</i></tt>, <tt>?<i>y</i></tt>)</td>
<td>
<p><tt>?<i>y</i>[</tt>tr(<tt><i>X</i></tt>) <tt>-> ?<i>x</i>]</tt>
</p>
</td>
<td><tt><i>X</i></tt> is a Property; <tt><i>x</i>, <i>y</i></tt> are variable names</td>
</tr>
<tr>
<td>13</td>
<td>tr<sub>O</sub>(<tt>[Object|Data]HasValue(PropertyExpression value)</tt>, <tt>?<i>x</i></tt>)</td>
<td>
<p>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?<i>x</i></tt>, tr(<tt>value</tt>))
</p>
</td>
<td><tt><i>x</i></tt> is a variable name</td>
</tr>
<tr>
<td>14</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>SubObjectPropertyOf(ObjectPropertyChain(PropertyExpression<sub>1</sub> ... PropertyExpression<sub>m</sub>) PropertyExpression<sub>0</sub>)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y<sub>1</sub> ... ?y<sub>m</sub> (</tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y<sub>m</sub></tt>) <tt> :- And(</tt><br />
tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y<sub>1</sub></tt>)<br />
tr<sub>O</sub>(<tt>PropertyExpression<sub>2</sub></tt>, <tt>?y<sub>1</sub></tt>, <tt>?y<sub>2</sub></tt>) <br />
...<br />
tr<sub>O</sub>(<tt>PropertyExpression<sub>m</sub></tt>, <tt>?y<sub>m-1</sub></tt>, <tt>?y<sub>m</sub></tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>15</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>Sub[Object|Data]PropertyOf(PropertyExpression<sub>1</sub> PropertyExpression<sub>2</sub>)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y (</tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>2</sub></tt>, <tt>?x</tt>, <tt>?y</tt>) <tt> :- </tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y</tt>)<tt>)</tt>
</p>
</td>
<td><tt>PropertyExpression<sub>1</sub></tt> contains no mention of <tt>ObjectPropertyChain</tt></td>
</tr>
<tr>
<td>16</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>Disjoint[Object|Data]Properties(PropertyExpression<sub>1</sub> PropertyExpression<sub>2</sub>)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y (rif:error :- And(</tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y</tt>) tr<sub>O</sub>(<tt>PropertyExpression<sub>2</sub></tt>, <tt>?x</tt>, <tt>?y</tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>17</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>InverseObjectProperties(PropertyExpression<sub>1</sub> PropertyExpression<sub>2</sub>)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y (</tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>2</sub></tt>, <tt>?y</tt>, <tt>?x</tt>) <tt> :- </tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?y</tt>)<tt>)</tt><br />
<tt>Forall ?x ?y (</tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?y</tt>, <tt>?x</tt>) <tt> :- </tt>tr<sub>O</sub>(<tt>PropertyExpression<sub>2</sub></tt>, <tt>?x</tt>, <tt>?y</tt>)<tt>)</tt>
</p>
</td>
</tr>
<tr>
<td>18</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>Functional[Object|Data]Property(PropertyExpression)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y<sub>1</sub> ?y<sub>2</sub> (?y<sub>1</sub>=?y<sub>2</sub> :- And(</tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y<sub>1</sub></tt>) tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y<sub>2</sub></tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>19</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>InverseFunctional[Object|Data]Property(PropertyExpression)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x<sub>1</sub> ?x<sub>2</sub> ?y (?x<sub>1</sub>=?x<sub>2</sub> :- And(</tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x<sub>1</sub></tt>, <tt>?y</tt>) tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x<sub>2</sub></tt>, <tt>?y</tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>20</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>IrreflexiveObjectProperty(PropertyExpression)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x (rif:error :- </tt> tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?x</tt>)<tt>)</tt>
</p>
</td>
</tr>
<tr>
<td>21</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>SymmetricObjectProperty(PropertyExpression)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y (</tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?y</tt>, <tt>?x</tt>)<tt> :- </tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y</tt>)<tt>)</tt>
</p>
</td>
</tr>
<tr>
