index.html 137 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
  <head> 
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> 
    <title>Web Audio API</title> 
    <meta name="revision" content="$Id: Overview.html,v 1.63 2011/12/15 09:38:23 denis Exp $" /> 
    <!--
    <script src="section-links.js" type="application/ecmascript"></script> 
    <script src="dfn.js" type="application/ecmascript"></script> 
    -->
    <!--[if IE]>
    <style type='text/css'>
      .ignore {
        -ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=50)";
        filter: alpha(opacity=50);
      }
    </style>
    <![endif]--> 
 
    
  <link rel="stylesheet" href="http://www.w3.org/StyleSheets/TR/W3C-WD" type="text/css" />
</head> 
 
  <body> 

    <div class="head">
      <p>
        <a href="http://www.w3.org/"><img width="72" height="48" alt="W3C" src="http://www.w3.org/Icons/w3c_home"></img></a>
      </p>
      <h1 id="title" class="title">
        Web Audio API
      </h1>
      <h2 id="w3c-fpwd-15-december-2011">
        <acronym title="World Wide Web Consortium">W3C</acronym> Working Draft 15 December 2011
      </h2>
      <dl>
        <dt>
          This version:
        </dt>
        <dd>
          <a href="http://www.w3.org/TR/2011/WD-webaudio-20111215/">http://www.w3.org/TR/2011/WD-webaudio-20111215/</a>
        </dd>
        <dt>
          Latest published version:
        </dt>
        <dd>
          <a href="http://www.w3.org/TR/webaudio/">http://www.w3.org/TR/webaudio/</a>
        </dd>
        <dt>
          Latest editor's draft:
        </dt>
        <dd>
          <a href="https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html">
            https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html</a>
        </dd>
        <dt>
          Previous version:
        </dt>
        <dd>
          none
        </dd>
      </dl>

      <dl>
        <dt>Public Comments:</dt>
        <dd>
          <a href="mailto:public-audio@w3.org">public-audio@w3.org</a>
        </dd>
        <dt>Working Group:</dt>

        <dd>
          <a href="http://www.w3.org/2011/audio/">Audio WG</a>
        </dd>
      </dl>

      <dl>
        <dt>
          Editor:
        </dt>
        <dd>Chris Rogers, Google &lt;crogers@google.com&gt;</dd>
      </dl>
      <p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a> &copy; 2011 <a href="http://www.w3.org/"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>&reg;</sup> (<a href="http://www.csail.mit.edu/"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.eu/"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">trademark</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-documents">document use</a> rules apply.</p>
      <hr/>
    </div>
    
    

    <div id="abstract" class="introductory section"><h2>Abstract</h2>
      <p>
        This specification describes a high-level JavaScript <abbr title="Application Programming Interface">API</abbr> for processing and synthesizing audio in web applications.  The primary paradigm is of an audio routing graph, where a number of <a href="#AudioNode-section"><code>AudioNode</code></a> objects are connected together to define the overall audio rendering.  The actual processing will primarily take place in the underlying implementation (typically optimized Assembly / C / C++ code), but <a href="#JavaScriptProcessing-section">direct JavaScript processing and synthesis</a> is also supported.
      </p>

      <p> 
        This API is designed to be used in conjunction with other APIs and elements on the web platform, notably: <a href="#refs-XHR" class="dfnref">XMLHttpRequest</a> (using the <code>responseType</code> and <code>response</code> attributes).
        For games and interactive applications, it is anticipated to be used with the <code>canvas</code> 2D and WebGL 3D graphics APIs.      
      </p> 
      
    </div>


    <div id="sotd">
      <h2>Status of This Document</h2>

      <p><em>This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current <acronym title="World Wide Web Consortium">W3C</acronym> publications and the latest revision of this technical report can be found in the <a href="http://www.w3.org/TR/"><acronym title="World Wide Web Consortium">W3C</acronym> technical reports index</a> at http://www.w3.org/TR/.</em></p>

      	  <p>This specification defines a proposal for an audio processing and synthesis API for use in client-side user agents (e.g. a browser).  This document is accompanied by an alternative proposal, the MediaStream Processing API, and an umbrella document outlining the relationship between these proposals</p>	

          <p>This document was published by the <a href="http://www.w3.org/2011/audio/">Audio Working Group</a> as a First Public Working Draft. This document is intended to become a <acronym title="World Wide Web Consortium">W3C</acronym> Recommendation. If you wish to make comments regarding this document, please send them to <a href="mailto:public-audio@w3.org">public-audio@w3.org</a> (<a href="mailto:public-audio-request@w3.org?subject=subscribe">subscribe</a>, <a href="http://lists.w3.org/Archives/Public/public-audio/">archives</a>). All feedback is welcome.</p>
          
