index.html 151 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
  <title>XML Encryption Syntax and Processing</title>
  <style type="text/css">
<!--
/*<![CDATA[*/
    em {font-weight: normal; font-style: italic;}
    u,ins,.ins  { background: white; color: red;}
    del,strike,.strike   { background: white; color: silver; text-decoration: line-through;}
    code     {font-weight: normal; }
    .def        { background: #FFFFFF; font-weight: bold}
    .link-sec   { font-style: italic;}
    .link-def   { background: #FFFFFF; color: teal;  font-style: italic;}
    .comment    { background: #FFFFF5; color: black; padding: .7em; border:
                  navy thin solid;}
    .discuss    { color: blue; background: yellow; }
    .xml-example,.xml-dtd { margin-left: -1em; padding: .5em; white-space:
                            pre; border: none;}
    .xml-dtd    { background: #efeff8; color: black;}
/*]]>*/
-->






  </style>
  <link rel="stylesheet" type="text/css"
  href="http://www.w3.org/StyleSheets/TR/W3C-REC.css" />
</head>

<body xml:lang="en" lang="en">

<div class="head">
<p><a href="http://www.w3.org/"><img height="48" width="72" alt="W3C"
src="http://www.w3.org/Icons/w3c_home" /></a></p>

<h1 class="notoc">XML Encryption Syntax and Processing</h1>

<h2 class="notoc">W3C Recommendation 10 December 2002</h2>
<dl>
  <dt>This version:</dt>
    <dd><a
      href="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/">http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/</a></dd>
  <dt>Latest version:</dt>
    <dd><a
      href="http://www.w3.org/TR/xmlenc-core/">http://www.w3.org/TR/xmlenc-core/</a></dd>
  <dt>Previous version:</dt>
    <dd><a
      href="http://www.w3.org/TR/2002/PR-xmlenc-core-20021003/">http://www.w3.org/TR/2002/PR-xmlenc-core-20021003/</a></dd>
  <dt><a
  href="http://www.w3.org/Encryption/2001/Contributor.html#Editor">Editors</a></dt>
    <dd>Donald Eastlake &lt;dee3@torque.pothole.com&gt;</dd>
    <dd>Joseph Reagle &lt;reagle@w3.org&gt;</dd>
  <dt><a
  href="http://www.w3.org/Encryption/2001/Contributor.html#Author">Authors</a></dt>
    <dd>Takeshi Imamura &lt;IMAMU@jp.ibm.com&gt;</dd>
    <dd>Blair Dillaway &lt;blaird@microsoft.com&gt;</dd>
    <dd>Ed Simon &lt;edsimon@xmlsec.com&gt;</dd>
  <dt><a
  href="http://www.w3.org/Encryption/2001/Contributor.html#Contributor">Contributors</a></dt>
    <dd>See <a
      href="http://www.w3.org/Encryption/2001/Participants.html">participants</a>.</dd>
</dl>

<p>Please see the <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-errata"><strong>errata</strong></a>
for this document, which may include some normative corrections. See also <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-translations"><strong>translations</strong></a>.</p>

<p class="copyright"><a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright">Copyright</a>
© 2002 <a href="http://www.w3.org/"><abbr
title="World Wide Web Consortium">W3C</abbr></a><sup>®</sup> (<a
href="http://www.lcs.mit.edu/"><abbr
title="Massachusetts Institute of Technology">MIT</abbr></a>, <a
href="http://www.inria.fr/"><abbr xml:lang="fr" lang="fr"
title="Institut National de Recherche en Informatique et Automatique">INRIA</abbr></a>,
<a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer">liability</a>,
<a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks">trademark</a>,
<a
href="http://www.w3.org/Consortium/Legal/copyright-documents-19990405">document
use</a> and <a
href="http://www.w3.org/Consortium/Legal/copyright-software-19980720">software
licensing</a> rules apply.</p>
<hr title="Separator from Header" />
</div>

<h2 class="notoc"><a name="sec-Abstract" id="sec-Abstract">Abstract</a></h2>

<p class="notoc">This document specifies a process for encrypting data and
representing the result in XML. The data may be arbitrary data (including an
XML document), an XML element, or XML element content. The result of
encrypting data is an XML Encryption element which contains or references the
cipher data.</p>

<h2 class="notoc">Status of this document</h2>

<div class="">
<p>This document is the W3C XML Encryption <a
href="http://www.w3.org/Consortium/Process-20010719/process.html#RecsW3C">Recommendation
(REC)</a>. This document has been reviewed by W3C Members and other
interested parties and has been endorsed by the Director as a W3C
Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C's role in making
the Recommendation is to draw attention to the specification and to promote
its widespread deployment. This enhances the functionality and
interoperability of the Web.</p>

<p>This specification was produced by the W3C <a
href="http://www.w3.org/Encryption/2001/Overview.html">XML Encryption Working
Group</a> (<a
href="http://www.w3.org/Encryption/2001/Activity.html">Activity</a>) which
believes the specification is sufficient for the creation of independent
interoperable implementations as demonstrated in the <a
href="http://www.w3.org/Encryption/2002/02-xenc-interop.html">Interoperability
Report.</a></p>

<p>Patent disclosures relevant to this specification may be found on the
Working Group's <a
href="http://www.w3.org/Encryption/2001/Disclosures.html">patent disclosure
page</a> in conformance with W3C policy.</p>

<p>Please report errors in this document to <a
href="mailto:xml-encryption@w3.org">xml-encryption@w3.org</a> (<a
href="http://lists.w3.org/Archives/Public/xml-encryption/">public
archive</a>).</p>

<p>The list of known errors in this specification is available at <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-errata">http://www.w3.org/Encryption/2002/12-xmlenc-errata</a>.</p>

<p>The English version of this specification is the only normative version.
Information about translations of this document (if any) is available <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-translations">http://www.w3.org/Encryption/2002/12-xmlenc-translations</a>.</p>

<p>A list of current W3C Recommendations and other technical documents can be
found at <a href="http://www.w3.org/TR/">http://www.w3.org/TR/</a>.</p>
</div>

<h2><a name="sec-ToC" id="sec-ToC">Table of Contents</a></h2>
<ol>
  <li><a href="#sec-Introduction">Introduction</a> 
    <ol>
      <li><a href="#sec-Editorial">Editorial and Conformance
      Conventions</a></li>
      <li><a href="#sec-Design">Design Philosophy</a></li>
      <li><a href="#sec-Versions">Versions, Namespaces URIs, and
        Identifiers</a></li>
      <li><a href="#sec-Acknowledgements">Acknowledgements</a></li>
    </ol>
  </li>
  <li><a href="#sec-Overview">Encryption Overview and Examples</a> 
    <ol>
      <li><a href="#sec-eg-Granularity">Encryption Granularity</a> 
        <ol>
          <li><a href="#sec-eg-Element">Encrypting an XML Element</a></li>
          <li><a href="#sec-eg-Element-Content">Encrypting XML Element
            Content (Elements)</a></li>
          <li><a href="#sec-eg-Element-Content-Character">Encrypting XML
            Element Content (Character Data)</a></li>
          <li><a href="#sec-eg-Arbitrary-Data">Encrypting Arbitrary Data and
            XML Documents</a></li>
          <li><a href="#sec-eg-Super-Encryption">Super-Encryption: Encrypting
            <code>EncryptedData</code></a></li>
        </ol>
      </li>
      <li><a href="#sec-Usage"><code>EncryptedData</code> and
        <code>EncryptedKey</code> Usage</a> 
        <ol>
          <li><a href="#sec-eg-Symmetric-Key"><code>EncryptedData</code> with
            Symmetric Key&nbsp; (<code>KeyName</code>)</a></li>
          <li><a href="#sec-eg-EncryptedKey"><code>EncryptedKey</code>
            (<code>ReferenceList</code>,
            <code>ds:RetrievalMethod</code>,<code>CarriedKeyName</code>)</a></li>
        </ol>
      </li>
    </ol>
  </li>
  <li><a href="#sec-Encryption-Syntax">Encryption Syntax</a> 
    <ol>
      <li><a href="#sec-EncryptedType">The <code>EncryptedType</code>
        Element</a></li>
      <li><a href="#sec-EncryptionMethod">The <code>EncryptionMethod</code>
        Element</a></li>
      <li><a href="#sec-CipherData">The <code>CipherData</code> Element</a> 
        <ol>
          <li><a href="#sec-CipherReference">The <code>CipherReference</code>
            Element</a></li>
        </ol>
      </li>
      <li><a href="#sec-EncryptedData">The <code>EncryptedData</code>
        Element</a></li>
      <li><a href="#sec-Extensions-to-KeyInfo">Extensions to
        <code>ds:KeyInfo</code> Element</a> 
        <ol>
          <li><a href="#sec-EncryptedKey">The <code>EncryptedKey</code>
            Element</a></li>
          <li><a href="#sec-ds-RetrievalMethod">The
            <code>ds:RetrievalMethod</code> Element</a></li>
        </ol>
      </li>
      <li><a href="#sec-ReferenceList">The <code>ReferenceList</code>
        Element</a></li>
      <li><a href="#sec-EncryptionProperties">The
        <code>EncryptionProperties</code> Element</a></li>
    </ol>
  </li>
  <li><a href="#sec-Processing">Processing Rules</a> 
    <ol>
      <li><a href="#sec-Processing-Encryption">Encryption</a></li>
      <li><a href="#sec-Processing-Decryption">Decryption</a></li>
      <li><a href="#sec-Processing-XML">Encrypting XML</a> 
        <ol>
          <li><a href="#sec-Decrypt-Imp">A Decrypt Implementation
            (Non-normative)</a></li>
          <li><a href="#sec-Decrypt-Replace-Imp">A Decrypt and Replace
            Implementation (Non-normative)</a></li>
          <li><a href="#sec-Serializing-XML">Serializing XML
            (Non-normative)</a></li>
          <li><a href="#sec-Text-Wrapping">Text Wrapping
          (Non-normative)</a></li>
        </ol>
      </li>
    </ol>
  </li>
  <li><a href="#sec-Algorithms">Algorithms</a> 
    <ol>
      <li><a href="#sec-AlgID">Algorithm Identifiers and Implementation
        Requirements</a></li>
      <li><a href="#sec-Alg-Block">Block Encryption Algorithms</a></li>
      <li><a href="#sec-Alg-Stream">Stream Encryption Algorithms</a></li>
      <li><a href="#sec-Alg-KeyTransport">Key Transport</a></li>
      <li><a href="#sec-Alg-KeyAgreement">Key Agreement</a></li>
      <li><a href="#sec-Alg-SymmetricKeyWrap">Symmetric Key Wrap</a></li>
      <li><a href="#sec-Alg-MessageDigest">Message Digest</a></li>
      <li><a href="#sec-Alg-MessageAuthentication">Message
      Authentication</a></li>
      <li><a href="#sec-Alg-Canonicalition">Canonicalization</a></li>
    </ol>
  </li>
  <li><a href="#sec-Security">Security Considerations</a> 
    <ol>
      <li><a href="#sec-Sign-with-Encrypt">Relationship to XML Digital
        Signatures</a></li>
      <li><a href="#sec-InformationRevealed">Information Revealed</a></li>
      <li><a href="#sec-Nonce">Nonce and IV (Initialization Value or
        Vector)</a></li>
      <li><a href="#sec-Denial">Denial of Service</a></li>
      <li><a href="#sec-Unsafe-Content">Unsafe Content</a></li>
    </ol>
  </li>
  <li><a href="#sec-Conformance">Conformance</a></li>
  <li><a href="#sec-MediaType">XML Encryption Media Type</a> 
    <ol>
      <li><a href="#sec-MediaType-Introduction">Introduction</a></li>
      <li><a href="#sec-MediaType-Registration">application/xenc+xml
        Registration</a></li>
    </ol>
  </li>
  <li><a href="#sec-Schema">Schema and Valid Examples</a></li>
  <li><a href="#sec-References">References</a></li>
</ol>
<hr />

<h2>1 <a id="sec-Introduction" name="sec-Introduction">Introduction</a></h2>

<p>This document specifies a process for encrypting data and representing the
result in XML. The data may be arbitrary data (including an XML document), an
XML element, or XML element content. The result of encrypting data is an XML
Encryption <code>EncryptedData</code> element which contains (via one of its
children's content) or identifies (via a URI reference) the cipher data.</p>

<p>When encrypting an XML element or element content the
<code>EncryptedData</code> element replaces the element or content
(respectively) in the encrypted version of the XML document.</p>

<p>When encrypting arbitrary data (including entire XML documents), the
<code>EncryptedData</code> element may become the root of a new XML document
or become a child element in an application-chosen XML document.</p>

<h3>1.1 <a id="sec-Editorial" name="sec-Editorial">Editorial</a> and
Conformance Conventions</h3>

<p>This specification uses XML schemas [<a
href="#ref-XML-Schema">XML-schema</a>] to describe the content model.</p>

<p>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
specification are to be interpreted as described in <a
href="http://www.ietf.org/rfc/rfc2119.txt">RFC2119</a> [<a
href="#ref-KEYWORDS">KEYWORDS</a>]:</p>

<blockquote>
  <p>"they MUST only be used where it is actually required for interoperation
  or to limit behavior which has potential for causing harm (e.g., limiting
  retransmissions)"</p>
</blockquote>

<p>Consequently, we use these capitalized keywords to unambiguously specify
requirements over protocol and application features and behavior that affect
the interoperability and security of implementations. These key words are not
used (capitalized) to describe XML grammar; schema definitions unambiguously
describe such requirements and we wish to reserve the prominence of these
terms for the natural language descriptions of protocols and features. For
instance, an XML attribute might be described as being "optional." Compliance
with the XML-namespace specification [<a href="#ref-XML-NS">XML-NS</a>] is
described as "REQUIRED."</p>

<h3>1.2 <a id="sec-Design" name="sec-Design">Design</a> Philosophy</h3>

<p>The design philosophy and requirements of this specification (including
the limitations related to instance validity) are addressed in the <a
href="http://www.w3.org/TR/xml-encryption-req">XML Encryption
Requirements</a> [<a href="#ref-EncReq">EncReq</a>].</p>

<h3>1.3 <a id="sec-Versions" name="sec-Versions">Versions</a>, Namespaces,
URIs, and Identifiers</h3>

<p>No provision is made for an explicit version number in this syntax. If a
future version is needed, it will use a different namespace. The experimental
XML namespace [<a href="#ref-XML-NS">XML-NS</a>] URI that MUST be used by
implementations of this (dated) specification is:</p>
<pre class="xml-example">   xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'</pre>

<p class="">This namespace is also used as the prefix for algorithm
identifiers used by this specification. While applications MUST support XML
and XML namespaces, the use of <a
href="http://www.w3.org/TR/REC-xml#sec-internal-ent">internal entities</a>
[<a href="#ref-XML">XML</a>, section 4.2.1], the "<code>xenc</code>" XML <a
href="http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-prefix">namespace
prefix</a> [<a href="#ref-XML-NS">XML-NS</a>, section 2] and
defaulting/scoping conventions are OPTIONAL; we use these facilities to
provide compact and readable examples. Additionally, the entity
<code>&amp;xenc;</code> is defined so as to provide short-hand identifiers
for URIs defined in this specification. For example
"<code>&amp;xenc;Element"</code> corresponds to
"http://www.w3.org/2001/04/xmlenc#Element".</p>

<p>This specification makes use of the XML Signature [<a
href="#ref-XML-DSIG">XML-DSIG</a>] namespace and schema definitions</p>
<pre class="xml-example">   xmlns:ds='http://www.w3.org/2000/09/xmldsig#'</pre>

<p>URIs [<a href="#ref-URI">URI</a>] MUST abide by the [<a
href="#ref-XML-Schema">XML-Schema</a>] <code>anyURI</code> type definition
and the [<a href="#ref-XML-DSIG">XML-DSIG</a>, <a
href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#sec-URI">4.3.3.1
The URI Attribute</a>] specification (i.e., permitted characters, character
escaping, scheme support, etc.).</p>

<h3>1.4&nbsp; <a id="sec-Acknowledgements"
name="sec-Acknowledgements">Acknowledgements</a></h3>

<p>The contributions of the following Working Group members to this
specification are gratefully acknowledged in accordance with the <a
href="http://www.w3.org/Encryption/2001/Contributor.html">contributor
policies</a> and the active <a
href="http://www.w3.org/Encryption/2001/Participants.html">WG roster</a>.</p>
<ul>
  <li>Joseph Ashwood</li>
  <li>Simon Blake-Wilson, Certicom</li>
  <li>Frank D. Cavallito, BEA Systems</li>
  <li>Eric Cohen, PricewaterhouseCoopers</li>
  <li>Blair Dillaway, Microsoft (Author)</li>
  <li>Blake Dournaee, RSA Security</li>
  <li>Donald Eastlake, Motorola (Editor)</li>
  <li>Barb Fox, Microsoft</li>
  <li>Christian Geuer-Pollmann, University of Siegen</li>
  <li>Tom Gindin, IBM</li>
  <li>Jiandong Guo, Phaos</li>
  <li>Phillip Hallam-Baker, Verisign</li>
  <li>Amir Herzberg, NewGenPay</li>
  <li>Merlin Hughes, Baltimore</li>
  <li>Frederick Hirsch</li>
  <li>Maryann Hondo, IBM</li>
  <li>Takeshi Imamura, IBM (Author)</li>
  <li>Mike Just, Entrust, Inc.</li>
  <li>Brian LaMacchia, Microsoft</li>
  <li>Hiroshi Maruyama, IBM</li>
  <li>John Messing, Law-on-Line</li>
  <li>Shivaram Mysore, Sun Microsystems</li>
  <li>Thane Plambeck, Verisign</li>
  <li>Joseph Reagle, W3C (Chair, Editor)</li>
  <li>Aleksey Sanin</li>
  <li>Jim Schaad, Soaring Hawk Consulting</li>
  <li>Ed Simon, XMLsec (Author)</li>
  <li>Daniel Toth, Ford</li>
  <li>Yongge Wang, Certicom</li>
  <li>Steve Wiley, myProof</li>
</ul>

<p>Additionally, we thank the following for their comments during and
subsequent to Last Call:</p>
<ul>
  <li>Martin Dürst, W3C</li>
  <li>Dan Lanz, Zolera</li>
  <li>Susan Lesch, W3C</li>
  <li>David Orchard, BEA Systems</li>
  <li>Ronald Rivest, MIT</li>
</ul>

<h2>2 <a id="sec-Overview" name="sec-Overview">Encryption Overview</a> and
Examples (Non-normative)</h2>

<p>This section provides an overview and examples of XML Encryption syntax.
The formal syntax is found in <a class="link-sec"
href="#sec-Encryption-Syntax">Encryption Syntax</a> (section 3); the specific
processing is given in <a class="link-sec"
href="http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing">Processing
Rules</a> (section 4).</p>