<td>22</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>AsymmetricObjectProperty(PropertyExpression)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y (rif:error :- And(</tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y</tt>) tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?y</tt>, <tt>?x</tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>23</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>TransitiveObjectProperty(PropertyExpression)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y ?z (</tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?z</tt>)<tt> :- And(</tt>tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?x</tt>, <tt>?y</tt>) tr<sub>O</sub>(<tt>PropertyExpression</tt>, <tt>?y</tt>, <tt>?z</tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>24</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>DatatypeDefinition(datatypeIRI DataRange)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x (?x[rdf:type -> </tt>tr(<tt>datatypeIRI</tt>)<tt>] :- </tt>tr<sub>O</sub>(<tt>DataRange</tt>, <tt>?x</tt>)<tt>)</tt><br />
<tt>Forall ?x ( </tt>tr<sub>O</sub>(<tt>DataRange</tt>, <tt>?x</tt>)<tt>:- ?x[rdf:type -> </tt>tr(<tt>datatypeIRI</tt>)<tt>] )</tt>
</p>
</td>
</tr>
<tr>
<td>25</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>HasKey(subClassExpression PropertyExpression<sub>1</sub> ... PropertyExpression<sub>m</sub>)</span></tt><br />
</p>
)</td>
<td>
<p><tt>Forall ?x ?y ?z<sub>1</sub> ... ?z<sub>m</sub> (?x=?y :- And(</tt>tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?x</tt>) tr<sub>O</sub>(<tt>subClassExpression</tt>, <tt>?y</tt>) tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?z<sub>1</sub></tt>) ... tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?x</tt>, <tt>?z<sub>m</sub></tt>) tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?y</tt>, <tt>?z<sub>1</sub></tt>) ... tr<sub>O</sub>(<tt>PropertyExpression<sub>1</sub></tt>, <tt>?y</tt>, <tt>?z<sub>m</sub></tt>)<tt>))</tt>
</p>
</td>
</tr>
<tr>
<td>26</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>SameIndividual(Individual<sub>1</sub> Individual<sub>2</sub>)</span></tt><br />
</p>
)</td>
<td>
<p>tr(<tt>Individual<sub>1</sub></tt>)<tt>=</tt>tr(<tt>Individual<sub>2</sub></tt>)
</p>
</td>
</tr>
<tr>
<td>27</td>
<td>tr<sub>O</sub>(<br />
<p><tt><span>DifferentIndividuals(Individual<sub>1</sub> Individual<sub>2</sub>)</span></tt><br />
</p>
)</td>
<td>
<p><tt>rif:error</tt> :- tr(<tt>Individual<sub>1</sub></tt>)<tt>=</tt>tr(<tt>Individual<sub>2</sub></tt>)
</p>
</td>
</tr>
</table>
<p>Besides the embedding in the previous table, we also need an axiomatization of some of the aspects of the OWL 2 Direct Semantics, e.g., separation between individual and datatype domains. This axiomatization is defined relative to an OWL Vocabulary <i>V</i>, which includes all well-typed literals used in the rules, and a datatype map D, which includes all considered datatypes. In the table, for a given datatype d, L2V(d) is the lexical-to-value mapping of d.
</p>
<table border="1">
<tr valign="top">
<td><em>R<sup>OWL-Direct</sup></em>(<i>V</i>,<i>R</i>)</td><td>=</td>
<td>merge({<br />
<p>(i) (<tt>Forall ?x (rif:error :- ?x[rdf:type -> owl:Nothing])</tt>,<br />
(ii) <tt>Forall ?x (rif:error :- And(?x[rdf:type -> rdfs:Literal] ?x[rdf:type -> owl:Thing]))</tt>,<br />
(iii) (<tt>Forall ?x (?x[rdf:type -> owl:Thing] :- ?x[rdf:type -> C])</tt>) for every class ID <tt>C</tt>,<br />
(iv) (<tt>Forall ?x ?y (?x[rdf:type -> owl:Thing] :- ?x[P -> ?y])</tt>) for every property ID <tt>P</tt>,<br />
(v) (<tt>Forall ?x ?y (?y[rdf:type -> owl:Thing] :- ?x[P -> ?y])</tt>) for every object property ID <tt>P</tt>,<br />
(vi) (<tt>Forall ?x ?y (?y[rdf:type -> rdfs:Literal] :- ?x[P -> ?y])</tt>) for every data property ID <tt>P</tt>,<br />
(vii) (tr(<tt>i</tt>)<tt>[rdf:type -> owl:Thing]</tt>) for every IRI <tt>i</tt> in <i>V</i>,<br />
(viii) (tr(<tt>s^^u</tt>)<tt>[rdf:type -> u']</tt>) for every well-typed literal <tt>s^^u</tt> and datatype identifier <tt>u'</tt> in <i>V</i> such that L2V(D(<tt>u</tt>))(<tt>s</tt>) is in the value space of <tt>u'</tt>,<br />
(ix) (<tt>rif:error :- </tt>tr(<tt>s^^u</tt>)<tt>[rdf:type -> u']</tt>) for every well-typed literal <tt>s^^u</tt> and datatype identifier <tt>u'</tt> in <i>V</i> such that L2V(D(<tt>u</tt>))(<tt>s</tt>) is not in the value space of <tt>u'</tt>,<br />
(x) (<tt>Forall ?x (?x[rdf:type -> rdfs:Literal] :- ?x[rdf:type -> <i>Diri</i>])</tt>) for every datatype in D with identifier <i>Diri</i>,<br />
(xi) <tt>"a"="b" :- rif:error</tt>})
</p>
</td></tr>
</table>
<p>We call an OWL 2 RL ontology <i>O</i> <i>normalized</i> if it is the same as its normalization, i.e., <i>O</i>=tr<sub>N</sub>(<i>O</i>).