          <p>Web content and browser developers especially are encouraged to review this draft, and to experiment with the API and provide feedback.</p> 

          <p>Publication as a Working Draft does not imply endorsement by the <acronym title="World Wide Web Consortium">W3C</acronym> Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.</p><p>This document was produced by a group operating under the <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/">5 February 2004 <acronym title="World Wide Web Consortium">W3C</acronym> Patent Policy</a>. <acronym title="World Wide Web Consortium">W3C</acronym> maintains a <a href="http://www.w3.org/2004/01/pp-impl/46884/status" rel="disclosure">public list of any patent disclosures</a> made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential">Essential Claim(s)</a> must disclose the information in accordance with <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure">section 6 of the <acronym title="World Wide Web Consortium">W3C</acronym> Patent Policy</a>.</p>
    </div>
    
    

 
    <div id="toc"> 
      <h2>Table of Contents</h2> 
      <div class="toc">
        <ul>
          <li><a href="#introduction">
          1. Introduction</a>
            <ul>
                <li><a href="#Features-section">
                1.1. Features</a></li>

                <li> <a href="#ModularRouting-section">
                1.2. Modular Routing</a></li>

                <li> <a href="#APIOverview-section">
                1.3. API Overview</a></li>
  					</ul>
          </li>
      
          <li> <a href="#conformance">
          2. Conformance</a></li>
      
          <li> <a href="#terminology">
          3. Terminology and Algorithms</a></li>
      
          <li> <a href="#API-section">
          4. The Audio API</a>
            <ul>
              <li><a href="#AudioContext-section">
              4.1. The AudioContext Interface</a></li>

              <li> <a href="#AudioNode-section">
              4.2 The AudioNode Interface</a>

                <ul>
                  <li><a href="#attributes-AudioNode">
                  4.2.1. Attributes</a></li>

                  <li><a href="#methodsandparams-AudioNode">
                  4.2.2. Methods and Parameters</a></li>
                </ul>
              </li>

              <li><a href="#AudioSourceNode-section">
              4.3. The AudioSourceNode Interface</a></li>
      
              <li><a href="#AudioDestinationNode-section">
              4.4. The AudioDestinationNode Interface</a></li>
      
              <li><a href="#AudioParam-section">
              4.5. The AudioParam Interface</a></li>

              <li><a href="#AudioGain-section">
              4.6. The AudioGain Interface</a></li>

              <li><a href="#AudioGainNode-section">
              4.7. The AudioGainNode Interface</a></li>
      
              <li><a href="#DelayNode-section">
              4.8. The DelayNode Interface</a></li>
      
              <li><a href="#AudioBuffer-section">
              4.9. The AudioBuffer Interface</a></li>

              <li><a href="#AudioBufferSourceNode-section">
              4.10. The AudioBufferSourceNode Interface</a></li>

              <li><a href="#MediaElementAudioSourceNode-section">
              4.11. The MediaElementAudioSourceNode Interface</a></li>

              <li><a href="#JavaScriptAudioNode-section">
              4.12. The JavaScriptAudioNode Interface</a></li>

              <li><a href="#AudioProcessingEvent-section">
              4.13. The AudioProcessingEvent Interface</a></li>

              <li><a href="#AudioPannerNode-section">
              4.14. The AudioPannerNode Interface</a></li>

              <li><a href="#AudioListener-section">
              4.15. The AudioListener Interface</a></li>

              <li><a href="#ConvolverNode-section">
              4.16. The ConvolverNode Interface</a></li>

              <li><a href="#RealtimeAnalyserNode-section">
              4.17. The RealtimeAnalyserNode Interface</a></li>

              <li><a href="#AudioChannelSplitter-section">
              4.18. The AudioChannelSplitter Interface</a></li>

              <li><a href="#AudioChannelMerger-section">
              4.19. The AudioChannelMerger Interface</a></li>

              <li><a href="#DynamicsCompressorNode-section">
              4.20. The DynamicsCompressorNode Interface</a></li>

              <li><a href="#BiquadFilterNode-section">
              4.21. The BiquadFilterNode Interface</a></li>

              <li><a href="#WaveShaperNode-section">
              4.22. The WaveShaperNode Interface</a></li>
            </ul>
          </li>