<p>Expressed in shorthand form, the <code><a
href="#sec-EncryptedData">EncryptedData</a></code> element has the following
structure (where "?" denotes zero or one occurrence; "+" denotes one or more
occurrences; "*" denotes zero or more occurrences; and the empty element tag
means the element must be empty ):</p>
<pre class="xml-example">  &lt;EncryptedData Id? Type? MimeType? Encoding?&gt;
    &lt;EncryptionMethod/&gt;?
    &lt;ds:KeyInfo&gt;
      &lt;EncryptedKey&gt;?
      &lt;AgreementMethod&gt;?
      &lt;ds:KeyName&gt;?
      &lt;ds:RetrievalMethod&gt;?
      &lt;ds:*&gt;?
    &lt;/ds:KeyInfo&gt;?
    &lt;CipherData&gt;
      &lt;CipherValue&gt;?
      &lt;CipherReference URI?&gt;?
    &lt;/CipherData&gt;
    &lt;EncryptionProperties&gt;?
  &lt;/EncryptedData&gt;</pre>

<p>The <code>CipherData</code> element envelopes or references the raw
encrypted data. If enveloping, the raw encrypted data is the
<code>CipherValue</code> element's content; if referencing, the
<code>CipherReference</code> element's <code>URI</code> attribute points to
the location of the raw encrypted data</p>

<h3>2.1 Encryption <a name="sec-eg-Granularity"
id="sec-eg-Granularity">Granularity</a></h3>

<p>Consider the following fictitious payment information, which includes
identification information and information appropriate to a payment method
(e.g., credit card, money transfer, or electronic check):</p>
<pre class="xml-example">  &lt;?xml version='1.0'?&gt;
  &lt;PaymentInfo xmlns='http://example.org/paymentv2'&gt;
    &lt;Name&gt;John Smith&lt;/Name&gt;
    &lt;CreditCard Limit='5,000' Currency='USD'&gt;
      &lt;Number&gt;4019 2445 0277 5567&lt;/Number&gt;
      &lt;Issuer&gt;Example Bank&lt;/Issuer&gt;
      &lt;Expiration&gt;04/02&lt;/Expiration&gt;
    &lt;/CreditCard&gt;
  &lt;/PaymentInfo&gt;</pre>

<p>This markup represents that John Smith is using his credit card with a
limit of $5,000USD.</p>

<h4>2.1.1 Encrypting an XML <a name="sec-eg-Element"
id="sec-eg-Element">Element</a></h4>

<p>Smith's credit card number is sensitive information! If the application
wishes to keep that information confidential, it can encrypt the
<code>CreditCard</code> element:</p>
<pre class="xml-example">  &lt;?xml version='1.0'?&gt;
  &lt;PaymentInfo xmlns='http://example.org/paymentv2'&gt;
    &lt;Name&gt;John Smith&lt;/Name&gt;
    &lt;EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
     xmlns='http://www.w3.org/2001/04/xmlenc#'&gt;
      &lt;CipherData&gt;
        &lt;CipherValue&gt;A23B45C56&lt;/CipherValue&gt;
      &lt;/CipherData&gt;
    &lt;/EncryptedData&gt;
  &lt;/PaymentInfo&gt;</pre>

<p>By encrypting the entire <code>CreditCard</code> element from its start to
end tags, the identity of the element itself is hidden. (An eavesdropper
doesn't know whether he used a credit card or money transfer.) The
<code>CipherData</code> element contains the encrypted serialization of the
<code>CreditCard</code> element.</p>

<h4>2.1.2 Encrypting XML <a name="sec-eg-Element-Content"
id="sec-eg-Element-Content">Element Content</a> (Elements)</h4>

<p>As an alternative scenario, it may be useful for intermediate agents to
know that John used a credit card with a particular limit, but not the card's
number, issuer, and expiration date. In this case, the content (character
data or children elements) of the <code>CreditCard</code> element is
encrypted:</p>
<pre class="xml-example">  &lt;?xml version='1.0'?&gt; 
  &lt;PaymentInfo xmlns='http://example.org/paymentv2'&gt;
    &lt;Name&gt;John Smith&lt;/Name&gt;
    &lt;CreditCard Limit='5,000' Currency='USD'&gt;
      &lt;EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
       Type='http://www.w3.org/2001/04/xmlenc#Content'&gt;
        &lt;CipherData&gt;
          &lt;CipherValue&gt;A23B45C56&lt;/CipherValue&gt;
        &lt;/CipherData&gt;
      &lt;/EncryptedData&gt;
    &lt;/CreditCard&gt;
  &lt;/PaymentInfo&gt;</pre>

<h4>2.1.3 Encrypting XML <a name="sec-eg-Element-Content-Character"
id="sec-eg-Element-Content-Character">Element Content</a> (Character
Data)</h4>

<p>Or, consider the scenario in which all the information <em>except</em> the
actual credit card number can be in the clear, including the fact that the
Number element exists:</p>
<pre class="xml-example">  &lt;?xml version='1.0'?&gt; 
  &lt;PaymentInfo xmlns='http://example.org/paymentv2'&gt;
    &lt;Name&gt;John Smith&lt;/Name&gt;
    &lt;CreditCard Limit='5,000' Currency='USD'&gt;
      &lt;Number&gt;
        &lt;EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
         Type='http://www.w3.org/2001/04/xmlenc#Content'&gt;
          &lt;CipherData&gt;
            &lt;CipherValue&gt;A23B45C56&lt;/CipherValue&gt;
          &lt;/<code>CipherDat</code>a&gt;
        &lt;/<code>EncryptedDat</code>a&gt;
      &lt;/Number&gt;
      &lt;Issuer&gt;Example Bank&lt;/Issuer&gt;
      &lt;Expiration&gt;04/02&lt;/Expiration&gt;
    &lt;/CreditCard&gt;
  &lt;/PaymentInfo&gt;</pre>

<p>Both <code>CreditCard</code> and <code>Number</code> are in the clear, but
the character data content of <code>Number</code> is encrypted.</p>

<h4>2.1.4 Encrypting <a name="sec-eg-Arbitrary-Data"
id="sec-eg-Arbitrary-Data">Arbitrary Data</a> and XML Documents</h4>

<p>If the application scenario requires all of the information to be
encrypted, the whole document is encrypted as an octet sequence. This applies
to arbitrary data including XML documents.</p>
<pre class="xml-example">  &lt;?xml version='1.0'?&gt; 
  &lt;EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
   MimeType='text/xml'&gt;
    &lt;CipherData&gt;
      &lt;CipherValue&gt;A23B45C56&lt;/CipherValue&gt;
    &lt;/<code>CipherDat</code>a&gt;
  &lt;/<code>EncryptedDat</code>a&gt;</pre>

<h4>2.1.5 <a name="sec-eg-Super-Encryption"
id="sec-eg-Super-Encryption">Super-Encryption</a>: Encrypting
EncryptedData</h4>

<p>An XML document may contain zero or more <code>EncryptedData</code>
elements. <code>EncryptedData</code> cannot be the parent or child of another
<code>EncryptedData</code> element. However, the actual data encrypted can be
anything, including <code>EncryptedData</code> and <code>EncryptedKey</code>
elements (i.e., super-encryption). During super-encryption of an
<code>EncryptedData</code> or <code>EncryptedKey</code> element, one must
encrypt the entire element. Encrypting only the content of these elements, or
encrypting selected child elements is an invalid instance under the provided
schema.<br />
For example, consider the following:</p>
<pre class="xml-example">  &lt;p<code>ay:PaymentInfo</code> xmlns:pay='http://example.org/paymentv2'&gt;
    &lt;EncryptedData Id='ED1' xmlns='http://www.w3.org/2001/04/xmlenc#'
     Type='<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'&gt;
      &lt;CipherData&gt;
        &lt;CipherValue&gt;<code>original</code>EncryptedData&lt;/CipherValue&gt;
      &lt;/CipherData&gt;
    &lt;/EncryptedData&gt;
  &lt;/pay:PaymentInfo&gt;</pre>

<p>A valid super-encryption of "<code>//xenc:EncryptedData[@Id='ED1']</code>"
would be:</p>
<pre class="xml-example">  &lt;p<code>ay:PaymentInfo</code> xmlns:pay='http://example.org/paymentv2'&gt;
    &lt;EncryptedData Id='ED2' xmlns='http://www.w3.org/2001/04/xmlenc#'
     Type='<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'&gt;
      &lt;CipherData&gt;
        &lt;CipherValue&gt;<code>new</code>EncryptedData&lt;/CipherValue&gt;
      &lt;/<code>CipherDat</code>a&gt;
    &lt;/<code>EncryptedDat</code>a&gt;
  &lt;/<code>pay:PaymentInf</code>o&gt;</pre>

<p>where the <code>CipherValue</code> content of
'<code>newEncryptedData</code>' is the base64 encoding of the encrypted octet
sequence resulting from encrypting the <code>EncryptedData</code> element
with <code>Id='ED1'</code>.</p>

<h3>2.2 <code>EncryptedData</code> and <code>EncryptedKey</code> <a
name="sec-Usage" id="sec-Usage">Usage</a></h3>

<h4>2.2.1 <code>EncryptedData</code> with <a name="sec-eg-Symmetric-Key"
id="sec-eg-Symmetric-Key">Symmetric Key</a>&nbsp; (<code>KeyName</code>)</h4>
<pre class="xml-example">  [s1] &lt;EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
        Type='<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'/&gt;
  [s2]   &lt;EncryptionMethod
          Algorithm='http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/&gt;
  [s3]   &lt;ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'&gt;
  [s4]     &lt;ds:KeyName&gt;John Smith&lt;/<code>ds:KeyNam</code>e&gt;
  [s5]   &lt;/ds:KeyInfo&gt;
  [s6]   &lt;CipherData&gt;&lt;CipherValue&gt;DEADBEEF&lt;/CipherValue&gt;&lt;/CipherData&gt;
  [s7] &lt;/EncryptedData&gt;</pre>

<p><code>[s1]</code> The type of data encrypted may be represented as an
attribute value to aid in decryption and subsequent processing. In this case,
the data encrypted was an 'element'. Other alternatives include 'content' of
an element, or an external octet sequence which can also be identified via
the <code>MimeType</code> and <code>Encoding</code> attributes.</p>

<p><code>[s2]</code> This (3DES CBC) is a symmetric key cipher.</p>

<p><code>[s4]</code> The symmetric key has an associated name "John
Smith".</p>

<p><code>[s6]</code> <code>CipherData</code> contains a
<code>CipherValue</code>, which is a base64 encoded octet sequence.
Alternately, it could contain a <code>CipherReference</code>, which is a URI
reference along with transforms necessary to obtain the encrypted data as an
octet sequence</p>

<h4>2.2.2 <a name="sec-eg-EncryptedKey"
id="sec-eg-EncryptedKey"><code>EncryptedKey</code></a>
(<code>ReferenceList</code>, <code>ds:RetrievalMethod</code>,
<code>CarriedKeyName</code>)</h4>

<p>The following <code>EncryptedData</code> structure is very similar to the
one above, except this time the key is referenced using a
<code>ds:RetrievalMethod</code>:</p>
<pre class="xml-example">  [t01] &lt;EncryptedData Id='ED' 
         xmlns='http://www.w3.org/2001/04/xmlenc#'&gt;
  [t02]   &lt;EncryptionMethod 
           Algorithm='http://www.w3.org/2001/04/xmlenc#aes128-cbc'/&gt;
  [t03]   &lt;d<code>s:KeyInfo</code> xmlns:ds='http://www.w3.org/2000/09/xmldsig#'&gt;
  [t04]     &lt;ds:<code>RetrievalMethod</code> URI='#EK'
             Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/&gt;
  [t05]     &lt;ds:KeyName&gt;Sally Doe&lt;/ds:KeyName&gt;
  [t06]   &lt;/ds:KeyInfo&gt;
  [t07]   &lt;CipherData&gt;&lt;CipherValue&gt;DEADBEEF&lt;/CipherValue&gt;&lt;/CipherData&gt;
  [t08] &lt;/EncryptedData&gt;</pre>

<p><code>[t02]</code> This (AES-128-CBC) is a symmetric key cipher.</p>

<p><code>[t04]</code> <code>ds:RetrievalMethod</code> is used to indicate the
location of a key with type <code>&amp;xenc;EncryptedKey</code>. The (AES)
key is located at '#EK'.</p>

<p><code>[t05]</code> <code>ds:KeyName</code> provides an alternative method
of identifying the key needed to decrypt the <code>CipherData</code>. Either
or both the <code>ds:KeyName</code> and <code>ds:KeyRetrievalMethod</code>
could be used to identify the same key.</p>

<p>Within the same XML document, there existed an <code>EncryptedKey</code>
structure that was referenced within <code>[t04]</code>:</p>
<pre class="xml-example">  [t09] &lt;EncryptedKey Id='EK' xmlns='http://www.w3.org/2001/04/xmlenc#'&gt;
  [t10]   &lt;EncryptionMethod 
           Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/&gt;
  [t11]   &lt;ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'&gt;
  [t12]     &lt;ds:KeyName&gt;John Smith&lt;/<code>ds:KeyNam</code>e&gt;
  [t13]   &lt;/ds:KeyInfo&gt;
  [t14]   &lt;CipherData&gt;&lt;CipherValue&gt;xyzabc&lt;/CipherValue&gt;&lt;/CipherData&gt;
  [t15]   &lt;ReferenceList&gt;
  [t16]     &lt;DataReference URI='#ED'/&gt;
  [t17]   &lt;/ReferenceList&gt;
  [t18]   &lt;CarriedKeyName&gt;Sally Doe&lt;/CarriedKeyName&gt;
  [t19] &lt;/EncryptedKey&gt;</pre>

<p><code>[t09]</code> The <code>EncryptedKey</code> element is similar to the
<code>EncryptedData</code> element except that the data encrypted is always a
key value.</p>

<p><code>[t10]</code> The <code>EncryptionMethod</code> is the RSA public key
algorithm.</p>

<p><code>[t12]</code> <code>ds:KeyName</code> of "John Smith" is a property
of the key necessary for decrypting (using RSA) the
<code>CipherData</code>.</p>

<p><code>[t14]</code> The <code>CipherData</code>'s <code>CipherValue</code>
is an octet sequence that is processed (serialized, encrypted, and encoded)
by a referring encrypted object's <code>EncryptionMethod</code>. (Note, an
EncryptedKey's <code>EncryptionMethod</code> is the algorithm used to encrypt
these octets and does not speak about what type of octets they are.)</p>

<p><code>[t15-17]</code> A <code>ReferenceList</code> identifies the
encrypted objects (<code>DataReference</code> and <code>KeyReference</code>)
encrypted with this key. The <code>ReferenceList</code> contains a list of
references to data encrypted by the symmetric key carried within this
structure.</p>

<p><code>[t18]</code> The <code>CarriedKeyName</code> element is used to
identify the encrypted key value which may be referenced by the
<code>KeyName</code> element in <code>ds:KeyInfo</code>. (Since ID attribute
values must be unique to a document,<code>CarriedKeyName</code> can indicate
that several <code>EncryptedKey</code> structures contain the same key value
encrypted for different recipients.)</p>

<h1>3 <a name="sec-Encryption-Syntax" id="sec-Encryption-Syntax">Encryption
Syntax</a></h1>

<p>This section provides a detailed description of the syntax and features
for XML Encryption. Features described in this section MUST be implemented
unless otherwise noted. The syntax is defined via [<a
href="#ref-XML-Schema">XML-Schema</a>] with the following XML preamble,
declaration, internal entity, and import:</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;?xml version="1.0" encoding="utf-8"?&gt;
  &lt;!DOCTYPE schema  PUBLIC "-//W3C//DTD XMLSchema 200102//EN"
   "http://www.w3.org/2001/XMLSchema.dtd"
   [
     &lt;!ATTLIST schema
       xmlns:xenc CDATA #FIXED 'http://www.w3.org/2001/04/xmlenc#'
       xmlns:ds CDATA #FIXED 'http://www.w3.org/2000/09/xmldsig#'&gt;
     &lt;!ENTITY xenc 'http://www.w3.org/2001/04/xmlenc#'&gt;
     &lt;!ENTITY % p ''&gt;
     &lt;!ENTITY % s ''&gt;
    ]&gt;
  
  &lt;schema xmlns='http://www.w3.org/2001/XMLSchema' version='1.0'
          xmlns:ds='http://www.w3.org/2000/09/xmldsig#'
          xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'
          targetNamespace='http://www.w3.org/2001/04/xmlenc#'
          element<code>FormDefault</code>='qualified'&gt;

    &lt;import namespace='http://www.w3.org/2000/09/xmldsig#'
            schemaLocation='http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd'/&gt;</pre>

<h2>3.1 The <a name="sec-EncryptedType"
id="sec-EncryptedType"><code>EncryptedType</code> Element</a></h2>

<p><code>EncryptedType</code> is the abstract type from which
<code>EncryptedData</code> and <code>EncryptedKey</code> are derived. While
these two latter element types are very similar with respect to their content
models, a syntactical distinction is useful to processing. Implementation
MUST generate laxly schema valid [<a href="#ref-XML-Schema">XML-schema</a>]
<code>EncryptedData</code> or <code>EncryptedKey</code> as specified by the
subsequent schema declarations. (Note the laxly schema valid generation means
that the content permitted by <code>xsd:ANY</code> need not be valid.)
Implementations SHOULD create these XML structures
(<code>EncryptedType</code> elements and their descendents/content) in
Normalization Form C [<a href="#ref-NFC">NFC</a>, <a
href="#ref-NFC-Corrigendum">NFC-Corrigendum</a>].</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;complexType name='<code>EncryptedType</code>' abstract='true'&gt;
    &lt;sequence&gt;
      &lt;element name='<code>EncryptionMethod</code>' type='<code>xenc:EncryptionMethodType</code>' 
               minOccurs='0'/&gt;
      &lt;element ref='<code>ds:KeyInfo</code>' minOccurs='0'/&gt;
      &lt;element ref='<code>xenc:CipherData</code>'/&gt;
      &lt;element ref='xenc:EncryptionProperties' minOccurs='0'/&gt;
    &lt;/sequence&gt;
    &lt;attribute name='Id' type='ID' use='optional'/&gt;
    &lt;attribute name='Type' type='anyURI' use='optional'/&gt;
    &lt;attribute name='MimeType' type='string' use='optional'/&gt;
    &lt;attribute name='Encoding' type='anyURI' use='optional'/&gt; 
   &lt;/complexType&gt;</pre>

<p><code>EncryptionMethod</code> is an optional element that describes the
encryption algorithm applied to the cipher data. If the element is absent,
the encryption algorithm must be known by the recipient or the decryption
will fail.</p>

<p><code>ds:KeyInfo</code> is an optional element, defined by [<a
href="#ref-XML-DSIG">XML-DSIG</a>], that carries information about the key
used to encrypt the data. Subsequent sections of this specification define
new elements that may appear as children of <code>ds:KeyInfo</code>.</p>

<p><code>CipherData</code> is a mandatory element that contains the
<code>CipherValue</code> or <code>CipherReference</code> with the encrypted
data.</p>

<p><code>EncryptionProperties</code> can contain additional information
concerning the generation of the <code>EncryptedType</code> (e.g., date/time
stamp).</p>

<p><code>Id</code> is an optional attribute providing for the standard method
of assigning a string id to the element within the document context.</p>

<p><code>Type</code> is an optional attribute identifying type information
about the plaintext form of the encrypted content. While optional, this
specification takes advantage of it for mandatory processing described in <a
class="link-sec" href="#sec-Processing-Decryption">Processing Rules:
Decryption</a> (section 4.2). If the <code>EncryptedData</code> element
contains data of <code>Type</code> 'element' or element 'content', and
replaces that data in an XML document context, it is strongly recommended the
<code>Type</code> attribute be provided. Without this information, the
decryptor will be unable to automatically restore the XML document to its
original cleartext form.</p>