</p><p>The following lemma establishes faithfulness of the embedding.
</p><p><span id="lem-normalized-embedding"><b>Normalized Combination Embedding Lemma</b></span> Given a datatype map D conforming with T, a <a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> C=<<i>R</i>,{<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}>, where {<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>} is an imports-closed set of normalized OWL 2 RL ontologies with vocabulary <i>V</i>, <a href="#def-owl-direct-entails" title="">RIF-OWL Direct-entails</a> a DL-condition φ with respect to D iff merge({<i>R'</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>), tr<sub>O</sub>(<i>O<sub>1</sub></i>), ..., tr<sub>O</sub>(<i>O<sub>n</sub></i>)}) <a href="#def-dl-entails" title="">dl-entails</a> φ, where <i>R'</i> is like <i>R</i>, except that every subformula of the form <tt>a#b</tt> has been replaced with <tt>a[rdf:type -> b]</tt>.
</p><p><br />
</p>
<blockquote> <b>Proof.</b>
We prove both directions by contraposition.
<br />
In the proof we abbreviate merge({<i>R'</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>), tr<sub>O</sub>(<i>O<sub>1</sub></i>), ..., tr<sub>O</sub>(<i>O<sub>n</sub></i>)} with R*.
<br />
<br />
(=>) Assume R* does not dl-entail φ. This means there is a dl-semantic multi-structure <i><b>Î</b></i> that is a model of R* but <i><b>I</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>C'</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>F</sub>,
<i><b>I</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>> is not a model of φ.
<br />
We call a structure <i><b>I</b></i> <i>named for R*</i> if for every object <tt>k</tt> ∈ <i><b>D</b></i><sub>ind</sub> that is not in the value space of some datatype in <i><b>DTS</b></i>, <tt>k</tt>=<i><b>I</b></i><sub>C</sub>(<tt>c</tt>), where <tt>c</tt> is either an IRI identifying an individual in <i>V</i> or a constant appearing as an individual in <i>R</i>. This definition extends naturally to dl-semantic multi-structures.
<br />
We now show that there is a named dl-semantic multi-structure <i><b>Î'</b></i> that is a model of R* such that <i><b>I'</b></i> is not a model of φ.
<br />
The set of unnamed individuals in <i><b>I</b></i> is the set of objects <tt>k</tt> ∈ <i><b>D</b></i><sub>ind</sub> that are not in the value space of some datatype in <i><b>DTS</b></i>, and there is no IRI <tt>c</tt> identifying an individual in <i>V</i> or constant <tt>c</tt> appearing as an individual in <i>R</i> such that <tt>k</tt>=<i><b>I</b></i><sub>C</sub>(<tt>c</tt>).
<br />
Let <i><b>Î'</b></i> be obtained from <i><b>Î</b></i> by removing all unnamed individuals from <i><b>D</b></i><sub>ind</sub> and removing the corresponding tuples in the domains and ranges of the various mapping functions in the structures in <i><b>Î</b></i>. Clearly, <i><b>I'</b></i> is not a model of φ: condition formulas do not contain negation, and so every condition formula that is satisfied by <i><b>I'</b></i> is also satisfied by <i><b>I</b></i>.