<p><code>MimeType</code> is an optional (advisory) attribute which describes
the media type of the data which has been encrypted. The value of this
attribute is a string with values defined by [<a href="#ref-MIME">MIME</a>].
For example, if the data that is encrypted is a base64 encoded PNG, the
transfer <code>Encoding</code> may be specified as '<a
href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a>'
and the <code>MimeType</code> as 'image/png'. This attribute is purely
advisory; no validation of the <code>MimeType</code> information is required
and it does not indicate the encryption application must do any additional
processing. Note, this information may not be necessary if it is already
bound to the identifier in the <code>Type</code> attribute. For example, the
Element and Content types defined in this specification are always UTF-8
encoded text.</p>

<h2>3.2 The <a name="sec-EncryptionMethod"
id="sec-EncryptionMethod">EncryptionMethod</a> Element</h2>

<p>EncryptionMethod is an optional element that describes the encryption
algorithm applied to the cipher data. If the element is absent, the
encryption algorithm must be known by the recipient or the decryption will
fail.</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;complexType name='EncryptionMethodType' mixed='true'&gt;
    &lt;sequence&gt;
      &lt;element name='KeySize' minOccurs='0' type='xenc:KeySizeType'/&gt;
      &lt;element name='OAEPparams' minOccurs='0' type='base64Binary'/&gt;
      &lt;any namespace='##other' minOccurs='0' maxOccurs='unbounded'/&gt;
    &lt;/sequence&gt;
    &lt;attribute name='Algorithm' type='anyURI' use='required'/&gt;
  &lt;/complexType&gt;</pre>

<p>The permitted child elements of the <code>EncryptionMethod</code> are
determined by the specific value of the <code>Algorithm</code> attribute URI,
and the <code>KeySize</code> child element is always permitted. For example,
the <a href="#sec-RSA-OAEP">RSA-OAEP algorithm</a> (section 5.4.2) uses the
<code>ds:DigestMethod</code> and <code>OAEPparams</code> elements. (We rely
upon the <code>ANY</code> schema construct because it is not possible to
specify element content based on the value of an attribute.)</p>

<p>The presence of any child element under <code>EncryptionMethod</code>
which is not permitted by the algorithm or the presence of a
<code>KeySize</code> child inconsistent with the algorithm MUST be treated as
an error. (All algorithm URIs specified in this document imply a key size but
this is not true in general. Most popular stream cipher algorithms take
variable size keys.)</p>

<h2>3.3 The <a name="sec-CipherData"
id="sec-CipherData"><code>CipherData</code></a> Element</h2>

<p>The <code>CipherData</code> is a mandatory element that provides the
encrypted data. It must either contain the encrypted octet sequence as base64
encoded text of the <code>CipherValue</code> element, or provide a reference
to an external location containing the encrypted octet sequence via the
<code>CipherReference</code> element.</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name='<code>CipherData</code>' type='<code>xenc:CipherDataType</code>'/&gt;
  &lt;complexType name='<code>CipherDataType</code>'&gt;
     &lt;choice&gt;
       &lt;element name='<code>CipherValue</code>' type='base64Binary'/&gt;
       &lt;element ref='<code>xenc:CipherReference</code>'/&gt;
     &lt;/choice&gt;
   &lt;/complexType&gt;</pre>

<h3>3.3.1 The <a name="sec-CipherReference"
id="sec-CipherReference"><code>CipherReference</code></a> Element</h3>

<p>If <code>CipherValue</code> is not supplied directly, the
<code>CipherReference</code> identifies a source which, when processed,
yields the encrypted octet sequence.</p>

<p>The actual value is obtained as follows. The <code>CipherReference</code>
<code>URI</code> contains an identifier that is dereferenced. Should the
<code>CipherReference</code> element contain an OPTIONAL sequence of
<code>Transform</code>s, the data resulting from dereferencing the URI is
transformed as specified so as to yield the intended cipher value. For
example, if the value is base64 encoded within an XML document; the
transforms could specify an XPath expression followed by a base64 decoding so
as to extract the octets.</p>

<p>The syntax of the <code>URI</code> and <code>Transforms</code> is similar
to that of [<a href="#ref-XML-DSIG">XML-DSIG</a>]. However, there is a
difference between signature and encryption processing. In [<a
href="#ref-XML-DSIG">XML-DSIG</a>] both generation and validation processing
start with the same source data and perform that transform in the same order.
In encryption, the decryptor has only the cipher data and the specified
transforms are enumerated for the decryptor, in the order necessary to obtain
the octets. Consequently, because it has different semantics
<code>Transforms</code> is in the <code>&amp;xenc;</code> namespace.</p>

<p>For example, if the relevant cipher value is captured within a
<code>CipherValue</code> element within a different XML document, the
<code>CipherReference</code> might look as follows:</p>
<pre class="xml-example">  &lt;CipherReference URI="http://www.example.com/CipherValues.xml"&gt;
    &lt;Transforms&gt;
      &lt;ds:Transform 
       Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116"&gt;
          &lt;ds:XPath xmlns:rep="http://www.example.org/repository"&gt;
            self::text()[parent::rep:CipherValue[@Id="example1"]]
          &lt;/ds:XPath&gt;
      &lt;/ds:Transform&gt;
      &lt;ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/&gt;
    &lt;/Transforms&gt;
  &lt;/CipherReference&gt;</pre>

<p>Implementations MUST support the <code>CipherReference</code> feature and
the same URI encoding, dereferencing, scheme, and HTTP response codes as that
of [<a href="#ref-XML-DSIG">XML-DSIG</a>]. The <code>Transform</code> feature
and particular transform algorithms are OPTIONAL.</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name='<code>CipherReference</code>' type='<code>xenc:CipherReferenceType</code>'/&gt;
   &lt;complexType name='<code>CipherReferenceType</code>'&gt;
       &lt;sequence&gt;
         &lt;element name='Transforms' type='xenc:TransformsType' minOccurs='0'/&gt;
       &lt;/sequence&gt;
       &lt;attribute name='URI' type='anyURI' use='required'/&gt;
   &lt;/complexType&gt;

    &lt;complexType name='TransformsType'&gt;
       &lt;sequence&gt;
         &lt;element ref='ds:Transform' maxOccurs='unbounded'/&gt; 
       &lt;/sequence&gt;
     &lt;/complexType&gt;</pre>

<h2>3.4 The <a name="sec-EncryptedData"
id="sec-EncryptedData"><code>EncryptedData</code></a> Element</h2>

<p>The <code>EncryptedData</code> element is the core element in the syntax.
Not only does its <code>CipherData</code> child contain the encrypted data,
but it's also the element that replaces the encrypted element, or serves as
the new document root.</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name='<code>EncryptedData</code>' type='<code>xenc:EncryptedDataType</code>'/&gt;
  &lt;complexType name='<code>EncryptedDataType</code>'&gt;
    &lt;complexContent&gt;
     &lt;extension base='<code>xenc:EncryptedType</code>'&gt;
     &lt;/extension&gt;
    &lt;/complexContent&gt;
  &lt;/complexType&gt;</pre>

<h2>3.5 <a name="sec-Extensions-to-KeyInfo"
id="sec-Extensions-to-KeyInfo">Extensions to <code>ds:KeyInfo</code></a>
Element</h2>

<p>There are three ways that the keying material needed to decrypt
<code>CipherData</code> can be provided:</p>
<ol>
  <li>The <code>EncryptedData</code> or <code>EncryptedKey</code> element
    specify the associated keying material via a child of
    <code>ds:KeyInfo</code>. All of the child elements of
    ds:<code>KeyInfo</code> specified in [<a
    href="#ref-XML-DSIG">XML-DSIG</a>] MAY be used as qualified: 
    <ol>
      <li class="">Support for <code>ds:KeyValue</code> is OPTIONAL and may
        be used to transport public keys, such as <a
        href="#sec-DHKeyValue">Diffie-Hellman Key Values</a> (section 5.5.1).
        (Including the plaintext decryption key, whether a private key or a
        secret key, is obviously NOT RECOMMENDED.)</li>
      <li>Support of <code>ds:KeyName</code> to refer to an
        <code>EncryptedKey</code> <code>CarriedKeyName</code> is
      RECOMMENDED.</li>
      <li>Support for same document <code>ds:RetrievalMethod</code> is
        REQUIRED.</li>
    </ol>
    <p>In addition, we provide two additional child elements: applications
    MUST support <code><a href="#sec-EncryptedKey">EncryptedKey</a></code>
    (section 3.5.1) and MAY support <code><a
    href="#sec-Alg-KeyAgreement">AgreementMethod</a></code> (section 5.5).</p>
  </li>
  <li>A detached (not inside <code>ds:KeyInfo</code>)
    <code>EncryptedKey</code> element can specify the
    <code>EncryptedData</code> or <code>EncryptedKey</code> to which its
    decrypted key will apply via a <code><a
    href="#sec-ReferenceList">DataReference</a></code> or <a
    href="#sec-ReferenceList"><code>KeyReference</code></a> (section
  3.6).</li>
  <li>The keying material can be determined by the recipient by application
    context and thus need not be explicitly mentioned in the transmitted
  XML.</li>
</ol>

<h3>3.5.1 The <a name="sec-EncryptedKey"
id="sec-EncryptedKey"><code>EncryptedKey</code></a> Element</h3>
<dl>
  <dt>Identifer</dt>
    <dd><code><a name="EncryptedKey"
      id="EncryptedKey">Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"</a></code> 
      <p>(This can be used within a <code>ds:RetrievalMethod</code> element
      to identify the referent's type.)</p>
    </dd>
</dl>

<p>The <code>EncryptedKey</code> element is used to transport encryption keys
from the originator to a known recipient(s). It may be used as a stand-alone
XML document, be placed within an application document, or appear inside an
<code>EncryptedData</code> element as a child of a <code>ds:KeyInfo</code>
element. The key value is always encrypted to the recipient(s). When
<code>EncryptedKey</code> is decrypted the resulting octets are made
available to the <code>EncryptionMethod</code> algorithm without any
additional processing.</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name='<code>EncryptedKey</code>' type='<code>xenc:EncryptedKeyType</code>'/&gt;
  &lt;complexType name='<code>EncryptedKeyType</code>'&gt;
    &lt;complexContent&gt;
      &lt;extension base='<code>xenc:EncryptedType</code>'&gt;
        &lt;sequence&gt;
          &lt;element ref='<code>xenc:ReferenceList</code>' minOccurs='0'/&gt;
          &lt;element name='<code>CarriedKeyName</code>' type='string' minOccurs='0'/&gt;
        &lt;/sequence&gt;
        &lt;attribute name='Recipient' type='string' use='optional'/&gt;
      &lt;/extension&gt;
    &lt;/complexContent&gt;   
  &lt;/complexType&gt;</pre>

<p><code>ReferenceList</code> is an optional element containing pointers to
data and keys encrypted using this key. The reference list may contain
multiple references to <code>EncryptedKey</code> and
<code>EncryptedData</code> elements. This is done using
<code>KeyReference</code> and <code>DataReference</code> elements
respectively. These are defined below.</p>

<p><code>CarriedKeyName</code> is an optional element for associating a user
readable name with the key value. This may then be used to reference the key
using the <code>ds:KeyName</code> element within <code>ds:KeyInfo</code>. The
same <code>CarriedKeyName</code> label, unlike an ID type, may occur multiple
times within a single document. The value of the key is to be the same in all
<code>EncryptedKey</code> elements identified with the same
<code>CarriedKeyName</code> label within a single XML document. Note that
because whitespace is significant in the value of the <code>ds:KeyName</code>
element, whitespace is also significant in the value of the
<code>CarriedKeyName</code> element.</p>

<p><code>Recipient</code> is an optional attribute that contains a hint as to
which recipient this encrypted key value is intended for. Its contents are
application dependent.</p>

<p>The <code>Type</code> attribute inheritted from <code>EncryptedType</code>
can be used to further specify the type of the encrypted key if the
<code>EncryptionMethod</code> <code>Algorithm</code> does not define a
unambiguous encoding/representation. (Note, all the algorithms in this
specification have an unambigous representation for their associated key
structures.)</p>

<h3>3.5.2 The <a name="sec-ds-RetrievalMethod"
id="sec-ds-RetrievalMethod"><code>ds:RetrievalMethod</code></a> Element</h3>

<p>The <code>ds:RetrievalMethod</code> <code>[<a
href="#ref-XML-DSIG">XML-DSIG</a>]</code>with a <code>Type</code> of
'<code>http://www.w3.org/2001/04/xmlenc#EncryptedKey</code>' provides a way
to express a link to an <code>EncryptedKey</code> element containing the key
needed to decrypt the <code>CipherData</code> associated with an
<code>EncryptedData</code> or <code>EncryptedKey</code> element. The
<code>ds:RetrievalMethod</code> with this type is always a child of the
<code>ds:KeyInfo</code> element and may appear multiple times. If there is
more than one instance of a <code>ds:RetrievalMethod</code> in a
<code>ds:KeyInfo</code> of this type, then the <code>EncryptedKey</code>
objects referred to must contain the same key value, possibly encrypted in
different ways or for different recipients.</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;!--
      &lt;attribute name='Type' type='anyURI' use='optional'
      fixed='http://www.w3.org/2001/04/xmlenc#<code>EncryptedKey</code>' /&gt;
  --&gt;</pre>

<h3>3.6 The <a name="sec-ReferenceList"
id="sec-ReferenceList"><code>ReferenceList</code></a> Element</h3>

<p><code>ReferenceList</code> is an element that contains pointers from a key
value of an <code>EncryptedKey</code> to items encrypted by that key value
(<code>EncryptedData</code> or <code>EncryptedKey</code> elements).</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name='ReferenceList'&gt;
    &lt;complexType&gt;
      &lt;choice minOccurs='1' maxOccurs='unbounded'&gt;
        &lt;element name='DataReference' type='xenc:ReferenceType'/&gt;
        &lt;element name='KeyReference' type='xenc:ReferenceType'/&gt;
      &lt;/choice&gt;
    &lt;/complexType&gt;
  &lt;/element&gt;

  &lt;complexType name='<code>ReferenceType</code>'&gt;
    &lt;sequence&gt;
      &lt;any namespace='##other' minOccurs='0' maxOccurs='unbounded'/&gt;
    &lt;/sequence&gt;
    &lt;attribute name='URI' type='anyURI' use='required'/&gt;
  &lt;/complexType&gt;</pre>

<p><code>DataReference</code> elements are used to refer to
<code>EncryptedData</code> elements that were encrypted using the key defined
in the enclosing <code>EncryptedKey</code> element. Multiple
<code>DataReference</code> elements can occur if multiple
<code>EncryptedData</code> elements exist that are encrypted by the same
key.</p>

<p><code>KeyReference</code> elements are used to refer to
<code>EncryptedKey</code> elements that were encrypted using the key defined
in the enclosing <code>EncryptedKey</code> element. Multiple
<code>KeyReference</code> elements can occur if multiple
<code>EncryptedKey</code> elements exist that are encrypted by the same
key.</p>

<p>For both types of references one may optionally specify child elements to
aid the recipient in retrieving the <code>EncryptedKey</code> and/or
<code>EncryptedData</code> elements. These could include information such as
XPath transforms, decompression transforms, or information on how to retrieve
the elements from a document storage facility. For example:</p>
<pre class="xml-example">  &lt;ReferenceList&gt;
    &lt;DataReference URI="#invoice34"&gt;
      &lt;ds:Transforms&gt;
        &lt;ds:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116"&gt;
          &lt;ds:XPath xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"&gt;
              self::xenc:EncryptedData[@Id="example1"]
          &lt;/ds:XPath&gt;
        &lt;/ds:Transform&gt;
      &lt;/ds:Transforms&gt;
    &lt;/DataReference&gt;
  &lt;/ReferenceList&gt;</pre>

<h3>3.7 The <a name="sec-EncryptionProperties"
id="sec-EncryptionProperties"><code>EncryptionProperties</code></a>
Element</h3>
<dl>
  <dt>Identifier</dt>
    <dd><code><a name="EncryptionProperties"
      id="EncryptionProperties">Type="http://www.w3.org/2001/04/xmlenc#EncryptionProperties"</a></code> 
      <p>(This can be used within a <code>ds:Reference</code> element to
      identify the referent's type.)</p>
    </dd>
</dl>

<p>Additional information items concerning the generation of the
<code>EncryptedData</code> or <code>EncryptedKey</code> can be placed in an
<code>EncryptionProperty</code> element (e.g., date/time stamp or the serial
number of cryptographic hardware used during encryption). The
<code>Target</code> attribute identifies the <code>EncryptedType</code>
structure being described. <code>anyAttribute</code> permits the inclusion of
attributes from the XML namespace to be included (i.e.,
<code>xml:space</code>, <code>xml:lang</code>, and <code>xml:base</code>).</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name='EncryptionProperties' type='xenc:EncryptionPropertiesType'/&gt; 
  &lt;complexType name='EncryptionPropertiesType'&gt;
    &lt;sequence&gt;
      &lt;element ref='xenc:EncryptionProperty' maxOccurs='unbounded'/&gt; 
    &lt;/sequence&gt;
    &lt;attribute name='Id' type='ID' use='optional'/&gt; 
  &lt;/complexType&gt;

    &lt;element name='EncryptionProperty' type='xenc:EncryptionPropertyType'/&gt; 
    &lt;complexType name='EncryptionPropertyType' mixed='true'&gt;
      &lt;choice maxOccurs='unbounded'&gt;
        &lt;any namespace='##other' processContents='lax'/&gt;
      &lt;/choice&gt;
      &lt;attribute name='Target' type='anyURI' use='optional'/&gt; 
      &lt;attribute name='Id' type='ID' use='optional'/&gt; 
      &lt;anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/&gt;
    &lt;/complexType&gt;</pre>

<h2><a name="sec-Processing" id="sec-Processing">4 Processing Rules</a></h2>

<p>This section describes the operations to be performed as part of
encryption and decryption processing by implementations of this
specification. The conformance requirements are specified over the following
roles:</p>
<dl>
  <dt><a name="def-Application" id="def-Application">Application</a></dt>
    <dd>The application which makes request of an XML Encryption
      implementation via the provision of data and parameters necessary for
      its processing.</dd>
  <dt><a name="def-Encryptor" id="def-Encryptor">Encryptor</a></dt>
    <dd>An XML Encryption implementation with the role of encrypting
    data.</dd>
  <dt><a name="def-Decryptor" id="def-Decryptor">Decryptor</a></dt>
    <dd>An XML Encryption implementation with the role of decrypting
    data.</dd>
</dl>

<h3><a name="sec-Processing-Encryption" id="sec-Processing-Encryption">4.1
Encryption</a></h3>

<p>For each data item to be encrypted as an <code>EncryptedData</code> or
<code>EncryptedKey</code> (elements derived from <code>EncryptedType</code>),
the <strong>encryptor</strong> must:</p>
<ol>
  <li>Select the algorithm (and parameters) to be used in encrypting this
    data.</li>
  <li>Obtain and (optionally) represent the key. 
    <ol>
      <li>If the key is to be identified (via naming, URI, or included in a
        child element), construct the <code>ds:KeyInfo</code> as approriate
        (e.g., <code>ds:KeyName</code>, <code>ds:KeyValue</code>,
        <code>ds:RetrievalMethod</code>, etc.)</li>
      <li>If the key itself is to be encrypted, construct an
        <code>EncryptedKey</code> element by recursively applying this
        encryption process. The result may then be a child of
        <code>ds:KeyInfo</code>, or it may exist elsewhere and may be
        identified in the preceding step.</li>
    </ol>
  </li>
  <li>&nbsp;Encrypt the data 
    <ol>
      <li>If the data is an '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
        [<a href="#ref-XML">XML</a>, section 3] or element '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'
        [<a href="#ref-XML">XML</a>, section 3.1], obtain the octets by
        serializing the data in UTF-8 as specified in [<a
        href="#ref-XML">XML</a>]. <span class="">(The application MUST
        provide XML data in [<a href="#ref-NFC"></a><a
        href="#ref-NFC">NFC</a>].)</span> Serialization MAY be done by the
        <strong>encryptor</strong>. If the <strong>encryptor</strong> does
        not serialize, then the <strong>application</strong> MUST perform the
        serialization.</li>
      <li>If the data is of any other type that is not already octets, the
        <strong>application</strong> MUST serialize it as octets.</li>
      <li>Encrypt the octets using the algorithm and key from steps 1 and
      2.</li>
      <li>Unless the <strong>decryptor</strong> will implicitly know the type
        of the encrypted data, the <strong>encryptor</strong> SHOULD provide
        the type for representation. 
        <p>The definition of this type as bound to an identifier specifies
        how to obtain and interpret the plaintext octets after decryption.
        For example, the idenifier could indicate that the data is an
        instance of another application (e.g., some XML compression
        application) that must be further processed. Or, if the data is a
        simple octet sequence it MAY be described with the
        <code>MimeType</code> and <code>Encoding</code> attributes. For
        example, the data might be an XML document
        (<code>MimeType="text/xml"</code>), sequence of characters
        (<code>MimeType="text/plain"</code>), or binary image data
        (<code>MimeType="image/png</code>").</p>
      </li>
    </ol>
  </li>
  <li>Build the <code>EncryptedType</code> (<code>EncryptedData</code> or
    <code>EncryptedKey</code>) structure: 
    <p>An <code>EncryptedType</code> structure represents all of the
    information previously discussed including the type of the encrypted
    data, encryption algorithm, parameters, key, type of the encrypted data,
    etc.</p>
    <ol>
      <li>If the encrypted octet sequence obtained in step 3 is to be stored
        in the <code>CipherData</code> element within the
        <code>EncryptedType</code>, then the encrypted octet sequence is
        base64 encoded and inserted as the content of a
        <code>CipherValue</code> element.</li>
      <li>If the encrypted octet sequence is to be stored externally to the
        <code>EncryptedType</code> structure, then store or return the
        encrypted octet sequence, and represent the URI and transforms (if
        any) required for the decryptor to retrieve the encrypted octet
        sequence within a <code>CipherReference</code> element.</li>
    </ol>
  </li>
  <li>Process EncryptedData 
    <ol>
      <li>If the <code>Type</code> of the encrypted data is '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
        or element '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>',
        then the <strong>encryptor</strong> MUST be able to return the
        <code>EncryptedData</code> element to the
        <strong>application</strong>. The <strong>application</strong> MAY
        use this as the top-level element in a new XML document or insert it
        into another XML document, which may require a re-encoding. 
        <p>The <strong>encryptor</strong> SHOULD be able to replace the
        unencrypted 'element' or 'content' with the EncryptedData element.
        When an <strong>application</strong> requires an XML element or
        content to be replaced, it supplies the XML document context in
        addition to identifying the element or content to be replaced. The
        <strong>encryptor</strong> removes the identified element or content
        and inserts the <code>EncryptedData</code> element in its place.</p>
        <p>(Note: If the <code>Type</code> is "content" the document
        resulting from decryption will not be well-formed if (a) the original
        plaintext was not well-formed (e.g., PCDATA by itself is not
        well-formed) and (b) the <code>EncryptedData</code> element was
        previously the root element of the document)</p>
      </li>
      <li>If the <code>Type</code> of the encrypted data <em>is not</em> '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
        or element '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>',
        then the <strong>encryptor</strong> MUST always return the
        <code>EncryptedData</code> element to the
        <strong>application</strong>. The <strong>application</strong> MAY
        use this as the top-level element in a new XML document or insert it
        into another XML document, which may require a re-encoding.</li>
    </ol>
  </li>
</ol>

<h3><a name="sec-Processing-Decryption" id="sec-Processing-Decryption">4.2
Decryption</a></h3>

<p>For each <code>EncryptedType</code> derived element, (i.e.,
<code>EncryptedData</code> or <code>EncryptedKey</code>), to be decrypted,
the <strong>decryptor</strong> must:</p>
<ol>
  <li>Process the element to determine the algorithm, parameters and
    <code>ds:KeyInfo</code> element to be used. If some information is
    omitted, the <strong>application</strong> MUST supply it.</li>
  <li>Locate the data encryption key according to the <code>ds:KeyInfo</code>
    element, which may contain one or more children elements. These children
    have no implied processing order. If the data encryption key is
    encrypted, locate the corresponding key to decrypt it. (This may be a
    recursive step as the key-encryption key may itself be encrypted.) Or,
    one might retrieve the data encryption key from a local store using the
    provided attributes or implicit binding.</li>
  <li>Decrypt the data contained in the <code>CipherData</code> element. 
    <ol>
      <li>If a <code>CipherValue</code> child element is present, then the
        associated text value is retrieved and base64 decoded so as to obtain
        the encrypted octet sequence.</li>
      <li>If a <code>CipherReference</code> child element is present, the URI
        and transforms (if any) are used to retrieve the encrypted octet
        sequence.</li>
      <li>The encrypted octet sequence is decrypted using the
        algorithm/parameters and key value already determined from steps 1
        and 2.</li>
    </ol>
  </li>
  <li>Process decrypted data of <code>Type</code> '<a
    href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
    or element '<a
    href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'. 
    <ol>
      <li>The cleartext octet sequence obtained in step 3 is interpreted as
        UTF-8 encoded character data.</li>
      <li>The <strong>decryptor</strong> MUST be able to return the value of
        <code>Type</code> and the UTF-8 encoded XML character data. The
        <strong>decryptor</strong> is NOT REQUIRED to perform validation on
        the serialized XML.</li>
      <li>The <strong>decryptor</strong> SHOULD support the ability to
        replace the <code>EncryptedData</code> element with the decrypted '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
        or element '<a
        href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'
        represented by the UTF-8 encoded characters. The
        <strong>decryptor</strong> is NOT REQUIRED to perform validation on
        the result of this replacement operation. 
        <p>The application supplies the XML document context and identifies
        the <code>EncryptedData</code> element being replaced. If the
        document into which the replacement is occurring is not UTF-8, the
        <strong>decryptor</strong> MUST transcode the UTF-8 encoded
        characters into the target encoding.</p>
      </li>
    </ol>
  </li>
  <li>Process decrypted data if <code>Type</code> is unspecified or is
    <em>not</em> '<a
    href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
    or element '<a
    href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'. 
    <ol>
      <li>The cleartext octet sequence obtained in <strong>Step 3</strong>
        MUST be returned to the <strong>application</strong> for further
        processing along with the <code>Type</code>, <code>MimeType</code>,
        and <code>Encoding</code> attribute values when specified.
        <code>MimeType</code> and <code>Encoding</code> are advisory. The
        <code>Type</code> value is normative as it may contain information
        necessary for the processing or interpration of the data by the
        application.</li>
      <li>Note, this step includes processing data decrypted from an
        <code>EncryptedKey</code>. The cleartext octet sequence represents a
        key value and is used by the application in decrypting other
        <code>EncryptedType</code> element(s).</li>
    </ol>
  </li>
</ol>

<h3>4.3 <a name="sec-Processing-XML" id="sec-Processing-XML">XML
Encryption</a></h3>

<p>Encryption and decryption operations are transforms on octets. The
<strong>application</strong> is responsible for the marshalling XML such that
it can be serialized into an octet sequence, encrypted, decrypted, and be of
use to the recipient.</p>

<p>For example, if the application wishes to canonicalize its data or
encode/compress the data in an XML packaging format, the application needs to
marshal the XML accordingly and identify the resulting type via the
<code>EncryptedData</code> <code>Type</code> attribute. The likelihood of
successful decryption and subsequent processing will be dependent on the
recipient's support for the given type. Also, if the data is intended to be
processed both before encryption and after decryption (e.g., XML Signature
[<a href="#ref-XML-DSIG">XML-DSIG</a>] validation or an XSLT transform) the
encrypting application must be careful to preserve information necessary for
that process's success.</p>

<p>For interoperability purposes, the following types MUST be implemented
such that an implementation will be able to take as input and yield as output
data matching the production rules 39 and 43 from [<a
href="#ref-XML">XML</a>]:</p>
<dl>
  <dt><a id="Element" name="Element">element</a> '<a
  href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'</dt>
    <dd>"[39]&nbsp; <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>
      ::= <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-EmptyElemTag"><code>EmptyElemTag</code></a>
      | <a href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-STag">STag</a>
      <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>
      <a
    href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-ETag">ETag</a>"</dd>
  <dt><a id="Content" name="Content">content</a>&nbsp;'<a
  href="http://www.w3.org/2001/04/xmlenc#Content">http://www.w3.org/2001/04/xmlenc#Content</a>'</dt>
    <dd>"[43] <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>
      ::= <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-CharData"><code>CharData</code></a>?
      ((<a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>
      | <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-Reference">Reference</a>
      | <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-CDSect">CDSect</a>
      | <a href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-PI">PI</a> |
      <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-Comment">Comment</a>)
      <a
      href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-CharData"><code>CharData</code></a>?)*"</dd>
</dl>

<p>The following sections contain specifications for decrypting, replacing,
and serializing XML content (i.e., <code>Type</code> '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>' or
element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>')
using the [<a href="#ref-XPath">XPath</a>] data model. These sections are
non-normative and OPTIONAL to implementors of this specification, but they
may be normatively referenced by and MANDATORY to other specifications that
require a consistent processing for applications, such as [<a
href="#ref-XML-DSIG-Decrypt">XML-DSIG-Decrypt</a>].</p>

<h4>4.3.1 A <a name="sec-Decrypt-Imp" id="sec-Decrypt-Imp">Decrypt
Implementation</a> (Non-normative)</h4>

<p>Where <em>P</em> is the context in which the serialized XML should be
parsed (a document node or element node) and <em>O</em> is the octet sequence
representing UTF-8 encoded characters resulting from step 4.3 in the <a
class="link-sec" href="#sec-Processing-Decryption">Decryption Processing</a>
(section 4.2). <em>Y</em> is node-set representing the decrypted content
obtained by the following steps:</p>
<ol>
  <li class="">Let <em>C</em> be the <a class="def"
    name="def-parsing-context" id="def-parsing-context">parsing context</a>
    of a child of <em>P</em>, which consists of the following items: 
    <ul>
      <li>Prefix and namespace name of each namespace that is in scope for
        <em>P</em>.</li>
      <li>Name and value of each general entity that is effective for the XML
        document causing <em>P</em>.</li>
    </ul>
  </li>
  <li>Wrap the decrypted octet stream <em>O</em> in the context <em>C</em> as
    specified in <a class="link-sec" href="#sec-Text-Wrapping">Text
    Wrapping</a>.</li>
  <li>Parse the wrapped octet stream as described in <a class="link-sec"
    href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#sec-ReferenceProcessingModel">The
    Reference Processing Model</a> (section 4.3.3.2) of [<a
    href="#ref-XML-DSIG">XML-Signature</a>], resulting in a node-set.</li>
  <li><em>Y</em> is the node-set obtained by removing the root node, the
    wrapping element node, and its associated set of attribute and namespace
    nodes from the node-set obtained in Step 3.</li>
</ol>

<h4>4.3.2 A <a name="sec-Decrypt-Replace-Imp"
id="sec-Decrypt-Replace-Imp">Decrypt and Replace Implementation</a>
(Non-normative)</h4>

<p>Where <em>X</em> is the [<a href="#ref-XPath">XPath</a>] node set
corresponding to an XML document and <em>e</em> is an
<code>EncryptedData</code> element node in <em>X</em>.</p>
<ol>
  <li><em>Z</em> is an [<a href="#ref-XPath">XPath</a>] node-set that
    identical to X except where the element node <em>e</em> is an
    <code>EncryptedData</code> element type. In which case: 
    <ol>
      <li>Decrypt <em>e</em> in the context of its parent node as specified
        in the <a class="link-sec" href="#sec-Decrypt-Imp">Decryption
        Implementation</a> (section 4.3.1) yielding <em>Y</em>, an [<a
        href="#ref-XPath">XPath</a>] node set.</li>
      <li>Include <em>Y</em> in place of <em>e</em> and its descendants in
        <em>X</em>. Since [<a href="#ref-XPath">XPath</a>] does not define
        methods of replacing node-sets from different documents, the result
        MUST be equivalent to replacing e with the octet stream resulting
        from its decryption in the serialized form of <em>X</em> and
        reparsing the document. However, the actual method of performing this
        operation is left to the implementor.</li>
    </ol>
  </li>
</ol>

<h4>4.3.3 <a name="sec-Serializing-XML" id="sec-Serializing-XML">Serializing
XML</a> (Non-normative)</h4>

<h5><a name="sec-Default-Namespace-Considerations"
id="sec-Default-Namespace-Considerations">Default Namespace
Considerations</a></h5>

<p>In <a class="link-sec" href="#sec-Processing-Encryption">Encrypting
XML</a> (section 4.1, step 3.1), when serializing an XML fragment special
care SHOULD be taken with respect to default namespaces. If the data will be
subsequently decrypted in the context of a parent XML document then
serialization can produce elements in the wrong namespace. Consider the
following fragment of XML:</p>
<pre class="xml-example">  &lt;Document xmlns="http://example.org/"&gt;
    &lt;ToBeEncrypted xmlns="" /&gt;
  &lt;/Document&gt;</pre>

<p>Serialization of the element <code>ToBeEncrypted</code> fragment via [<a
href="#ref-XML-C14N">XML-C14N</a>] would result in the characters
"<code>&lt;ToBeEncrypted&gt;&lt;/ToBeEncrypted&gt;</code>" as an octet
stream. The resulting encrypted document would be:</p>
<pre class="xml-example">  &lt;Document xmlns="http://example.org/"&gt;
    &lt;EncryptedData xmlns="..."&gt;
      &lt;!-- Containing the encrypted 
           "&lt;ToBeEncrypted&gt;&lt;/ToBeEncrypted&gt;" --&gt;
    &lt;/EncryptedData&gt;
  &lt;/Document&gt;</pre>

<p>Decrypting and replacing the <code>EncryptedData</code> within this
document would produce the following incorrect result:</p>
<pre class="xml-example">  &lt;Document xmlns="http://example.org/"&gt;
    &lt;ToBeEncrypted/&gt;
  &lt;/Document&gt; </pre>

<p>This problem arises because most XML serializations assume that the
serialized data will be parsed directly in a context where there is no
default namespace declaration. Consequently, they do not redundantly declare
the empty default namespace with an <code>xmlns=""</code>. If, however, the
serialized data is parsed in a context where a default namespace declaration
is in scope (e.g., the parsing context of a <a class="link-def"
href="#sec-Decrypt-Imp">A Decrypt Implementation</a> (section 4.3.1)), then
it may affect the interpretation of the serialized data.</p>

<p>To solve this problem, a canonicalization algorithm MAY be augmented as
follows for use as an XML encryption serializer:</p>
<ul>
  <li>A default namespace declaration with an empty value (i.e.,
    <code>xmlns=""</code>) SHOULD be emitted where it would normally be
    suppressed by the canonicalization algorithm.</li>
</ul>

<p>While the result may not be in proper canonical form, this is harmless as
the resulting octet stream will not be used directly in a [<a
href="#ref-XML-DSIG">XML-Signature</a>] signature value computation.
Returning to the preceding example with our new augmentation, the
<code>ToBeEncrypted</code> element would be serialized as follows:</p>
<pre>&lt;ToBeEncrypted xmlns=""&gt;&lt;/ToBeEncrypted&gt;</pre>

<p>When processed in the context of the parent document, this serialized
fragment will be parsed and interpreted correctly.</p>

<p>This augmentation can be retroactively applied to an existing
canonicalization implementation by canonicalizing each apex node and its
descendants from the node set, inserting <code>xmlns=""</code> at the
appropriate points, and concatenating the resulting octet streams.</p>

<h5><a name="sec-XML-Attribute-Considerations"
id="sec-XML-Attribute-Considerations">XML Attribute Considerations</a></h5>

<p>Similar attention between the relationship of a fragment and the context
into which it is being inserted should be given to the <code>xml:base</code>,
<code>xml:lang</code>, and <code>xml:space</code> attributes as mentioned in
the <a class="link-sec"
href="http://www.w3.org/TR/xml-exc-c14n/#sec-Considerations">Security
Considerations</a> of [<a href="#ref-XML-exc-C14N">XML-exc-C14N</a>]. For
example, if the element:</p>
<pre class="xml-example">  &lt;Bongo href="example.xml"/&gt;</pre>

<p>is taken from a context and serialized with no <code>xml:base</code> [<a
href="#ref-XML-Base">XML-Base</a>] attribute and parsed in the context of the
element:</p>
<pre class="xml-example">  &lt;Baz xml:base="http://example.org/"/&gt;</pre>

<p>the result will be:</p>
<pre class="xml-example">  &lt;Baz xml:base="http://example.org/"&gt;&lt;Bongo href="example.xml"/&gt;&lt;/Baz&gt;</pre>

<p><code>Bongo</code>'s <code>href</code> is subsequently interpreted as
"<code>http://example.org/example.xml</code>". If this is not the correct
URI, <code>Bongo</code> should have been serialized with its own
<code>xml:base</code> attribute.</p>

<p>Unfortunately, the recommendation that an empty value be emitted to
divorce the default namespace of the fragment from the context into which it
is being inserted can not be made for <span class="">the attributes
<code>xml:base</code>, and <code>xml:space</code>. (<a class="link-sec"
href="http://www.w3.org/XML/xml-V10-2e-errata#E41">Error 41</a> of the <a
href="http://www.w3.org/XML/xml-V10-2e-errata">XML 1.0 Second Edition
Specification Errata</a> clarifies that an empty string value of the
attribute <code>xml:lang</code> <em>is</em> considered as if, "there is no
language information available, just as if <code>xml:lang</code> had not been
specified".)</span>The interpretation of an empty value for the
<code>xml:base</code> or <code>xml:space</code> attributes is undefined or
maintains the contextual value. Consequently, applications SHOULD ensure (1)
fragments that are to be encrypted are not dependent on XML attributes, or
(2) if they are dependent and the resulting document is intended to be <a
class="link-def"
href="http://www.w3.org/TR/2000/REC-xml-20001006#dt-valid">valid</a> [<a
href="#ref-XML">XML</a>], the fragment's definition permits the presence of
the attributes and that the attributes have non-empty values.</p>