<br />
Consider any rule r in R*. If r is a variable-free rule implication or atomic formula it is clearly satisfied <i><b>Î'</b></i>, by satisfaction of r in <i><b>Î</b></i> are construction of <i><b>Î'</b></i>. A universal fact can be seen as a rule with the empty condition <tt>And()</tt>. Let r be a rule with a condition ψ that is satisfied by <i><b>I'</b></i>. Since ψ does not contain negation, ψ is also satisfied by <i><b>I</b></i>. Now, if every variable in the conclusion of r appears also in the condition ψ, every variable is mapped to a named individual, and thus the conclusion is satisfied by satisfaction in <i><b>I</b></i> and construction of <i><b>I'</b></i>. Now, if there is a variable <tt>?x</tt> in the conclusion that does not appear in ψ, <i><b>I</b></i> satisfies the conclusion for every assignment of <tt>?x</tt> to any element in <i><b>D</b></i><sub>ind</sub>. Since the individual domain of <i><b>I'</b></i> is a strict subset of <i><b>D</b></i><sub>ind</sub>, the conclusion is also satisfied in <i><b>I'</b></i>. Therefore, <i><b>Î'</b></i> is a model of R*. In the remainder we assume <i><b>Î</b></i>=<i><b>Î'</b></i>.
<br />
We define CExt(<tt>c</tt>)={<tt>u</tt> | <tt>u</tt> ∈ <i><b>D</b></i><sub>ind</sub> and <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>u</tt>)(<tt>rdf:type</tt>, <i><b>I</b></i><sub>C</sub>(<tt>c</tt>)))=<b>t</b>} as the class extension of the constant <tt>c</tt>. Furthermore, we define <i><b>D</b></i><sub>D</sub>=(union of the value spaces of all datatypes in D).
<br />
Consider the pair (<i><b>Î*</b></i>,I), where <i><b>Î*</b></i> is obtained from <i><b>Î</b></i> as follows: <i><b>I*</b></i> = <<i><b>TV</b></i>, <i><b>DTS</b></i>,
<i><b>D*</b></i>, <i><b>D*</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I*</b></i><sub>C</sub>, <i><b>I</b></i><sub>C'</sub>,
<i><b>I</b></i><sub>V</sub>, <i><b>I</b></i><sub>F</sub>,
<i><b>I*</b></i><sub>frame</sub>, <i><b>I</b></i><sub>NF</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>,
<i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>,
<i><b>I</b></i><sub>truth</sub>>, where <tt>t</tt>, <tt>f</tt> ∈ <i><b>D*</b></i> such that <i><b>I</b></i><sub>truth</sub>(<tt>t</tt>)=<b>t</b> and <i><b>I*</b></i><sub>truth</sub>(<tt>f</tt>)=<b>f</b>, and
<ul><li> <i><b>D*</b></i><sub>ind</sub>=<i><b>D</b></i><sub>ind</sub> union (union of the value spaces of all datatypes in D);
</li><li> <i><b>D*</b></i>=<i><b>D</b></i> union <i><b>D*</b></i><sub>ind</sub>;
</li><li> <i><b>I*</b></i><sub>C</sub> is like <i><b>I</b></i><sub>C</sub> except that it maps all constants with symbol spaces in D\<i><b>DTS</b></i> to the values in the in the corresponding datatypes, according to the respective lexical-to-value mappings;
</li><li> <i><b>I*</b></i><sub>frame</sub> is defined as follows:
<ul><li> <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt>rdfs:Literal</tt>))=<tt>t</tt> if <tt>k</tt> ∈ <i><b>D</b></i><sub>D</sub>, otherwise <i><b>I*</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt>rdfs:Literal</tt>))=<tt>f</tt>,
</li><li> otherwise <i><b>I*</b></i><sub>frame</sub> is like <i><b>I</b></i><sub>frame</sub>;
</li></ul>
</li></ul>
and I=< IR, LV, C, OP, DP, I, DT, LT, FA > is a tuple defined as follows:
<ul><li> LV=<i><b>D</b></i><sub>D</sub>,
</li><li> IR=<i><b>D</b></i><sub>ind</sub>\LV,
</li><li> DT(<tt>rdfs:Literal</tt>)=LV,
</li><li> DT(<tt>d'</tt>) = the value space of D(<tt>d'</tt>), if <tt>d'</tt> is a datatype identifier in <i>V</i> in the domain of D,
</li><li> DT(<tt>d'</tt>) = set of all objects <tt>k</tt> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>))) = <b>t</b>, for every datatype identifier <tt>d'</tt> in <i>V</i>, not in the domain of D,
</li><li> C(<tt>c</tt>) = set of all objects <tt>k</tt> such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)(<i><b>I</b></i><sub>C'</sub>(<tt>rdf:type</tt>),<i><b>I</b></i><sub>C'</sub>(<tt><c></tt>))) = <b>t</b>, for every class identifier in <i>V</i>,