<h4>4.3.4 <a name="sec-Text-Wrapping" id="sec-Text-Wrapping">Text Wrapping
(Non-normative)</a></h4>

<p>This section specifies the process for wrapping text in a given parsing
context. The process is based on the proposal by Richard Tobin [<a
href="#ref-Tobin">Tobin</a>] for constructing the infoset [<a
href="#ref-XML-Infoset">XML-Infoset</a>] of an external entity.</p>

<p>The process consists of the following steps:</p>
<ol>
  <li>If the parsing context contains any general entities, then emit a
    document type declaration that provides entity declarations.</li>
  <li>Emit a <code>dummy</code> element start-tag with namespace declaration
    attributes declaring all the namespaces in the parsing context.</li>
  <li>Emit the text.</li>
  <li>Emit a <code>dummy</code> element end-tag.</li>
</ol>

<p>In the above steps, the document type declaration and <code>dummy</code>
element tags MUST be encoded in UTF-8.</p>

<p>Consider the following document containing an <code>EncryptedData</code>
element:</p>
<pre class="xml-example">&lt;!DOCTYPE Document [
  &lt;!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#"&gt;
]&gt;
&lt;Document xmlns="http://example.org/"&gt;
  &lt;foo:Body xmlns:foo="http://example.org/foo"&gt;
    &lt;EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
                   Type="<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>"&gt;
      ...
    &lt;/EncryptedData&gt; 
  &lt;/foo:Body&gt;
&lt;/Document&gt;</pre>

<p class="">If the <code>EncryptedData</code> element is fed is decrypted to
the text "<code>&lt;One&gt;&lt;foo:Two/&gt;&lt;/One&gt;</code>", then the
wrapped form is as follows:</p>
<pre>&lt;!DOCTYPE dummy [
  &lt;!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#"&gt;
]&gt;
&lt;dummy xmlns="http://example.org/"
       xmlns:foo="http://example.org/foo"&gt;&lt;One&gt;&lt;foo:Two/&gt;&lt;/One&gt;&lt;/dummy&gt;</pre>

<h2>5. <a id="sec-Algorithms" name="sec-Algorithms">Algorithms</a></h2>

<p>This section discusses algorithms used with the XML Encryption
specification. Entries contain the identifier to be used as the value of the
<code>Algorithm</code> attribute of the <code>EncryptionMethod</code> element
or other element representing the role of the algorithm, a reference to the
formal specification, definitions for the representation of keys and the
results of cryptographic operations where applicable, and general
applicability comments.</p>

<h3>5.1 <a id="sec-AlgID" name="sec-AlgID">Algorithm Identifiers and
Implementation Requirements</a></h3>

<p>All algorithms listed below have implicit parameters depending on their
role. For example, the data to be encrypted or decrypted, keying material,
and direction of operation (encrypting or decrypting) for encryption
algorithms. Any explicit additional parameters to an algorithm appear as
content elements within the element. Such parameter child elements have
descriptive element names, which are frequently algorithm specific, and
SHOULD be in the same namespace as this XML Encryption specification, the XML
Signature specification, or in an algorithm specific namespace. An example of
such an explicit parameter could be a nonce (unique quantity) provided to a
key agreement algorithm.</p>

<p>This specification defines a set of algorithms, their URIs, and
requirements for implementation. Levels of requirement specified, such as
"REQUIRED" or "OPTIONAL", refere to implementation, not use. Furthermore, the
mechanism is extensible, and alternative algorithms may be used.</p>

<h4><a id="sec-Table-of-Algorithms" name="sec-Table-of-Algorithms">Table of
Algorithms</a></h4>

<p>The table below lists the categories of algorithms. Within each category,
a brief name, the level of implementation requirement, and an identifying URI
are given for each algorithm.</p>
<dl>
  <dt>Block Encryption</dt>
    <dd><ol>
        <li>REQUIRED TRIPLEDES<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">http://www.w3.org/2001/04/xmlenc#tripledes-cbc</a></li>
        <li>REQUIRED AES-128<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#aes128-cbc">http://www.w3.org/2001/04/xmlenc#aes128-cbc</a></li>
        <li>REQUIRED AES-256<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#aes256-cbc">http://www.w3.org/2001/04/xmlenc#aes256-cbc</a></li>
        <li>OPTIONAL AES-192<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#aes192-cbc">http://www.w3.org/2001/04/xmlenc#aes192-cbc</a></li>
      </ol>
    </dd>
  <dt>Stream Encryption</dt>
    <dd><ol>
        <li>none<br />
          Syntax and recommendations are given below to support user
          specified algorithms.</li>
      </ol>
    </dd>
  <dt>Key Transport</dt>
    <dd><ol>
        <li>REQUIRED RSA-v1.5<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#rsa-1_5">http://www.w3.org/2001/04/xmlenc#rsa-1_5</a></li>
        <li>REQUIRED RSA-OAEP<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p</a></li>
      </ol>
    </dd>
  <dt>Key Agreement</dt>
    <dd><ol>
        <li>OPTIONAL Diffie-Hellman<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#dh">http://www.w3.org/2001/04/xmlenc#dh</a></li>
      </ol>
    </dd>
  <dt>Symmetric Key Wrap</dt>
    <dd><ol>
        <li>REQUIRED TRIPLEDES KeyWrap<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#kw-tripledes">http://www.w3.org/2001/04/xmlenc#kw-tripledes</a></li>
        <li>REQUIRED AES-128 KeyWrap<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#kw-aes128">http://www.w3.org/2001/04/xmlenc#kw-aes128</a></li>
        <li>REQUIRED AES-256 KeyWrap<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#kw-aes256">http://www.w3.org/2001/04/xmlenc#kw-aes256</a></li>
        <li>OPTIONAL AES-192 KeyWrap<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#kw-aes192">http://www.w3.org/2001/04/xmlenc#kw-aes192</a></li>
      </ol>
    </dd>
  <dt>Message Digest</dt>
    <dd><ol>
        <li>REQUIRED SHA1<br />
          <a
          href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a></li>
        <li>RECOMMENDED SHA256<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#sha256">http://www.w3.org/2001/04/xmlenc#sha256</a></li>
        <li>OPTIONAL SHA512<br />
          <a>http://www.w3.org/2001/04/xmlenc#sha512</a></li>
        <li>OPTIONAL RIPEMD-160<br />
          <a
          href="http://www.w3.org/2001/04/xmlenc#ripemd160">http://www.w3.org/2001/04/xmlenc#ripemd160</a></li>
      </ol>
    </dd>
  <dt>Message Authentication</dt>
    <dd><ol>
        <li>RECOMMENDED XML Digital Signature<br />
          <a
          href="http://www.w3.org/2000/09/xmldsig#">http://www.w3.org/2000/09/xmldsig#</a></li>
      </ol>
    </dd>
  <dt>Canonicalization</dt>
    <dd><ol>
        <li>OPTIONAL Canonical XML (omits comments)<br />
          <a
          href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></li>
        <li>OPTIONAL Canonical XML with Comments<br />
          <a
          href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a></li>
        <li>OPTIONAL Exclusive XML Canonicalization (omits comments)<br />
          <a
          href="http://www.w3.org/2001/10/xml-exc-c14n#">http://www.w3.org/2001/10/xml-exc-c14n#</a></li>
        <li>OPTIONAL Exclusive XML Canonicalization with Comments<br />
          <a
          href="http://www.w3.org/2001/10/xml-exc-c14n#WithComments">http://www.w3.org/2001/10/xml-exc-c14n#WithComments</a></li>
      </ol>
    </dd>
  <dt>Encoding</dt>
    <dd><ol>
        <li>REQUIRED base64<br />
          <a
          href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a></li>
      </ol>
    </dd>
</dl>

<h3>5.2 <a name="sec-Alg-Block" id="sec-Alg-Block">Block Encryption
Algorithms</a></h3>

<p>Block encryption algorithms are designed for encrypting and decrypting
data in fixed size, multiple octet blocks. Their identifiers appear as the
value of the <code>Algorithm</code> attributes of
<code>EncryptionMethod</code> elements that are children of
<code>EncryptedData</code>.</p>

<p>Block encryption algorithms take, as implicit arguments, the data to be
encrypted or decrypted, the keying material, and their direction of
operation. For all of these algorithms specified below, an initialization
vector (IV) is required that is encoded with the cipher text. For user
specified block encryption algorithms, the IV, if any, could be specified as
being with the cipher data, as an algorithm content element, or elsewhere.</p>

<p>The IV is encoded with and before the cipher text for the algorithms below
for ease of availability to the decryption code and to emphasize its
association with the cipher text. Good cryptographic practice requires that a
different IV be used for every encryption.</p>

<h4><a id="sec-Padding" name="sec-Padding">Padding</a></h4>

<p>Since the data being encrypted is an arbitrary number of octets, it may
not be a multiple of the block size. This is solved by padding the plain text
up to the block size before encryption and unpadding after decryption. The
padding algorithm is to calculate the smallest non-zero number of octets, say
<code>N</code>, that must be suffixed to the plain text to bring it up to a
multiple of the block size. We will assume the block size is <code>B</code>
octets so <code>N</code> is in the range of 1 to <code>B</code>. Pad by
suffixing the plain text with <code>N-1</code> arbitrary pad bytes and a
final byte whose value is <code>N</code>. On decryption, just take the last
byte and, after sanity checking it, strip that many bytes from the end of the
decrypted cipher text.</p>

<p>For example, assume an 8 byte block size and plain text of
<code>0x616263</code>. The padded plain text would then be
<code>0x616263????????05</code> where the "??" bytes can be any value.
Similarly, plain text of <code>0x2122232425262728</code> would be padded to
<code>0x2122232425262728??????????????08</code>.</p>

<h4>5.2.1 <a name="sec-tripledes-cbc" id="sec-tripledes-cbc">Triple
DES</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="tripledes-cbc" name="tripledes-cbc"
      href="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">http://www.w3.org/2001/04/xmlenc#tripledes-cbc</a>
      (REQUIRED)</dd>
</dl>

<p>ANSI X9.52 [<a href="#ref-TRIPLEDES">TRIPLEDES</a>] specifies three
sequential FIPS 46-3 [<a href="#ref-DES">DES</a>] operations. The XML
Encryption TRIPLEDES consists of a DES encrypt, a DES decrypt, and a DES
encrypt used in the Cipher Block Chaining (CBC) mode with 192 bits of key and
a 64 bit Initialization Vector (IV). Of the key bits, the first 64 are used
in the first DES operation, the second 64 bits in the middle DES operation,
and the third 64 bits in the last DES operation.</p>

<p>Note: Each of these 64 bits of key contain 56 effective bits and 8 parity
bits. Thus there are only 168 operational bits out of the 192 being
transported for a TRIPLEDES key. (Depending on the criterion used for
analysis, the effective strength of the key may be thought to be 112 bits
(due to meet in the middle attacks) or even less.)</p>

<p>The resulting cipher text is prefixed by the IV. If included in XML
output, it is then base64 encoded. An example TRIPLEDES EncryptionMethod is
as follows:</p>
<pre class="xml-example">  &lt;EncryptionMethod
   Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/&gt;</pre>

<h4>5.2.2 <a name="sec-AES" id="sec-AES">AES</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="aes128-cbc" href="http://www.w3.org/2001/04/xmlenc#aes128-cbc"
      name="aes128-cbc">http://www.w3.org/2001/04/xmlenc#aes128-cbc</a>
      (REQUIRED)</dd>
    <dd><a id="aes192-cbc" href="http://www.w3.org/2001/04/xmlenc#aes192-cbc"
      name="aes192-cbc">http://www.w3.org/2001/04/xmlenc#aes192-cbc</a>
      (OPTIONAL)</dd>
    <dd><a id="aes256-cbc" href="http://www.w3.org/2001/04/xmlenc#aes256-cbc"
      name="aes256-cbc">http://www.w3.org/2001/04/xmlenc#aes256-cbc</a>
      (REQUIRED)</dd>
</dl>

<p>[<a href="#ref-AES">AES</a>] is used in the Cipher Block Chaining (CBC)
mode with a 128 bit initialization vector (IV). The resulting cipher text is
prefixed by the IV. If included in XML output, it is then base64 encoded. An
example AES EncryptionMethod is as follows:</p>
<pre class="xml-example">  &lt;EncryptionMethod
   Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/&gt;</pre>

<h3>5.3 <a name="sec-Alg-Stream" id="sec-Alg-Stream">Stream Encryption
Algorithms</a></h3>

<p>Simple stream encryption algorithms generate, based on the key, a stream
of bytes which are XORed with the plain text data bytes to produce the cipher
text on encryption and with the cipher text bytes to produce plain text on
decryption. They are normally used for the encryption of data and are
specified by the value of the <code>Algorithm</code> attribute of the
<code>EncryptionMethod</code> child of an <code>EncryptedData</code>
element.</p>

<p>NOTE: It is critical that each simple stream encryption key (or key and
initialization vector (IV) if an IV is also used) be used once only. If the
same key (or key and IV) is ever used on two messages then, by XORing the two
cipher texts, you can obtain the XOR of the two plain texts. This is usually
very compromising.</p>

<p>No specific stream encryption algorithms are specified herein but this
section is included to provide general guidelines.</p>

<p>Stream algorithms typically use the optional <code>KeySize</code> explicit
parameter. In cases where the key size is not apparent from the algorithm URI
or key source, as in the use of key agreement methods, this parameter sets
the key size. If the size of the key to be used is apparent and disagrees
with the <code>KeySize</code> parameter, an error MUST be returned.
Implementation of any stream algorithms is optional. The schema for the
KeySize parameter is as follows:</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;simpleType name='KeySizeType'&gt;
    &lt;restriction base="integer"/&gt;
  &lt;/simpleType&gt;</pre>

<h3>5.4 <a name="sec-Alg-KeyTransport" id="sec-Alg-KeyTransport">Key
Transport</a></h3>

<p>Key Transport algorithms are public key encryption algorithms especially
specified for encrypting and decrypting keys. Their identifiers appear as
<code>Algorithm</code> attributes to <code>EncryptionMethod</code> elements
that are children of <code>EncryptedKey</code>. <code>EncryptedKey</code> is
in turn the child of a <code>ds:KeyInfo</code> element. The type of key being
transported, that is to say the algorithm in which it is planned to use the
transported key, is given by the <code>Algorithm</code> attribute of the
<code>EncryptionMethod</code> child of the <code>EncryptedData</code> or
<code>EncryptedKey</code> parent of this <code>ds:KeyInfo</code> element.</p>

<p>(Key Transport algorithms may optionally be used to encrypt data in which
case they appear directly as the <code>Algorithm</code> attribute of an
<code>EncryptionMethod</code> child of an <code>EncryptedData</code> element.
Because they use public key algorithms directly, Key Transport algorithms are
not efficient for the transport of any amounts of data significantly larger
than symmetric keys.)</p>

<p class="">The RSA v1.5 Key Transport algorithm given below are those used
in conjunction with TRIPLEDES and the Cryptographic Message Syntax (CMS) of
S/MIME [<a href="#ref-CMS-Algorithms">CMS-Algorithms</a>]. The RSA v2 Key
Transport algorithm given below is that used in conjunction with AES and CMS
[<a href="#ref-AES-WRAP">AES-WRAP</a>].</p>

<h4>5.4.1 <a name="sec-RSA-1_5" id="sec-RSA-1_5">RSA Version 1.5</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="rsa-1_5" href="http://www.w3.org/2001/04/xmlenc#rsa-1_5"
      name="rsa-1_5">http://www.w3.org/2001/04/xmlenc#rsa-1_5</a>
    (REQUIRED)</dd>
</dl>

<p>The RSAES-PKCS1-v1_5 algorithm, specified in RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>], takes no explicit parameters. An example of an
RSA Version 1.5 <code>EncryptionMethod</code> element is:</p>
<pre class="xml-example">  &lt;EncryptionMethod
   Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/&gt;</pre>

<p>The <code>CipherValue</code> for such an encrypted key is the base64 [<a
href="#ref-MIME">MIME</a>] encoding of the octet string computed as per RFC
2437 [<a href="#ref-PKCS1">PKCS1</a>, section 7.2.1: Encryption operation].
As specified in the EME-PKCS1-v1_5 function RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>, section 9.1.2.1], the value input to the key
transport function is as follows:</p>
<pre class="xml-example">   CRYPT ( PAD ( KEY ))</pre>

<p>where the padding is of the following special form:</p>
<pre class="xml-example">   02 | PS* | 00 | key</pre>

<p>where "|" is concatenation, "02" and "00" are fixed octets of the
corresponding hexadecimal value, PS is a string of strong pseudo-random
octets [<a href="#ref-RANDOM">RANDOM</a>] at least eight octets long,
containing no zero octets, and long enough that the value of the quantity
being CRYPTed is one octet shorter than the RSA modulus, and "key" is the key
being transported. The key is 192 bits for TRIPLEDES and 128, 192, or 256
bits for AES. Support of this key transport algorithm for transporting 192
bit keys is MANDATORY to implement. Support of this algorithm for
transporting other keys is OPTIONAL. RSA-OAEP is RECOMMENDED for the
transport of AES keys.</p>

<p>The resulting base64 [<a href="#ref-MIME">MIME</a>] string is the value of
the child text node of the <code>CipherData</code> element, e.g.</p>
<pre class="xml-example">  &lt;CipherData&gt; IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4
     t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
  &lt;/CipherData&gt;</pre>

<h4>5.4.2 <a name="sec-RSA-OAEP" id="sec-RSA-OAEP">RSA-OAEP</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="rsa-oaep-mgf1p"
      href="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"
      name="rsa-oaep-mgf1p">http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p</a>
      (REQUIRED)</dd>
</dl>

<p class="">The RSAES-OAEP-ENCRYPT algorithm, as specified in RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>], takes three parameters. The two user specified
parameters are a MANDATORY message digest function and an OPTIONAL encoding
octet string <code>OAEPparams</code>. The message digest function is
indicated by the <code>Algorithm</code> attribute of a child
<code>ds:DigestMethod</code> element and the mask generation function, the
third parameter, is always MGF1 with SHA1 (mgf1SHA1Identifier). Both the
message digest and mask generation functions are used in the EME-OAEP-ENCODE
operation as part of RSAES-OAEP-ENCRYPT. The encoding octet string is the
base64 decoding of the content of an optional <code>OAEPparams</code> child
element . If no <code>OAEPparams</code> child is provided, a null string is
used.</p>
<pre class="xml-dtd">Schema Definition:
     &lt;!-- use these element types as children of EncryptionMethod
          when used with RSA-OAEP --&gt;
     &lt;element name='OAEPparams' minOccurs='0' type='base64Binary'/&gt;
     &lt;element ref='ds:DigestMethod' minOccurs='0'/&gt;</pre>

<p>An example of an RSA-OAEP element is:</p>
<pre class="xml-example">  &lt;EncryptionMethod
     Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"&gt;
    &lt;OAEPparams&gt; 9lWu3Q== &lt;/OAEPparams&gt;
    &lt;ds:DigestMethod
        Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/&gt;
  &lt;EncryptionMethod&gt;</pre>