</li><li> OP(<tt>p</tt>) = set of all pairs (<tt>k</tt>, <tt>l</tt>) such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)( <i><b>I</b></i><sub>C'</sub>(<tt><p></tt>), <tt>l</tt> ))) = <b>t</b> (true), for every object property identifier <tt>p</tt> in <i>V</i> and not in {<tt>owl:topObjectProperty</tt>,<tt>owl:bottomObjectProperty</tt>};
</li><li> OP(<tt>owl:topObjectProperty</tt>) = IR × IR;
</li><li> OP(<tt>owl:bottomObjectProperty</tt>) = { };
</li><li> DP(<tt>p</tt>) = set of all pairs (<tt>k</tt>, <tt>l</tt>) such that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)( <i><b>I</b></i><sub>C'</sub>(<tt><p></tt>), <tt>l</tt> ))) = <b>t</b> (true), for every datatype property identifier <tt>p</tt> in <i>V</i> and not in {<tt>owl:topDataProperty</tt>,<tt>owl:bottomDataProperty</tt>};
</li><li> OP(<tt>owl:topDataProperty</tt>) = IR × LV;
</li><li> OP(<tt>owl:bottomDataProperty</tt>) = { };
</li><li> LT((<tt>s</tt>, <tt>d</tt>)) = <i><b>I</b></i><sub>C</sub>(<tt>"s"^^d</tt>) for every <a href="#def-well-typed-literal" title="">well-typed literal</a> (<tt>s</tt>, <tt>d</tt>) in <i>V</i>;
</li><li> I(<tt>i</tt>) = <i><b>I</b></i><sub>C</sub>(<tt><i></tt>) for every IRI <tt>i</tt> identifying an individual in <i>V</i>;
</li><li> FA is the empty mapping.
</li></ul>
When referring to rules in the remainder we mean rules in <i>R<sup>OWL-Direct</sup></i>(<i>V</i>,<i>R</i>), unless otherwise specified.
<br />
We have that <i><b>I*</b></i> has a separation between the object and data domains: (+) each object is either in CExt(<tt>owl:Thing</tt>) or in CExt(<tt>rdfs:Literal</tt>) and <i><b>D</b></i><sub>D</sub>: each non-data value in <i><b>D</b></i><sub>ind</sub> is in CExt(<tt>owl:Thing</tt>) by rule (vii) and the fact that <i><b>I*</b></i> is a named structure, and each data value is in CExt(<tt>rdfs:Literal</tt>) by construction of <i><b>I*</b></i>. The two sets are distinct by satisfaction of rule (ii) in <i><b>I</b></i>.
<br />
It is straightforward to see that <i><b>Î*</b></i> is a model of R* and <i><b>I*</b></i> is not a model of φ.
<br />
According to its definition, an <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_interpretation" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#def_interpretation">interpretation</a> with respect to a datatype map D must fulfill the following conditions, where L(d) denotes the lexical space, V(d) denotes the value space and L2V(d) denotes to lexical-to-value mapping of a datatype d:
<ol><li> IR is a nonempty set,
</li><li> LV is a nonempty set disjoint with IR and including the value spaces of all datatypes in D,
</li><li> C : <i>V<sub>C</sub></i> → 2<sup>IR</sup>
</li><li> DT : <i>V<sub>D</sub></i> → 2<sup>LV</sup>, where DT is the same as in D for each datatype d
</li><li> OP : <i>V<sub>IP</sub></i> → 2<sup>IR×IR</sup>
</li><li> DP : <i>V<sub>DP</sub></i> → 2<sup>IR×LV</sup>
</li><li> LT : TL → LV, where TL is the set of typed literals in <i>V<sub>L</sub></i> and LT((s,d))=L2V(d)(s), for every typed literal (s,d) ∈ <i>V<sub>L</sub></i>
</li><li> I : <i>V<sub>I</sub></i> → IR
</li><li> C(<tt>owl:Thing</tt>) = IR
</li><li> C(<tt>owl:Nothing</tt>) = { }
</li><li> OP(<tt>owl:topObjectProperty</tt>) = IR × IR
</li><li> DP(<tt>owl:topDataProperty</tt>) = IR × LV
</li><li> OP(<tt>owl:bottomObjectProperty</tt>) = { }
</li><li> DP(<tt>owl:bottomDataProperty</tt>) = { }
</li><li> DT(<tt>rdfs:Literal</tt>) = LV
</li></ol>
Condition 1 is met because <i><b>D<sub>ind</sub></b></i> is a nonempty set. Clearly LV disjoint with IR and contains the value space for each datatype in D; therefore, condition 2 is met. Conditions 3 through 9 and 11 through 15 are met by the definitions of <i><b>I*</b></i> and I, and the property (+). Finally, condition 10 is satisfied by satisfaction of rule (i) in <i><b>I</b></i>.
This establishes the fact that I is an interpretation.
<br />
<br />
Consider now any ontology <i>O</i> in {<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}. To establish that I satisfies <i>O</i>, we need to establish that each axiom in the <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#def_axiom_closure" title="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#def_axiom_closure">axiom closure</a> of <i>O</i> is satisfied in I w.r.t. <i>O</i>. Note that, since <i>O</i> is normalized, it does not contain import statements, and thus the axiom closure of <i>O</i> is equal to <i>O</i>.
<br />
Consider any axiom d in <i>O</i>; d has one of the following forms (cf. the second column of Table <a href="#tab-owl-normalization" title="">Normalization of OWL 2 RL ontologies</a>):
<ol><li> subproperty statement,
</li><li> disjoint properties statement,
</li><li> inverse property statement,
</li><li> functional property statement,
</li><li> symmetric property statement,
</li><li> transitive property statement,
</li><li> datatype definition,
</li><li> has-key statement,
</li><li> same-individual statement,
</li><li> different-individuals statement, or
</li><li> subclass statement <tt>SubClassOf(<i>X</i> <i>Y</i>)</tt>.
</li></ol>
Consider a subproperty statement <tt>SubObjectPropertyOf(p q)</tt> and a pair (<tt>k, l</tt>) in OP(<tt><p></tt>). Then, by construction of I, <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)( <i><b>I</b></i><sub>C'</sub>(<tt><p></tt>), <tt>l</tt> ))) = <b>t</b>. But, by tr(d), it must be the case that also <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)( <i><b>I</b></i><sub>C'</sub>(<tt><q></tt>), <tt>l</tt> ))) = <b>t</b>. But then, (<tt>k,l</tt>) must be in OP(<tt><q></tt>), by construction of I. This argument extends straightforwardly to subproperty statements with inverse or property-chain expressions. So, I satisfies d. Similar for statements of the forms 2--6.
<br />
Consider a datatype definition <tt>DatatypeDefinition( d e )</tt>, with <tt>d</tt>, <tt>e</tt> IRIs. This axiom is satisfied in I if <i>DT(d) = DT(e)</i>. This definition is translated to the rules
Forall ?x (?x[rdf:type -> e] :- ?x[rdf:type -> d])
Forall ?x (?x[rdf:type -> d] :- ?x[rdf:type -> e])
By satisfaction of these rules in <i><b>I*</b></i> and construction of I we have that I satisfies the datatype definition. This argument straightforwardly extends to more complex datatype definitions; recall that the only construct available in OWL 2 RL datatype definitions is intersection.
<br />
Consider a has-key axiom d. We have that every object in <i><b>D*</b></i><sub>ind</sub>, and thus also every object in IR is named. It is then straightforward to verify that if tr<sub><i>O</i></sub>(d) is satisfied in <i><b>I*</b></i>, the condition in <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Keys" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Keys">Section 2.3.5</a> of [<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>] is satisfied. Analogous for same-individual and different-individual axioms.
<br />
Consider the case that d is a subclass statement <tt>SubClassOf(<i>X</i> <i>Y</i>)</tt> and consider any <tt>k</tt> in C(<tt><i>X</i></tt>), where C is as in the <a class="external text" href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Class_Expressions" title="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/#Class_Expressions">Class Expressions Table</a> in [<a href="#ref-owl2-semantics" title="">OWL2-Semantics</a>]. We show, by induction, that <i><b>I*</b></i> satisfies tr<sub>O</sub>(<tt><i>X</i></tt>) when <tt>?x</tt> is assigned to <tt>k</tt>.
<br />
If <tt><i>X</i></tt> is a classID, then satisfaction of tr(<tt><i>X</i></tt>) follows by an analogous argument as that for directives of form 1. Similar for value restrictions. If <tt><i>X</i></tt> is a some-value restriction of type <tt><i>Z</i></tt> on a property <tt>p</tt>, then there must be some object <tt>l</tt> such that (<tt>k</tt>,<tt>l</tt>) in OP(<tt>p</tt>) such that <tt>l</tt> is in C(<tt><i>Z</i></tt>).
By induction we have satisfaction of tr(<tt><i>Z</i></tt>) for some variable assignment. Then, by definition of I, we have <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>frame</sub>(<tt>k</tt>)( <i><b>I</b></i><sub>C'</sub>(<tt><p></tt>), <tt>l</tt> )) = <b>t</b> (true), thereby establishing satisfaction of tr<sub>O</sub>(<tt><i>X</i></tt>) in <i><b>I*</b></i>. This extends straightforwardly to union, intersection, and one-of descriptions.