<p>The <code>CipherValue</code> for an RSA-OAEP encrypted key is the base64
[<a href="#ref-MIME">MIME</a>] encoding of the octet string computed as per
RFC 2437 [<a href="#ref-PKCS1">PKCS1</a>, section 7.1.1: Encryption
operation]. As described in the EME-OAEP-ENCODE function RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>, section 9.1.1.1], the value input to the key
transport function is calculated using the message digest function and string
specified in the <code>DigestMethod</code> and <code>OAEPparams</code>
elements and using the mask generator function MGF1 (with SHA1) specified in
RFC 2437. The desired output length for EME-OAEP-ENCODE is one byte shorter
than the RSA modulus.</p>

<p>The transported key size is 192 bits for TRIPLEDES and 128, 192, or 256
bits for AES. Implementations MUST implement RSA-OAEP for the transport of
128 and 256 bit keys. They MAY implement RSA-OAEP for the transport of other
keys.</p>

<h3>5.5 <a name="sec-Alg-KeyAgreement" id="sec-Alg-KeyAgreement">Key
Agreement</a></h3>

<p>A Key Agreement algorithm provides for the derivation of a shared secret
key based on a shared secret computed from certain types of compatible public
keys from both the sender and the recipient. Information from the originator
to determine the secret is indicated by an optional
<code>OriginatorKeyInfo</code> parameter child of an
<code>AgreementMethod</code> element while that associated with the recipient
is indicated by an optional <code>RecipientKeyInfo</code>. A shared key is
derived from this shared secret by a method determined by the Key Agreement
algorithm.</p>

<p>Note: XML Encryption does not provide an on-line key agreement negotiation
protocol. The <code>AgreementMethod</code> element can be used by the
originator to identify the keys and computational procedure that were used to
obtain a shared encryption key. The method used to obtain or select the keys
or algorithm used for the agreement computation is beyond the scope of this
specification.</p>

<p>The <code>AgreementMethod</code> element appears as the content of a
<code>ds:KeyInfo</code> since, like other <code>ds:KeyInfo</code> children,
it yields a key. This <code>ds:KeyInfo</code> is in turn a child of an
<code>EncryptedData</code> or <code>EncryptedKey</code> element. The
<code>Algorithm</code> attribute and <code>KeySize</code> child of the
<code>EncryptionMethod</code> element under this <code>EncryptedData</code>
or <code>EncryptedKey</code> element are implicit parameters to the key
agreement computation. In cases where this <code>EncryptionMethod</code>
algorithm URI is insufficient to determine the key length, a
<code>KeySize</code> MUST have been included. In addition, the sender may
place a <code>KA-Nonce</code> element under <code>AgreementMethod</code> to
assure that different keying material is generated even for repeated
agreements using the same sender and recipient public keys. For example:</p>
<pre class="xml-example"> &lt;EncryptedData&gt;
   &lt;EncryptionMethod Algorithm="Example:Block/Alg"
     &lt;KeySize&gt;80&lt;/KeySize&gt;
   &lt;/EncryptionMethod&gt;
   &lt;ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#"&gt;
     &lt;AgreementMethod Algorithm="example:Agreement/Algorithm"&gt;
       &lt;KA-Nonce&gt;Zm9v&lt;/KA-Nonce&gt;
       &lt;ds:DigestMethod
       Algorithm="http://www.w3.org/2001/04/xmlenc#sha1"/&gt;
      &lt;OriginatorKeyInfo&gt;
         &lt;ds:KeyValue&gt;....&lt;/ds:KeyValue&gt;
       &lt;/OriginatorKeyInfo&gt;
       &lt;RecipientKeyInfo&gt;
         &lt;ds:KeyValue&gt;....&lt;/ds:KeyValue&gt;
       &lt;/RecipientKeyInfo&gt; 
     &lt;/AgreementMethod&gt;
   &lt;/ds:KeyInfo&gt;
   &lt;CipherData&gt;...&lt;/CipherData&gt;
&lt;/EncryptedData&gt;</pre>

<p>If the agreed key is being used to wrap a key, rather than data as above,
then <code>AgreementMethod</code> would appear inside a
<code>ds:KeyInfo</code> inside an <code>EncryptedKey</code> element.</p>

<p>The Schema for <code>AgreementMethod</code> is as follows:</p>
<pre class="xml-dtd">  Schema Definition:

  &lt;element name="AgreementMethod" type="xenc:AgreementMethodType"/&gt;
  &lt;complexType name="AgreementMethodType" mixed="true"&gt;
    &lt;sequence&gt;
      &lt;element name="KA-Nonce" minOccurs="0" type="base64Binary"/&gt;
      &lt;!-- &lt;element ref="ds:DigestMethod" minOccurs="0"/&gt; --&gt;
      &lt;any namespace="##other" minOccurs="0" maxOccurs="unbounded"/&gt;
      &lt;element name="OriginatorKeyInfo" minOccurs="0" 
               type="ds:KeyInfoType"/&gt;
      &lt;element name="RecipientKeyInfo" minOccurs="0" 
               type="ds:KeyInfoType"/&gt;
    &lt;/sequence&gt;
    &lt;attribute name="Algorithm" type="anyURI" use="required"/&gt;
  &lt;/complexType&gt;</pre>

<h4>5.5.1 <a name="sec-DHKeyValue" id="sec-DHKeyValue">Diffie-Hellman Key
Values</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="DHKeyValue" href="http://www.w3.org/2001/04/xmlenc#DHKeyValue"
      name="DHKeyValue">http://www.w3.org/2001/04/xmlenc#DHKeyValue</a>
      (OPTIONAL)</dd>
</dl>

<p>Diffie-Hellman keys can appear directly within <code>KeyValue</code>
elements or be obtained by <code>ds:RetrievalMethod</code> fetches as well as
appearing in certificates and the like. The above identifier can be used as
the value of the <code>Type</code> attribute of <code>Reference</code> or
<code>ds:RetrievalMethod</code> elements.</p>

<p>As specified in [<a href="#ref-ESDH">ESDH</a>], a DH public key consists
of up to six quantities, two large primes p and q, a "generator" g, the
public key, and validation parameters "seed" and "pgenCounter". These relate
as follows: The public key = ( g**x mod p ) where x is the corresponding
private key; p = j*q + 1 where j &gt;= 2. "seed" and "pgenCounter" are
optional and can be used to determine if the Diffie-Hellman key has been
generated in conformance with the algorithm specified in [<a
href="#ref-ESDH">ESDH</a>]. Because the primes and generator can be safely
shared over many DH keys, they may be known from the application environment
and are optional. The schema for a <code>DHKeyValue</code> is as follows:</p>
<pre class="xml-dtd">   <code>Schema:

  &lt;element name="DHKeyValue" type="xenc:DHKeyValueType"/&gt;
  &lt;complexType name="DHKeyValueType"&gt;
     &lt;sequence&gt;
        &lt;sequence minOccurs="0"&gt;
           &lt;element name="P" type="ds:CryptoBinary"/&gt;
           &lt;element name="Q" type="ds:CryptoBinary"/&gt;
           &lt;element name="Generator"type="ds:CryptoBinary"/&gt;
        &lt;/sequence&gt;
        &lt;element name="Public" type="ds:CryptoBinary"/&gt;
        &lt;sequence minOccurs="0"&gt;
           &lt;element name="seed" type="ds:CryptoBinary"/&gt;
           &lt;element name="pgenCounter" type="ds:CryptoBinary"/&gt;
        &lt;/sequence&gt;
     &lt;/sequence&gt;
  &lt;/complexType&gt;</code></pre>

<h4>5.5.2 <a name="sec-DHKeyAgreement" id="sec-DHKeyAgreement">Diffie-Hellman
Key Agreement</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a name="dh" id="dh"
      href="http://www.w3.org/2001/04/xmlenc#dh">http://www.w3.org/2001/04/xmlenc#dh</a>
      (OPTIONAL)</dd>
</dl>

<p>The Diffie-Hellman (DH) key agreement protocol [<a
href="#ref-ESDH">ESDH</a>] involves the derivation of shared secret
information based on compatible DH keys from the sender and recipient. Two DH
public keys are compatible if they have the same prime and generator. If, for
the second one, <code>Y = g**y mod p</code>, then the two parties can
calculate the shared secret <code>ZZ = ( g**(x*y) mod p )</code> even though
each knows only their own private key and the other party's public key.
Leading zero bytes MUST be maintained in <code>ZZ</code> so it will be the
same length, in bytes, as <code>p</code>. The size of <code>p</code> MUST be
at least 512 bits and <code>g</code> at least 160 bits. There are numerous
other complex security considerations in the selection of <code>g</code>,
<code>p</code>, and a random <code>x</code> as described in [<a
href="#ref-ESDH">ESDH</a>].</p>

<p>Diffie-Hellman key agreement is optional to implement. An example of a DH
<code>AgreementMethod</code> element is as follows:</p>
<pre class="xml-example">  &lt;AgreementMethod
      Algorithm="http://www.w3.org/2001/04/xmlenc#dh"
      ds:xmlns="http://www.w3.org/2000/09/xmldsig#"&gt;
    &lt;KA-Nonce&gt;Zm9v&lt;/KA-Nonce&gt;
    &lt;ds:DigestMethod
     Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/&gt;
    &lt;OriginatorKeyInfo&gt;
      &lt;ds:X509Data&gt;&lt;ds:X509Certificate&gt;
        ...
      &lt;/ds:X509Certificate&gt;&lt;/ds:X509Data&gt;
    &lt;/OriginatorKeyInfo&gt;
    &lt;RecipientKeyInfo&gt;&lt;ds:KeyValue&gt;
      ...
    &lt;/ds:KeyValue&gt;&lt;/RecipientKeyInfo&gt;
  &lt;/AgreementMethod&gt;</pre>

<p>Assume the Diffie-Hellman shared secret is the octet sequence
<code>ZZ</code>. The shared keying material needed will then be calculated as
follows:</p>
<pre class="xml-example">  Keying Material = KM(1) | KM(2) | ...</pre>

<p>where "|" is byte stream concatenation and</p>
<pre class="xml-example">  KM(counter) = DigestAlg ( ZZ | counter | EncryptionAlg |
                KA-Nonce | KeySize )</pre>
<dl>
  <dt><code>DigestAlg</code></dt>
    <dd>The message digest algorithm specified by the
      <code>DigestMethod</code> child of <code>AgreementMethod</code>.</dd>
  <dt><code>EncryptionAlg</code></dt>
    <dd>The URI of the encryption algorithm, including possible key wrap
      algorithms, in which the derived keying material is to be used
      ("Example:Block/Alg" in the example above), not the URI of the
      agreement algorithm. This is the value of the <code>Algorithm</code>
      attribute of the <code>EncryptionMethod</code> child of the
      <code>EncryptedData</code> or <code>EncryptedKey</code> grandparent of
      <code>AgreementMethod</code>.</dd>
  <dt><code>KA-Nonce</code></dt>
    <dd>The base64 decoding the content of the <code>KA-Nonce</code> child of
      <code>AgreementMethod</code>, if present. If the <code>KA-Nonce</code>
      element is absent, it is null.</dd>
  <dt><code>Counter</code></dt>
    <dd>A one byte counter starting at one and incrementing by one. It is
      expressed as two hex digits where letters A through F are in upper
    case.</dd>
  <dt><code>KeySize</code></dt>
    <dd>The size in bits of the key to be derived from the shared secret as
      the UTF-8 string for the corresponding decimal integer with only digits
      in the string and no leading zeros. For some algorithms the key size is
      inherent in the URI. For others, such as most stream ciphers, it must
      be explicitly provided.</dd>
</dl>

<p>For example, the initial <code>(KM(1))</code> calculation for the
<code>EncryptionMethod</code> of the <a href="#sec-Alg-KeyAgreement">Key
Agreement</a> example (section 5.5) would be as follows, where the binary one
byte counter value of 1 is represented by the two character UTF-8 sequence
<code>01</code>, <code>ZZ</code> is the shared secret, and "<code>foo</code>"
is the base64 decoding of "<code>Zm9v</code>".</p>
<pre class="xml-example">  SHA-1 ( ZZ01Example:Block/Algfoo80 )</pre>

<p>Assuming that <code>ZZ</code> is <code>0xDEADBEEF</code>, that would be</p>
<pre class="xml-example">  SHA-1( 0xDEADBEEF30314578616D706C653A426C6F636B2F416C67666F6F3830 )</pre>

<p>whose value is</p>
<pre class="xml-example">  0x534C9B8C4ABDCB50038B42015A181711068B08C1</pre>

<p>Each application of <code>DigestAlg</code> for successive values of
<code>Counter</code> will produce some additional number of bytes of keying
material. From the concatenated string of one or more <code>KM</code>'s,
enough leading bytes are taken to meet the need for an actual key and the
remainder discarded. For example, if <code>DigestAlg</code> is SHA-1 which
produces 20 octets of hash, then for 128 bit AES the first 16 bytes from
<code>KM(1)</code> would be taken and the remaining 4 bytes discarded. For
256 bit AES, all of <code>KM(1)</code> suffixed with the first 12 bytes of
KM(2) would be taken and the remaining 8 bytes of <code>KM(2)</code>
discarded.</p>

<h3>5.6 <a name="sec-Alg-SymmetricKeyWrap"
id="sec-Alg-SymmetricKeyWrap">Symmetric Key Wrap</a></h3>

<p>Symmetric Key Wrap algorithms are shared secret key encryption algorithms
especially specified for encrypting and decrypting symmetric keys. Their
identifiers appear as <code>Algorithm</code> attribute values to
<code>EncryptionMethod</code> elements that are children of
<code>EncryptedKey</code> which is in turn a child of <code>ds:KeyInfo</code>
which is in turn a child of <code>EncryptedData</code> or another
<code>EncryptedKey</code>. The type of the key being wrapped is indicated by
the <code>Algorithm</code> attribute of <code>EncryptionMethod</code> child
of the parent of the <code>ds:KeyInfo</code> grandparent of the
<code>EncryptionMethod</code> specifying the symmetric key wrap algorithm.</p>

<h4>5.6.1 <a name="sec-CMSKeyChecksum" id="sec-CMSKeyChecksum">CMS Key
Checksum</a></h4>

<p>Some key wrap algorithms make use of a key checksum as defined in CMS [<a
href="#ref-CMS-Wrap">CMS-Wrap</a>]. The algorithm that provides an integrity
check value for the key being wrapped is:</p>
<ol>
  <li>Compute the 20 octet SHA-1 hash on the key being wrapped.</li>
  <li>Use the first 8 octets of this hash as the checksum value.</li>
</ol>

<h4>5.6.2 <a name="sec-kw-tripledes" id="sec-kw-tripledes">CMS Triple DES Key
Wrap</a></h4>
<dl>
  <dt>Identifiers and Requirements:</dt>
    <dd><a id="kw-tripledes" name="kw-tripledes"
      href="http://www.w3.org/2001/04/xmlenc#kw-tripledes">http://www.w3.org/2001/04/xmlenc#kw-tripledes</a>
      (REQUIRED)</dd>
</dl>

<p>XML Encryption implementations MUST support TRIPLEDES wrapping of 168 bit
keys and may optionally support TRIPLEDES wrapping of other keys.</p>

<p>An example of a TRIPLEDES Key Wrap <code>EncryptionMethod</code> element
is as follows:</p>
<pre class="xml-example">  <code>&lt;EncryptionMethod
   Algorithm="http://www.w3.org/2001/04/xmlenc#kw-tripledes"/&gt;</code></pre>

<p>The following algorithm wraps (encrypts) a key (the wrapped key, WK) under
a TRIPLEDES key-encryption-key (KEK) as adopted from [<a
href="#ref-CMS-Algorithms">CMS-Algorithms</a>]:</p>
<ol>
  <li>Represent the key being wrapped as an octet sequence. If it is a
    TRIPLEDES key, this is 24 octets (192 bits) with odd parity bit as the
    bottom bit of each octet.</li>
  <li>Compute the <a href="#sec-CMSKeyChecksum">CMS key checksum</a> (section
    5.6.1) call this CKS.</li>
  <li>Let <code>WKCKS = WK || CKS</code>, where || is concatenation.</li>
  <li>Generate 8 random octets [<a href="#ref-RANDOM">RANDOM</a>] and call
    this IV.</li>
  <li>Encrypt WKCKS in CBC mode using KEK as the key and IV as the
    initialization vector. Call the results TEMP1.</li>
  <li>Let <code>TEMP2 = IV || TEMP1</code>.</li>
  <li>Reverse the order of the octets in <code>TEMP2</code> and call the
    result <code>TEMP3</code>.</li>
  <li>Encrypt <code>TEMP3</code> in CBC mode using the <code>KEK</code> and
    an initialization vector of <code>0x4adda22c79e82105</code>. The
    resulting cipher text is the desired result. It is 40 octets long if a
    168 bit key is being wrapped.</li>
</ol>

<p>The following algorithm unwraps (decrypts) a key as adopted from [<a
href="#ref-CMS-Algorithms">CMS-Algorithms</a>]:</p>
<ol>
  <li>Check if the length of the cipher text is reasonable given the key
    type. It must be 40 bytes for a 168 bit key and either 32, 40, or 48
    bytes for a 128, 192, or 256 bit key. If the length is not supported or
    inconsistent with the algorithm for which the key is intended, return
    error.</li>
  <li>Decrypt the cipher text with TRIPLEDES in CBC mode using the
    <code>KEK</code> and an initialization vector (IV) of
    <code>0x4adda22c79e82105</code>. Call the output <code>TEMP3</code>.</li>
  <li>Reverse the order of the octets in TEMP3 and call the result
    <code>TEMP2</code>.</li>
  <li>Decompose TEMP2 into IV, the first 8 octets, and <code>TEMP1</code>,
    the remaining octets.</li>
  <li>Decrypt TEMP1 using TRIPLEDES in CBC mode using the <code>KEK</code>
    and the IV found in the previous step. Call the result
  <code>WKCKS</code>.</li>
  <li>Decompose <code>WKCKS</code>. <code>CKS</code> is the last 8 octets and
    <code>WK</code>, the wrapped key, are those octets before the
    <code>CKS</code>.</li>
  <li>Calculate a <a href="#sec-CMSKeyChecksum">CMS key checksum</a> (section
    5.6.1) over the <code>WK</code> and compare with the <code>CKS</code>
    extracted in the above step. If they are not equal, return error.</li>
  <li><code>WK</code> is the wrapped key, now extracted for use in data
    decryption.</li>
</ol>

<h4>5.6.3 <a name="sec-kw-aes" id="sec-kw-aes">AES KeyWrap</a></h4>
<dl>
  <dt>Identifiers and Requirements:</dt>
    <dd><a id="kw-aes128" href="http://www.w3.org/2001/04/xmlenc#kw-aes128"
      name="kw-aes128">http://www.w3.org/2001/04/xmlenc#kw-aes128</a>
      (REQUIRED)</dd>
    <dd><a id="kw-aes192" href="http://www.w3.org/2001/04/xmlenc#kw-aes192"
      name="kw-aes192">http://www.w3.org/2001/04/xmlenc#kw-aes192</a>
      (OPTIONAL)</dd>
    <dd><a id="kw-aes256" href="http://www.w3.org/2001/04/xmlenc#kw-aes256"
      name="kw-aes256">http://www.w3.org/2001/04/xmlenc#kw-aes256</a>
      (REQUIRED)</dd>
</dl>