<br />
By satisfaction of tr<sub>O</sub>(d), we have that tr<sub>O</sub>(<tt><i>Y</i></tt>) is necessarily satisfied for <tt>?x</tt> assigned to <tt>k</tt>. By an argument analogous to the argument above, we obtain that <tt>k</tt> is in C(<tt><i>Y</i></tt>).
<br />
This establishes satisfaction of d in I.
<br />
<br />
We obtain that every directive is satisfied in I. Therefore, <i>O</i>, and thus every ontology in C, is satisfied in I. We have established earlier that <i><b>I*</b></i> satisfies <i>R</i> and not φ, so (<i><b>I*</b></i>, I) satisfies <i>R</i> and not φ. We conclude that C does not entail φ.
<br />
<br />
(<=) Assume C does not RIF-OWL Direct-entail φ. This means there is a common-RIF-OWL Direct-interpretation (<i><b>Î</b></i>, I) that is a RIF-OWL Direct-model of C, but <i><b>I</b></i> is not a model of φ. To show that R* does not entail φ, we show that <i><b>I</b></i> is a model of R*.
<br />
<i>R</i> is satisfied in <i><b>I</b></i> by assumption. Satisfaction of tr<sub>O</sub>(<i>O<sub>i</sub></i>) can be shown analogously to establishment of satisfaction in I of <i>O<sub>i</sub></i> in the (=>) direction. We now establish satisfaction of the rules in <i>R<sup>OWL-Direct</sup></i>(<i>V</i>,<i>R</i>).
<br />
(i) follows immediately from the fact that C(<tt>owl:Nothing</tt>)={}. (ii) follows from conditions 2, 9, and 15 on interpretations. (iii) follows from conditions 3 and 9. (iv) follows from conditions 5, 6 and 9. (v) follows from conditions 5 and 9. (vi) follows from conditions 6 and 15. (vii) follows from conditions 8 and 9. (viii) and (ix) follow from condition 7. (x) follows from conditions 4 and 15.
<br />
<br />
This establishes satisfaction of <i>R<sup>OWL-Direct</sup></i>(<i>V</i>,<i>R</i>), and thus R*, in <i><b>I</b></i>. Therefore, R* does not entail φ.
☐
</blockquote>
<p>The following theorems establish faithfulness of the full embedding of RIF-OWL 2 RL combinations into RIF.
</p><p><b>Theorem</b> Given a datatype map D conforming with T, a <a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> C=<<i>R</i>,{<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}>, where {<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>} is an imports-closed set of OWL 2 RL ontologies with Vocabulary <i>V</i>, <a href="#def-owl-direct-entails" title="">RIF-OWL Direct-entails</a> a DL-condition formula φ with respect to D iff tr(merge({<i>R</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>), tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>1</sub></i>)), ..., tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>n</sub></i>))})) <a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/#def-bld-entail" title="BLD">entails</a> tr(φ).
</p>
<blockquote> <b>Proof.</b>
By the <a href="#lem-dl-document" title="">RIF-BLD DL-document formula Lemma</a>,
<br />
tr(merge({<i>R</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>,<i>R</i>), tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>1</sub></i>)), ..., tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>n</sub></i>))})) entails tr(φ) iff merge({<i>R</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>,<i>R</i>), tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>1</sub></i>)), ..., tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>n</sub></i>))}) dl-entails φ.
<br />
Observe that the mapping tr() does not distinguish between frame formulas of the form <tt>a[rdf:type -> b]</tt> and membership formulas <tt>a#b</tt>. We may thus safely assume that <i>R</i> has no occurrences of the latter.
Then, by the <a href="#lem-normalized-embedding" title="">Normalized Combination Embedding Lemma</a>,
<br />
merge({<i>R</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>,<i>R</i>), tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>1</sub></i>)), ..., tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>n</sub></i>))}) dl-entails φ iff <<i>R</i>,{tr<sub>N</sub>(<i>O<sub>1</sub></i>),...,tr<sub>N</sub>(<i>O<sub>n</sub></i>)}> RIF-OWL Direct-entails φ.
<br />
Finally, by the <a href="#lem-normalization" title="">Normalization Lemma</a>,
<br />
<<i>R</i>,{tr<sub>N</sub>(<i>O<sub>1</sub></i>),...,tr<sub>N</sub>(<i>O<sub>n</sub></i>)}> RIF-OWL Direct-entails φ iff C=<<i>R</i>,{<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}> RIF-OWL Direct-entails φ.