<p>Implementation of AES key wrap is described below, as suggested by NIST.
It provides for confidentiality and integrity. This algorithm is defined only
for inputs which are a multiple of 64 bits. The information wrapped need not
actually be a key. The algorithm is the same whatever the size of the AES key
used in wrapping, called the key encrypting key or <code>KEK</code>. The
implementation requirements are indicated below.</p>
<dl>
  <dt>128 bit AES Key Encrypting Key</dt>
    <dd>Implementation of wrapping 128 bit keys REQUIRED.<br />
      Wrapping of other key sizes OPTIONAL.</dd>
  <dt>192 bit AES Key Encrypting Key</dt>
    <dd>All support OPTIONAL.</dd>
  <dt>256 bit AES Key Encrypting Key</dt>
    <dd>Implementation of wrapping 256 bit keys REQUIRED.<br />
      Wrapping of other key sizes OPTIONAL.</dd>
</dl>

<p>Assume that the data to be wrapped consists of <code>N</code> 64-bit data
blocks denoted <code>P(1)</code>, <code>P(2)</code>, <code>P(3)</code> ...
<code>P(N)</code>. The result of wrapping will be <code>N+1</code> 64-bit
blocks denoted <code>C(0)</code>, <code>C(1)</code>, <code>C(2)</code>, ...
<code>C(N)</code>. The key encrypting key is represented by <code>K</code>.
Assume integers <code>i</code>, <code>j</code>, and <code>t</code> and
intermediate 64-bit register <code>A</code>, 128-bit register <code>B</code>,
and array of 64-bit quantities <code>R(1)</code> through
<code>R(N)</code>.</p>

<p>"|" represents concatentation so <code>x|y</code>, where <code>x</code>
and <code>y</code> and 64-bit quantities, is the 128-bit quantity with
<code>x</code> in the most significant bits and <code>y</code> in the least
significant bits. <code>AES(K)enc(x)</code> is the operation of AES
encrypting the 128-bit quantity <code>x</code> under the key <code>K</code>.
<code>AES(K)dec(x)</code> is the corresponding decryption opteration.
<code>XOR(x,y)</code> is the bitwise exclusive or of <code>x</code> and
<code>y</code>. <code>MSB(x)</code> and <code>LSB(y)</code> are the most
significant 64 bits and least significant 64 bits of x and y respectively.</p>

<p>If <code>N</code> is 1, a single AES operation is performed for wrap or
unwrap. If <code>N&gt;1</code>, then <code>6*N</code> AES operations are
performed for wrap or unwrap.</p>

<p>The key wrap algorithm is as follows:</p>
<ol>
  <li>If <code>N</code> is <code>1</code>: 
    <ul>
      <li><code>B=AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1)</code>)</li>
      <li><code>C(0)=MSB(B)</code></li>
      <li><code>C(1)=LSB(B)</code></li>
    </ul>
    If <code>N&gt;1</code>, perform the following steps:</li>
  <li>Initialize variables: 
    <ul>
      <li>Set <code>A</code> to <code>0xA6A6A6A6A6A6A6A6</code></li>
      <li>For<code>i=1</code> to <code>N</code>,<br />
        <code>R(i)=P(i)</code></li>
    </ul>
  </li>
  <li>Calculate intermediate values: 
    <ul>
      <li>For<code>j=0</code> to <code>5</code>, 
        <ul>
          <li>For <code>i=1</code> to <code>N</code>,<br />
            <code>t= i + j*N</code><br />
            <code>B=AES(K)enc(A|R(i))</code><br />
            <code>A=XOR(t,MSB(B))</code><br />
            <code>R(i)=LSB(B)</code></li>
        </ul>
      </li>
    </ul>
  </li>
  <li>Output the results: 
    <ul>
      <li>Set <code>C(0)=A</code></li>
      <li>For <code>i=1</code> to <code>N</code>,<br />
        <code>C(i)=R(i)</code></li>
    </ul>
  </li>
</ol>

<p>The key unwrap algorithm is as follows:</p>
<ol>
  <li>If <code>N</code> is <code>1</code>: 
    <ul>
      <li><code>B=AES(K)dec(C(0)|C(1))</code></li>
      <li><code>P(1)=LSB(B)</code></li>
      <li>If <code>MSB(B)</code> is <code>0xA6A6A6A6A6A6A6A6</code>, return
        success. Otherwise, return an integrity check failure error.</li>
    </ul>
    If <code>N</code>&gt;1, perform the following steps:</li>
  <li>Initialize the variables: 
    <ul>
      <li><code>A=C(0)</code></li>
      <li>For <code>i=1</code> to <code>N</code>,<br />
        <code>R(i)=C(i)</code></li>
    </ul>
  </li>
  <li>Calculate intermediate values: 
    <ul>
      <li>For <code>j=5</code> to <code>0</code>, 
        <ul>
          <li>For <code>i=N</code> to <code>1</code>,<br />
            <code>t= i + j*N</code><br />
            <code>B=AES(K)dec(XOR(t,A)|R(i))</code><br />
            <code>A=MSB(B)</code><br />
            <code>R(i)=LSB(B)</code></li>
        </ul>
      </li>
    </ul>
  </li>
  <li>Output the results: 
    <ul>
      <li>For <code>i=1</code> to <code>N</code>,<br />
        <code>P(i)=R(i)</code></li>
      <li>If <code>A</code> is <code>0xA6A6A6A6A6A6A6A6</code>, return
        success. Otherwise, return an integrity check failure error.</li>
    </ul>
  </li>
</ol>

<p>For example, wrapping the data
<code>0x00112233445566778899AABBCCDDEEFF</code> with the <code>KEK
0x000102030405060708090A0B0C0D0E0F</code> produces the ciphertext of
<code>0x1FA68B0A8112B447</code>, <code>0xAEF34BD8FB5A7B82</code>,
<code>0x9D3E862371D2CFE5</code>.</p>

<h3>5.7 <a name="sec-Alg-MessageDigest" id="sec-Alg-MessageDigest">Message
Digest</a></h3>

<p>Message digest algorithms can be used in <code>AgreementMethod</code> as
part of the key derivation, within RSA-OAEP encryption as a hash function,
and in connection with the HMAC message authentication code method as
described in [<a href="#ref-XML-DSIG">XML-DSIG</a>].)</p>

<h4>5.7.1 <a name="sec-SHA1" id="sec-SHA1">SHA1</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a
      href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a>
      (REQUIRED)</dd>
</dl>

<p>The SHA-1 algorithm [<a href="#ref-SHA">SHA</a>] takes no explicit
parameters. An example of an SHA-1 <code>DigestMethod</code> element is:</p>
<pre class="xml-example">   &lt;DigestMethod
    Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/&gt;</pre>

<p>A SHA-1 digest is a 160-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 20-octet octet stream. For example, the
<code>DigestValue</code> element for the message digest:</p>
<pre class="xml-example">   <code>A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D</code></pre>

<p>from Appendix A of the SHA-1 standard would be:</p>
<pre class="xml-example">   <code>&lt;DigestValue&gt;qZk+NkcGgWq6PiVxeFDCbJzQ2J0=&lt;/DigestValue&gt;</code></pre>

<h4>5.7.2 <a name="sec-SHA256" id="sec-SHA256">SHA256</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="sha256" href="http://www.w3.org/2001/04/xmlenc#sha256"
      name="sha256">http://www.w3.org/2001/04/xmlenc#sha256</a>
    (RECOMMENDED)</dd>
</dl>

<p>The SHA-256 algorithm [<a href="#ref-SHA">SHA</a>] takes no explicit
parameters. An example of an SHA-256 <code>DigestMethod</code> element is:</p>
<pre class="xml-example">   <code>&lt;DigestMethod
    Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/&gt;</code></pre>

<p>A SHA-256 digest is a 256-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 32-octet octet stream.</p>

<h4>5.7.3 <a name="sec-SHA512" id="sec-SHA512">SHA512</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="sha512" href="http://www.w3.org/2001/04/xmlenc#sha512"
      name="sha512">http://www.w3.org/2001/04/xmlenc#sha512</a>
    (OPTIONAL)</dd>
</dl>

<p>The SHA-512 algorithm [<a href="#ref-SHA">SHA</a>] takes no explicit
parameters. An example of an SHA-512 <code>DigestMethod</code> element is:</p>
<pre class="xml-example">   &lt;DigestMethod
    Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/&gt;</pre>

<p>A SHA-512 digest is a 512-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 64-octet octet stream.</p>

<h4>5.7.4 <a name="sec-RIPEMD-160" id="sec-RIPEMD-160">RIPEMD-160</a></h4>
<dl>
  <dt>Identifier:</dt>
    <dd><a id="ripemd160" href="http://www.w3.org/2001/04/xmlenc#ripemd160"
      name="ripemd160">http://www.w3.org/2001/04/xmlenc#ripemd160</a>
      (OPTIONAL)</dd>
</dl>

<p>The RIPEMD-160 algorithm [<a href="#ref-RIPEMD-160">RIPEMD-160</a>] takes
no explicit parameters. An example of an RIPEMD-160 <code>DigestMethod</code>
element is:</p>
<pre class="xml-example">   &lt;DigestMethod
    Algorithm="http://www.w3.org/2001/04/xmlenc#ripemd160"/&gt;</pre>

<p>A RIPEMD-160 digest is a 160-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 20-octet octet stream.</p>

<h3>5.8 <a name="sec-Alg-MessageAuthentication"
id="sec-Alg-MessageAuthentication">Message Authentication</a></h3>
<dl>
  <dt>Identifier:</dt>
    <dd><a
      href="http://www.w3.org/2000/09/xmldsig#">http://www.w3.org/2000/09/xmldsig#</a>
      (RECOMMENDED)</dd>
</dl>

<p>XML Signature [<a href="#ref-XML-DSIG">XML-DSIG</a>] is OPTIONAL to
implement for XML encryption applications. It is the recommended way to
provide key based authentication.</p>

<h3>5.9 <a name="sec-Alg-Canonicalition"
id="sec-Alg-Canonicalition">Canonicalization</a></h3>

<p>A Canonicalization of XML is a method of consistently serializing XML into
an octet stream as is necessary prior to encrypting XML.</p>

<h4><a id="sec-Inclusive-Canonicalization"
name="sec-Inclusive-Canonicalization">5.9.1 Inclusive
Canonicalization</a></h4>
<dl>
  <dt>Identifiers:</dt>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a>
      (OPTIONAL)</dd>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a>
      (OPTIONAL)</dd>
</dl>

<p>Canonical XML [<a href="#ref-XML-C14N">Canon</a>] is a method of
serializing XML which includes the in scope namespace and xml namespace
attribute context from ancestors of the XML being serialized.</p>

<p>If XML is to be encrypted and then later decrypted into a different
environment and it is desired to preserve namespace prefix bindings and the
value of attributes in the "xml" namespace of its original environment, then
the canonical XML with comments version of the XML should be the
serialization that is encrypted.</p>

<h4><a id="sec-Exclusive-Canonicalization"
name="sec-Exclusive-Canonicalization">5.9.2 Exclusive
Canonicalization</a></h4>
<dl>
  <dt>Identifiers:</dt>
    <dd><a
      href="http://www.w3.org/2001/10/xml-exc-c14n#">http://www.w3.org/2001/10/xml-exc-c14n#</a>
      (OPTIONAL)</dd>
    <dd><a
      href="http://www.w3.org/2001/10/xml-exc-c14n#WithComments">http://www.w3.org/2001/10/xml-exc-c14n#WithComments</a>
      (OPTIONAL)</dd>
</dl>

<p>Exclusive XML Canonicalization [<a href="#ref-XML-exc-C14N">Exclusive</a>]
serializes XML in such a way as to include to the minimum extent practical
the namespace prefix binding and xml namespace attribute context inherited
from ancestor elements.</p>

<p>It is the recommended method where the outer context of a fragment which
was signed and then encrypted may be changed. Otherwise the validation of the
signature over the fragment may fail because the canonicalization by
signature validation may include unnecessary namespaces into the fragment.</p>

<h2>6 <a name="sec-Security" id="sec-Security">Security
Considerations</a></h2>

<h3>6.1 <a name="sec-Sign-with-Encrypt"
id="sec-Sign-with-Encrypt">Relationship to XML Digital Signatures</a></h3>

<p>The application of both encryption and digital signatures over portions of
an XML document can make subsequent decryption and signature verification
difficult. In particular, when verifying a signature one must know whether
the signature was computed over the encrypted or unencrypted form of
elements.</p>

<p>A separate, but important, issue is introducing cryptographic
vulnerabilities when combining digital signatures and encryption over a
common XML element. Hal Finney has suggested that encrypting digitally signed
data, while leaving the digital signature in the clear, may allow plaintext
guessing attacks. This vulnerability can be mitigated by using secure hashes
and the nonces in the text being processed.</p>

<p>In accordance with the requirements document [<a
href="#ref-EncReq">EncReq</a>] the interaction of encryption and signing is
an application issue and out of scope of the specification. However, we make
the following recommendations:</p>
<ol type="1">
  <li>When data is encrypted, any digest or signature over that data should
    be encrypted. This satisfies the first issue in that only those
    signatures that can be seen can be validated. It also addresses the
    possibility of a plaintext guessing vulnerability, though it may not be
    possible to identify (or even know of) all the signatures over a given
    piece of data.</li>
  <li>Employ the "decrypt-except" signature transform [<a
    href="#ref-XML-DSIG-Decrypt">XML-DSIG-Decrypt]</a>. It works as follows:
    during signature transform processing, if you encounter a decrypt
    transform, decrypt all encrypted content in the document except for those
    excepted by an enumerated set of references.</li>
</ol>

<p>Additionally, while the following warnings pertain to incorrect inferences
by the user about the authenticity of information encrypted, applications
should discourage user misapprehension by communicating clearly which
information has integrity, or is authenticated, confidential, or
non-repudiable when multiple processes (e.g., signature and encryption) and
algorithms (e.g., symmetric and asymmetric) are used:</p>
<ol>
  <li>When an encrypted envelope contains a signature, the signature does not
    necessarily protect the authenticity or integrity of the ciphertext [<a
    href="#ref-Davis">Davis</a>] .</li>
  <li>While the signature secures plaintext it only covers that which is
    signed, recipients of encrypted messages must not infer integrity or
    authenticity of other unsigned information (e.g., headers) within the
    encrypted envelope, see [<a href="#ref-XML-DSIG">XML-DSIG</a>, <a
    href="http://www.w3.org/TR/xmldsig-core/#sec-Secure">8.1.1 Only What is
    Signed is Secure</a>].</li>
</ol>

<h3>6.2 <a name="sec-InformationRevealed"
id="sec-InformationRevealed">Information Revealed</a></h3>

<p>Where a symmetric key is shared amongst multiple recipients, that
symmetric key should <em>only</em> be used for the data intended for
<em>all</em> recipients; even if one recipient is not directed to information
intended (exclusively) for another in the same symmetric key, the information
might be discovered and decrypted.</p>

<p>Additionally, application designers should be careful not to reveal any
information in parameters or algorithm identifiers (e.g., information in a
URI) that weakens the encryption.</p>

<h3>6.3 <a name="sec-Nonce" id="sec-Nonce">Nonce</a> and IV (Initialization
Value or Vector)</h3>

<p>An undesirable characteristic of many encryption algorithms and/or their
modes is that the same plaintext when encrypted with the same key has the
same resulting ciphertext. While this is unsurprising, it invites various
attacks which are mitigated by including an arbitrary and non-repeating
(under a given key) data with the plaintext prior to encryption. In
encryption chaining modes this data is the first to be encrypted and is
consequently called the IV (initalization value or vector).</p>

<p>Different algorithms and modes have further requirements on the
characteristic of this information (e.g., randomness and secrecy) that affect
the features (e.g., confidentiality and integrity) and their resistence to
attack.</p>

<p>Given that XML data is redundant (e.g., Unicode encodings and repeated
tags ) and that attackers may know the data's structure (e.g., DTDs and
schemas) encryption algorithms must be carefully implemented and used in this
regard.</p>

<p>For the Cipher Block Chaining (CBC) mode used by this specification, the
IV must not be reused for any key and should be random, but it need not be
secret. Additionally, under this mode an adversary modifying the IV can make
a known change in the plain text after decryption. This attack can be avoided
by securing the integrity of the plain text data, for example by signing
it.</p>

<h3>6.4 <a name="sec-Denial" id="sec-Denial">Denial of Service</a></h3>

<p>This specification permits recursive processing. For example, the
following scenario is possible: <code>EncryptedKey</code> <strong>A</strong>
requires <code>EncryptedKey</code> <strong>B</strong> to be decrypted, which
itself requires <code>EncryptedKey</code> <strong>A</strong>! Or, an attacker
might submit an <code>EncryptedData</code> for decryption that references
network resources that are very large or continually redirected.
Consequently, implementations should be able to restrict arbitrary recursion
and the total amount of processing and networking resources a request can
consume.</p>

<h3 class="">6.5 <a name="sec-Unsafe-Content" id="sec-Unsafe-Content">Unsafe
Content</a></h3>

<p class="">XML Encryption can be used to obscure, via encryption, content
that applications (e.g., firewalls, virus detectors, etc.) consider unsafe
(e.g., executable code, viruses, etc.). Consequently, such applications must
consider encrypted content to be as unsafe as the unsafest content
transported in its application context. Consequently, such applications may
choose to (1) disallow such content, (2) require access to the decrypted form
for inspection, or (3) ensure that arbitrary content can be safely processed
by receiving applications.</p>

<h2>7 <a name="sec-Conformance" id="sec-Conformance">Conformance</a></h2>

<p>An implementation is conformant to this specification if it successfully
generates syntax according to the schema definitions and satisfies all
MUST/REQUIRED/SHALL requirements, including <a
href="#sec-AlgID">algorithm</a> support and <a
href="#sec-Processing">processing</a>. Processing requirements are specified
over the roles of <a class="link-def"
href="#def-Decryptor"><strong>decryptor</strong>,</a> <a class="link-def"
href="#def-Encryptor"><strong>encryptor</strong>,</a> and their calling <a
class="link-def" href="#def-Application"><strong>application</strong></a>.</p>

<h2>8 <a name="sec-MediaType" id="sec-MediaType">XML Encryption Media
Type</a></h2>

<h3>8.1 <a name="sec-MediaType-Introduction"
id="sec-MediaType-Introduction">Introduction</a></h3>

<p>XML Encryption Syntax and Processing [<a
href="#XML-Encryption">XML-Encryption</a>] specifies a process for encrypting
data and representing the result in XML. The data may be arbitrary data
(including an XML document), an XML element, or XML element content. The
result of encrypting data is an XML Encryption element which contains or
references the cipher data.</p>

<p>The <code>application/xenc+xml</code> media type allows XML Encryption
applications to identify encrypted documents. Additionally it allows
applications cognizant of this media-type (even if they are not XML
Encryption implementations) to note that the media type of the decrypted
(original) object might be a type other than XML.</p>

<h3>8.2 <a name="sec-MediaType-Registration"
id="sec-MediaType-Registration">application/xenc+xml Registration</a></h3>

<p>This is a media type registration as defined in Multipurpose Internet Mail
Extensions (MIME) Part Four: Registration Procedures [<a
href="#ref-MIME-REG">MIME-REG</a>]</p>