<br />
This chain of equivalences establishes the theorem. ☐
</blockquote>
<p><b>Theorem</b> Given a datatype map D conforming with T, a <a href="#def-rif-owl-dl-combination" title="">RIF-OWL DL-combination</a> <<i>R</i>,{<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>}>, where {<i>O<sub>1</sub></i>,...,<i>O<sub>n</sub></i>} is an imports-closed set of OWL 2 RL ontologies with Vocabulary <i>V</i>, is <a href="#def-owl-direct-satisfiable" title="">RIF-OWL Direct-satisfiable</a> with respect to D iff tr(merge({<i>R</i>, <i>R<sup>OWL-Direct</sup></i>(<i>V</i>), tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>1</sub></i>)), ..., tr<sub>O</sub>(tr<sub>N</sub>(<i>O<sub>n</sub></i>))}) does not entail <tt>rif:error</tt>.
</p>
<blockquote> <b>Proof.</b>
The theorem follows immediately from the previous theorem and the observation that a combination (respectively, document) is RIF-OWL Direct-satisfiable (respectively, has a model) if and only if it does not entail the condition formula <tt>"a"="b"</tt>. ☐
</blockquote>
<div id="changelog">
<a id="Appendix:_Change_log_.28Informative.29" name="Appendix:_Change_log_.28Informative.29"></a><h2> <span class="mw-headline">10 Appendix: Change log (Informative) </span></h2>
<p>Changes since the <a class="external text" href="http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/" title="http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/">11 May 2010 Proposed Recommendation</a>.
</p><p>In the table in Section <a href="#Embedding_Normalized_OWL_2_RL" title="">9.2.2.2</a>:
The expression tr<sub>O</sub>(<tt><i>X</i></tt>, <tt>?y<sub>n</sub></tt>) has been added to the third row, second column; omitting this expression had been an oversight. Rows 3--5 did not account for inverse properties; this had been rectified. For the purpose of understandability, rows 3a, 4a, 5a have been added to make the case <tt>n</tt>=0 of rows 3, 4, 5 explicit.
</p>
<a id="End_Notes" name="End_Notes"></a><h2> <span class="mw-headline">11 End Notes </span></h2>
<p><span id="note-rdf-uri-references">
<b>RDF URI References</b></span>: There are certain RDF URI references that are not IRIs (e.g., those containing spaces). It is possible to use such RDF URI references in RDF graphs that are combined with RIF rules. However, such URI references cannot be represented in RIF rules and their use in RDF is discouraged.
</p><p><span id="note-generalized-rdf-graphs">
<b>Generalized RDF graphs</b></span>: Standard <a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-rdf-graph" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-rdf-graph">RDF graphs</a>, as defined in [<a href="#ref-rdf-concepts" title="">RDF-Concepts</a>], do not allow the use of literals in subject and predicate positions and blank nodes in predicate positions. The <a class="external text" href="http://www.w3.org/2001/sw/RDFCore/" title="http://www.w3.org/2001/sw/RDFCore/">RDF Core</a> working group has listed two <a class="external text" href="http://www.w3.org/2000/03/rdf-tracking/" title="http://www.w3.org/2000/03/rdf-tracking/">issues</a> questioning the restrictions that <a class="external text" href="http://www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects" title="http://www.w3.org/2000/03/rdf-tracking/#rdfms-literalsubjects">literals may not occur in subject</a> and <a class="external text" href="http://www.w3.org/2000/03/rdf-tracking/#rdf-bnode-predicates" title="http://www.w3.org/2000/03/rdf-tracking/#rdf-bnode-predicates">blank nodes may not occur in predicate</a> positions in triples. Anticipating lifting of these restrictions in a possible future version of RDF, we use the more liberal notion of <i>generalized</i> RDF graph. We note that the definitions of interpretations, models, and entailment in the RDF Semantics document [<a href="#ref-rdf-semantics" title="">RDF-Semantics</a>] also apply to such generalized RDF graphs.
</p><p>We note that every standard RDF graph is a generalized RDF graph. Therefore, our definition of combinations applies to standard RDF graphs as well.
</p>
We note also that the notion of generalized RDF graphs is more liberal than the notion of RDF graphs used by <a class="external text" href="http://www.w3.org/TR/rdf-sparql-query/#QSynTriples" title="http://www.w3.org/TR/rdf-sparql-query/#QSynTriples">SPARQL</a>; generalized RDF graphs additionally allow blank nodes and literals in predicate positions.</div>
</body>
</html>