<p>MIME media type name: application</p>

<p>MIME subtype name: xenc+xml</p>

<p>Required parameters: none</p>

<p>Optional parameters: charset</p>

<blockquote class="">
  <p>The allowable and recommended values for, and interpretation of the
  charset parameter are identical to those given for 'application/xml' in
  section 3.2 of RFC 3023 [<a href="#ref-XML-MT">XML-MT</a>].</p>
</blockquote>

<p>Encoding considerations:</p>

<blockquote class="">
  <p>The encoding considerations are identical to those given for
  'application/xml' in section 3.2 of RFC 3023 [<a
  href="#ref-XML-MT">XML-MT</a>].</p>
</blockquote>

<p>Security considerations:</p>

<blockquote>
  See the [<a href="#XML-Encryption">XML-Encryption</a>] <a
  href="#sec-Security">Security Considerations</a> section.</blockquote>

<p>Interoperability considerations: none</p>

<p class="">Published specification: [<a
href="#XML-Encryption">XML-Encryption</a>]</p>

<p>Applications which use this media type:</p>

<blockquote>
  XML Encryption is device-, platform-, and vendor-neutral and is supported
  by a range of Web applications.</blockquote>

<p>Additional Information:</p>

<blockquote>
  <p>Magic number(s): none</p>

  <blockquote>
    Although no byte sequences can be counted on to consistently identify XML
    Encryption documents, they will be XML documents in which the root
    element's <code>QName</code>'s <code>LocalPart</code> is
    <code>'EncryptedData'</code> or '<code>EncryptedKey</code>' with an
    associated namespace name of '<a
    href="http://www.w3.org/2001/04/xmlenc#">http://www.w3.org/2001/04/xmlenc#</a>'.
    The <code>application/xenc+xml</code> type name MUST only be used for
    data objects in which the root element is from the XML Encryption
    namespace. XML documents which contain these element types in places
    other than the root element can be described using facilities such as [<a
    href="#ref-XML-Schema">XML-schema</a>].</blockquote>

  <p>File extension(s): .xml</p>

  <p>Macintosh File Type Code(s): "TEXT"</p>
</blockquote>

<p>Person &amp; email address to contact for further information:</p>

<blockquote>
  <p>Joseph Reagle &lt;reagle@w3.org&gt;</p>

  <p>XENC Working Group &lt;xml-encryption@w3.org&gt;</p>
</blockquote>

<p>Intended usage: COMMON</p>

<p>Author/Change controller:</p>

<p>The XML Encryption specification is a work product of the World Wide Web
Consortium (W3C) which has change control over the specification.</p>

<h2>9 <a name="sec-Schema" id="sec-Schema">Schema</a> and Valid Examples</h2>
<dl>
  <dt>Schema</dt>
    <dd><a href="xenc-schema.xsd">xenc-schema.xsd</a></dd>
  <dt>Example</dt>
    <dd><a href="enc-example.xml">enc-example.xml</a> (not cryptographically
      valid but excercises much of the schema)</dd>
</dl>

<h2>10 <a id="sec-References" name="sec-References">References</a></h2>
<dl>
  <dt><a name="ref-TRIPLEDES" id="ref-TRIPLEDES">TRIPLEDES</a></dt>
    <dd>ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation.
    1998.</dd>
  <dt><a name="ref-AES" id="ref-AES">AES</a></dt>
    <dd><a
      href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">NIST
      FIPS 197: Advanced Encryption Standard (AES)</a>. November 2001.</dd>
    <dd><a
      href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf</a></dd>
  <dt class=""><a name="ref-AES-WRAP" id="ref-AES-WRAP">AES-WRAP</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc3394.txt">RFC3394: Advanced
      Encryption Standard (AES) Key Wrap Algorithm</a>. J. Schaad and R.
      Housley. Informational, September 2002.</dd>
  <dt><a name="ref-CMS-Algorithms"
  id="ref-CMS-Algorithms">CMS-Algorithms</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc3370.txt">RFC3370: Cryptographic
      Message Syntax (CMS) Algorithms</a>. R. Housley. Informational,
      February 2002.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc3370.txt">http://www.ietf.org/rfc/rfc3370.txt</a></dd>
  <dt><a name="ref-CMS-Wrap" id="ref-CMS-Wrap">CMS-Wrap</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc3217.txt">RFC3217: Triple-DES and
      RC2 Key Wrapping</a>. R. Housley. Informational, December 2001.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc3217.txt">http://www.ietf.org/rfc/rfc3217.txt</a></dd>
  <dt><a name="ref-Davis" id="ref-Davis">Davis</a></dt>
    <dd><a
      href="http://www.usenix.org/publications/library/proceedings/usenix01/davis.html">Defective
      Sign &amp; Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP, and XML.</a> D.
      Davis. USENIX Annual Technical Conference. 2001.</dd>
    <dd><a
      href="http://www.usenix.org/publications/library/proceedings/usenix01/davis.html">http://www.usenix.org/publications/library/proceedings/usenix01/davis.html</a></dd>
  <dt><a name="ref-DES" id="ref-DES">DES</a></dt>
    <dd><a
      href="http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf">NIST
      FIPS 46-3: Data Encryption Standard</a> (DES). October 1999.</dd>
    <dd><a
      href="http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf">http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf</a></dd>
  <dt><a name="ref-EncReq" id="ref-EncReq">EncReq</a></dt>
    <dd><a
      href="http://www.w3.org/TR/2001/WD-xml-encryption-req-20010420">XML
      Encryption Requirements</a>. J. Reagle. W3C Note, March 2002.</dd>
    <dd><a
      href="http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304">http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304</a></dd>
  <dt><a name="ref-ESDH" id="ref-ESDH">ESDH</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2631.txt">RFC 2631:
      Diffie-Hellman Key Agreement Method.</a> E. Rescorla. Standards Track,
      1999.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2631.txt">http://www.ietf.org/rfc/rfc2631.txt</a></dd>
    <dd><a
      href="http://www.w3.org/TR/2002/CR-xml-exc-c14n-20020212">http://www.w3.org/TR/2002/CR-xml-exc-c14n-20020212</a></dd>
  <dt><a name="ref-Glossary" id="ref-Glossary">Glossary</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2828.txt">RFC 2828: Internet
      Security Glossary</a>. R Shirey. Informational, May 2000.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2828.txt">http://www.ietf.org/rfc/rfc2828.txt</a></dd>
  <dt><a id="ref-HMAC" name="ref-HMAC">HMAC</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2104.txt">RFC 2104: HMAC:
      Keyed-Hashing for Message Authentication</a>. H. Krawczyk, M. Bellare,
      and R. Canetti. Informational, February 1997.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2104.txt">http://www.ietf.org/rfc/rfc2104.txt</a></dd>
  <dt><a id="ref-HTTP" name="ref-HTTP">HTTP</a></dt>
    <dd><a href="http://www.w3.org/Protocols/rfc2616/rfc2616.html">RFC 2616:
      Hypertext Transfer Protocol -- HTTP/1.1.</a> J. Gettys, J. Mogul, H.
      Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Standards Track,
      June 1999.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2616.txt">http://www.ietf.org/rfc/rfc2616.txt</a></dd>
  <dt><a id="ref-KEYWORDS" name="ref-KEYWORDS">KEYWORDS</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2119.txt">RFC 2119: Key words for
      use in RFCs to Indicate Requirement Levels.</a> S. Bradner. Best
      Current Practice, March 1997.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2119.txt">http://www.ietf.org/rfc/rfc2119.txt</a></dd>
  <dt><a id="ref-MD5" name="ref-MD5">MD5</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc1321.txt">RFC 1321: The MD5
      Message-Digest Algorithm.</a> R. Rivest. Informational, April 1992.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc1321.txt">http://www.ietf.org/rfc/rfc1321.txt</a></dd>
  <dt><a id="ref-MIME" name="ref-MIME">MIME</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045: Multipurpose
      Internet Mail Extensions (MIME) Part One: Format of Internet Message
      Bodies</a>. N. Freed and N. Borenstein. Standards Track, November
    1996.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2045.txt">http://www.ietf.org/rfc/rfc2045.txt</a></dd>
  <dt><a name="ref-MIME-REG" id="ref-MIME-REG">MIME-REG</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2048.txt">RFC 2048: Multipurpose
      Internet Mail Extensions (MIME) Part Four: Registration Procedures</a>.
      N. Freed, J. Klensin, and J. Postel. Best Current Practice, November
      1996.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2048.txt">http://www.ietf.org/rfc/rfc2048.txt</a></dd>
  <dt><a id="ref-NFC" name="ref-NFC">NFC</a></dt>
    <dd>TR15, Unicode Normalization Forms<em>.</em> M. Davis and M. Dürst.
      Revision 18: November 1999.</dd>
    <dd><a
      href="http://www.unicode.org/unicode/reports/tr15/tr15-18.html">http://www.unicode.org/unicode/reports/tr15/tr15-18.html</a>.</dd>
  <dt><a id="ref-NFC-Corrigendum"
  name="ref-NFC-Corrigendum">NFC-Corrigendum</a></dt>
    <dd><a
      href="http://www.unicode.org/versions/corrigendum2.html">Corrigendum
      #2: Yod with Hiriq Normalization</a>.</dd>
    <dd><a
      href="http://www.unicode.org/versions/corrigendum2.html">http://www.unicode.org/versions/corrigendum2.html</a>.</dd>
  <dt><a name="ref-prop1" id="ref-prop1">prop1</a></dt>
    <dd><a
      href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html">XML
      Encryption strawman proposal</a>.&nbsp;E. Simon and B. LaMacchia. Aug
      2000.</dd>
    <dd><a
      href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html">http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html</a></dd>
  <dt><a name="ref-prop2" id="ref-prop2">prop2</a></dt>
    <dd><a
      href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html">Another
      proposal of XML Encryption</a>. T. Imamura. Aug 2000.</dd>
    <dd><a
      href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html">http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html</a></dd>
  <dt><a name="ref-prop3" id="ref-prop3">prop3</a></dt>
    <dd><a
      href="http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html">XML
      Encryption Syntax and Processing</a>. B. Dillaway, B. Fox, T. Imamura,
      B. LaMacchia, H. Maruyama, J. Schaad, and E. Simon. December 2000.</dd>
    <dd><a
      href="http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html">http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html</a></dd>
  <dt><a id="ref-PKCS1" name="ref-PKCS1">PKCS1</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437: PKCS #1: RSA
      Cryptography Specifications Version 2.0.</a> B. Kaliski and J. Staddon.
      Informational, October 1998.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2437.txt">http://www.ietf.org/rfc/rfc2437.txt</a></dd>
  <dt><a name="ref-RANDOM" id="ref-RANDOM">RANDOM</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc1750.txt">RFC 1750: Randomness
      Recommendations for Security</a>. D. Eastlake, S. Crocker, and J.
      Schiller. Informational, December 1994.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc1750.txt">http://www.ietf.org/rfc/rfc1750.txt</a></dd>
  <dt><a name="ref-RIPEMD-160" id="ref-RIPEMD-160">RIPEMD-160</a></dt>
    <dd>CryptoBytes, Volume 3, Number 2. <a
      href="ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf">The
      Cryptographic Hash Function RIPEMD-160</a>. RSA Laboratories. Autumn
      1997.</dd>
    <dd><a
      href="ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf">ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf</a></dd>
    <dd><a
      href="http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf">http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf</a></dd>
  <dt><a name="ref-SHA" id="ref-SHA">SHA</a></dt>
    <dd>Secure Hash Standard<a
      href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">.</a> NIST <a
      href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">FIPS 180-1.</a>
      (<a href="http://www.ietf.org/rfc/rfc3174.txt">RFC 3174</a>). April
      1995.</dd>
    <dd><a
      href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">http://www.itl.nist.gov/fipspubs/fip180-1.htm</a></dd>
    <dd>Secure Hash Standard. NIST <a
      href="http://csrc.nist.gov/encryption/shs/dfips-180-2.pdf">Draft FIPS
      180-2</a>. 2001. (Extended to include SHA-384, SHA-256, and
    SHA-512)</dd>
    <dd><a
      href="http://csrc.nist.gov/encryption/shs/dfips-180-2.pdf">http://csrc.nist.gov/encryption/shs/dfips-180-2.pdf</a></dd>
  <dt class=""><a id="ref-Tobin" name="ref-Tobin">Tobin</a></dt>
    <dd>R. Tobin. <a
      href="http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054">Infoset
      for external entities</a>, XML Core mailing list, 2000 [<a
      href="http://cgi.w3.org/MemberAccess/AccessRequest">W3C Member
      Only</a>].</dd>
    <dd><a
      href="http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054">http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054</a></dd>
  <dt><a name="ref-UTF-16" id="ref-UTF-16">UTF-16</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2781.txt">RFC 2781: UTF-16, an
      encoding of ISO 10646.</a> P. Hoffman and F. Yergeau. Informational,
      February 2000.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2781.txt">http://www.ietf.org/rfc/rfc2781.txt</a></dd>
  <dt><a id="ref-UTF-8" name="ref-UTF-8">UTF-8</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2279.txt">RFC 2279: UTF-8, a
      transformation format of ISO 10646F.</a> F. Yergeau. Standards Track,
      January 1998.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2279.txt">http://www.ietf.org/rfc/rfc2279.txt</a></dd>
  <dt><a id="ref-URI" name="ref-URI">URI</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396: Uniform
      Resource Identifiers (URI): Generic Syntax</a>. T. Berners-Lee, R.
      Fielding, and L. Masinter. Standards Track, August 1998.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2396.txt">http://www.ietf.org/rfc/rfc2396.txt</a></dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc1738.txt">http://www.ietf.org/rfc/rfc1738.txt</a></dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2141.txt">http://www.ietf.org/rfc/rfc2141.txt</a></dd>
    <dd><a href="http://www.ietf.org/rfc/rfc2611.txt">RFC 2611: URN Namespace
      Definition Mechanisms.</a> Best Current Practices. Daigle, D. van
      Gulik, R. Iannella, P. Falstrom. June 1999.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2611.txt">http://www.ietf.org/rfc/rfc2611.txt</a></dd>
  <dt><a name="ref-X509v3" id="ref-X509v3">X509v3</a></dt>
    <dd>ITU-T Recommendation X.509 version 3 (1997). "Information Technology
      - Open Systems Interconnection - The Directory Authentication
      Framework"&nbsp; ISO/IEC 9594-8:1997.</dd>
  <dt><a id="ref-XML" name="ref-XML">XML</a></dt>
    <dd><a href="http://www.w3.org/TR/2000/REC-xml-20001006">Extensible
      Markup Language (XML) 1.0 (Second Edition)</a>. T. Bray, J. Paoli, C.
      M. Sperberg-McQueen, and E. Maler. W3C Recommendation, October
    2000.</dd>
  <dt class=""><a name="ref-XML-Base" id="ref-XML-Base">XML-Base</a></dt>
    <dd><a href="http://www.w3.org/TR/xmlbase/">XML Base</a>. J. Marsh. W3C
      Recommendation, June 2001.</dd>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xmlbase-20010627/">http://www.w3.org/TR/2001/REC-xmlbase-20010627/</a></dd>
  <dt><a id="ref-XML-C14N" name="ref-XML-C14N">XML-C14N</a></dt>
    <dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">Canonical
      XML.</a> J. Boyer. W3C Recommendation, March 2001.</dd>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc3076.txt">http://www.ietf.org/rfc/rfc3076.txt</a></dd>
  <dt><a name="ref-XML-exc-C14N" id="ref-XML-exc-C14N">XML-exc-C14N</a></dt>
    <dd><a
      href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/">Exclusive
      XML Canonicalization</a>. J. Boyer, D. Eastlake, and J. Reagle. W3C
      Recommendation, July 2002.</dd>
    <dd><a
      href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/">http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/</a></dd>
  <dt><a name="ref-XML-DSIG" id="ref-XML-DSIG">XML-DSIG</a></dt>
    <dd><a
      href="http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/">XML-Signature
      Syntax and Processing</a>. D. Eastlake, J. Reagle, and D. Solo. W3C
      Recommendation, February 2002.</dd>
    <dd><a
      href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/">http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/</a></dd>
  <dt><a name="ref-XML-DSIG-Decrypt"
  id="ref-XML-DSIG-Decrypt">XML-DSIG-Decrypt</a></dt>
    <dd><a
      href="http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210">Decryption
      Transform for XML Signature</a>. M. Hughes, T. Imamura and H. Maruyama.
      W3C Recommendation, December 2002.</dd>
    <dd><a
      href="http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210">http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210</a></dd>
  <dt><a name="XML-Encryption" id="XML-Encryption"></a>XML-Encryption</dt>
    <dd><a href="http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/">XML
      Encryption Syntax and Processing</a>. D. Eastlake and J. Reagle. W3C
      Candidate Recommendation, December 2002.</dd>
    <dd><a>http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/</a></dd>
  <dt class=""><a id="ref-XML-Infoset"
  name="ref-XML-Infoset">XML-Infoset</a></dt>
    <dd><a href="http://www.w3.org/TR/2001/REC-xml-infoset-20011024/">XML
      Information Set</a>. J. Cowan and R. Tobin. W3C Recommendation, October
      2001</dd>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xml-infoset-20011024/">http://www.w3.org/TR/2001/REC-xml-infoset-20011024/</a></dd>
  <dt><a id="ref-XML-MT">XML-MT</a></dt>
    <dd><a href="http://www.ietf.org/rfc/rfc3023.txt">RFC 3023: XML Media
      Types.</a> M. Murata, S. St. Laurent, and D. Kohn. Informational,
      January 2001.</dd>
    <dd><a
      href="http://www.ietf.org/rfc/rfc2376.txt">http://www.ietf.org/rfc/rfc2376.txt</a></dd>
  <dt><a id="ref-XML-NS" name="ref-XML-NS">XML-NS</a></dt>
    <dd><a
      href="http://www.w3.org/TR/1999/REC-xml-names-19990114/">Namespaces in
      XML</a>. T. Bray, D. Hollander, and A. Layman. W3C Recommendation,
      January 1999.</dd>
    <dd><a
      href="http://www.w3.org/TR/1999/REC-xml-names-19990114/">http://www.w3.org/TR/1999/REC-xml-names-19990114</a></dd>
  <dt><a id="ref-XML-Schema" name="ref-XML-Schema">XML-schema</a></dt>
    <dd><a href="http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/">XML
      Schema Part 1: Structures</a> D. Beech, M. Maloney, and N. Mendelsohn.
      W3C Recommendation, May 2001.</dd>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/">http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/</a></dd>
    <dd><a href="http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/">XML
      Schema Part 2: Datatypes</a>. P. Biron and A. Malhotra. W3C
      Recommendation, May 2001.</dd>
    <dd><a
      href="http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/">http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/</a></dd>
  <dt><a id="ref-XPath" name="ref-XPath">XPath</a></dt>
    <dd><a href="http://www.w3.org/TR/1999/REC-xpath-19991116">XML Path
      Language (XPath) Version 1.0</a>. J. Clark and S. DeRose. W3C
      Recommendation, October 1999.<br />
      <a
      href="http://www.w3.org/TR/1999/REC-xpath-19991116">http://www.w3.org/TR/1999/REC-xpath-19991116</a></dd>
</dl>
</body>
</html>