          <li><a href="#AudioElementIntegration-section">
          5. Integration with the <code>audio</code> and <code>video</code> element</a></li>

          <li><a href="#MixerGainStructure-section">
          6. Mixer Gain Structure</a></li>

          <li><a href="#DynamicLifetime-section">
          7. Dynamic Lifetime</a></li>

          <li><a href="#ChannelLayouts-section">
          8. Channel Layouts</a></li>

          <li><a href="#UpMix-section">
          9. Channel up-mixing and down-mixing</a></li>

          <li><a href="#EventScheduling-section">
          10. Event Scheduling</a></li>

          <li><a href="#Spatialization-section">
          11. Spatialization / Panning</a></li>

          <li><a href="#Convolution-section">
          12. Linear Effects using Convolution</a></li>

          <li><a href="#JavaScriptProcessing-section">
          13. JavaScript Synthesis and Processing</a></li>

          <li><a href="#RealtimeAnalysis-section">
          14. Realtime Analysis</a></li>

          <li><a href="#Performance-section">
          15. Performance Considerations</a></li>
            
          <li><a href="#ExampleApplications-section">
          16. Example Applications</a></li>
      
          <li><a href="#SecurityConsiderations-section">
          17. Security Considerations</a></li>
      
          <li><a href="#PrivacyConsiderations-section">
          18. Privacy Considerations</a></li>
      
          <li><a href="#requirements">
          19. Requirements and Use Cases</a></li>  
        </ul>
      </div> 
    </div> 
 
 

 
 
 
    <div id="sections"> 
    <div id="introduction" class="section"> 
    <h2>1. Introduction</h2> 
 
      <p class="norm">This section is informative.</p> 
 
    <p> 
      Audio on the web has been fairly primitive up to this point and until very recently has had to be delivered through plugins such as Flash and QuickTime.
      The introduction of the <code>audio</code> element in HTML5 is very important, allowing for basic streaming audio playback.
      But, it is not powerful enough to handle more complex audio applications. For sophisticated web-based games or interactive applications, another solution is required.
      It is a goal of this specification to include the capabilities found in modern game audio engines as well as some of the mixing, processing,
      and filtering tasks that are found in modern desktop audio production applications.</p>
      
      <p>
      The APIs have been designed with a wide variety of <a href="#ExampleApplications-section">use cases</a> in mind.
      Ideally, it should be able to support <i>any</i> use case which could reasonably be implemented with an optimized C++ engine controlled via JavaScript and run in a browser.
      That said, modern desktop audio software can have very advanced capabilities, some of which would be difficult or impossible to build with this system.
      Apple's Logic Audio is one such application which has support for external MIDI controllers, arbitrary plugin audio effects and synthesizers,
      highly optimized direct-to-disk audio file reading/writing, tightly integrated time-stretching, and so on.
      Nevertheless, the proposed system will be quite capable of supporting a large range of reasonably complex games and interactive applications, including musical ones.
      And it can be a very good complement to the more advanced graphics features offered by WebGL.
      The API has been designed so that more advanced capabilities can be added at a later time.
      
      </p>


      <p>Web content creators are encouraged to try the <a href="http://chromium.googlecode.com/svn/trunk/samples/audio/index.html">samples and demos</a>.</p>
      
      <p>A <a href="https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/changelog.html">history of changes</a> to this specification is available.</p>

      
	    <div id="Features-section" class="section"> 
        <h2>1.1. Features</h2>
		
        <p>The API supports these primary features:</p>
      
        <ul>
          <li> <a href="#ModularRouting-section">Modular routing</a> for simple or complex mixing/effect architectures, including <a href="#MixerGainStructure-section">multiple sends and submixes</a>.</li>

          <li> <a href="#EventScheduling-section">Sample-accurate scheduled sound playback</a> with low <a href="#Latency-section">latency</a> for musical applications requiring a very high degree of rhythmic precision such as drum machines and sequencers.  This also includes the possibility of <a href="#DynamicLifetime-section">dynamic creation</a> of effects. </li>

          <li> Automation of audio parameters for envelopes, fade-ins / fade-outs, granular effects, filter sweeps, LFOs etc. </li>

          <li> Processing of audio sources from an <code>audio</code> or <code>video</code> <a href="#AudioElementIntegration-section">media element</a>. </li> 
          <li> Audio stream synthesis and processing <a href="#JavaScriptProcessing-section">directly in JavaScript</a>. </li> 

          <li> <a href="#Spatialization-section">Spatialized audio</a> supporting a wide range of 3D games and immersive environments:

            <ul> 
              <li> Panning models: equal-power, HRTF, sound-field, pass-through </li> 
              <li> Distance Attenuation </li> 
              <li> Sound Cones </li> 
              <li> Obstruction / Occlusion </li> 
              <li> Doppler Shift </li> 
              <li> Source / Listener based</li> 
            </ul> 
          </li> 
        
          <li> A <a href="#Convolution-section">convolution engine</a> for a wide range of linear effects, especially very high-quality room effects.
          Here are some examples of possible effects:
            <ul> 
              <li> Small / large room </li>
              <li> Cathedral </li>
              <li> Concert hall </li>
              <li> Cave </li>
              <li> Tunnel </li>
              <li> Hallway </li>
              <li> Forest </li>
              <li> Amphitheater </li>
              <li> Sound of a distant room through a doorway </li>
              <li> Extreme filters</li>
              <li> Strange backwards effects</li>
              <li> Extreme comb filter effects </li>
            </ul> 
          </li>
        
          <li> Dynamics compression for overall control and sweetening of the mix </li>
          <li> Efficient <a href="#RealtimeAnalysis-section">real-time time-domain and frequency analysis / music visualizer support</a></li>
          <li> Efficient biquad filters for lowpass, highpass, and other common filters. </li>

          <li> A Waveshaping effect for distortion and other non-linear effects.</li>
        </ul>
      
  		</div>
      
      <div id="ModularRouting-section">
      <h2>1.2. Modular Routing</h2>

        <p>
        Modular routing allows arbitrary connections between different <a href="#AudioNode-section"><code>AudioNode</code></a> objects.  Each node can have inputs and/or outputs.
        An <a href="#AudioSourceNode-section"><code>AudioSourceNode</code></a> has no inputs and a single output.  An <a href="#AudioDestinationNode-section"><code>AudioDestinationNode</code></a> has one input and no outputs and
        represents the final destination to the audio hardware.  Other nodes such as filters can be placed between
        the <a href="#AudioSourceNode-section"><code>AudioSourceNode</code></a> nodes and the final <a href="#AudioDestinationNode-section"><code>AudioDestinationNode</code></a> node.
        
        The developer doesn't have to worry about low-level stream format details when two objects are connected together; <a href="#UpMix-section">the right thing just happens</a>.
        For example, if a mono audio stream is connected to a stereo input it should just mix to left and right channels <a href="#UpMix-section">appropriately</a>.

        </p>
        <p>
        In the simplest case, a single source can be routed directly to the output.
          All routing occurs within an <a href="#AudioContext-section"><code>AudioContext</code></a> containing a single
        <a href="#AudioDestinationNode-section"><code>AudioDestinationNode</code></a>:
        </p>
        
        <img src="modular-routing1.png" alt="Audio graph illustrating source node to destination node"/>

        <p>
            Illustrating this simple routing, here's a simple example playing a single sound:
          </p>

                    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">ECMAScript</span></div><div class="blockContent"><pre class="code"><code class="es-code"> 

            var context = new AudioContext();

            function playSound() {
                var source = context.createBufferSource();
                source.buffer = dogBarkingBuffer;
                source.connect(context.destination);
                source.noteOn(0);
            }
                    </code></pre></div></div> 



        <p>
        Here's a more complex example with three sources and a convolution reverb sent with a dynamics compressor at the final output stage:
        </p>
        
        
        <img src="modular-routing2.png" alt="Audio graph illustrating complex example with three sources and a convolution reverb sent with a dynamics compressor at the final output stage"/>
        
        <p>
            ADD JAVASCRIPT EXAMPLE CODE HERE...
        </p>
        
        </div>

<div id="APIOverview-section" class="section"> 
<h2>1.3. API Overview</h2>
</div>

  <p>
    The interfaces defined are:
  </p> 
  
<ul> 
      <li>An <a class="dfnref" href="#AudioContext-section">AudioContext</a> interface, which contains an audio signal graph representing connections betweens AudioNodes.
      </li> 

    <li>An <a class="dfnref" href="#AudioNode-section">AudioNode</a> interface, which represents audio sources, audio outputs, and intermediate processing modules.
    AudioNodes can be dynamically connected together in a <a href="#ModularRouting-section">modular fashion</a>.  <code>AudioNodes</code> exist in the context
    of an <code>AudioContext</code>
    </li> 
    
    <li>An <a class="dfnref" href="#AudioSourceNode-section">AudioSourceNode</a> interface, an abstract AudioNode subclass representing a node which generates audio.
    </li> 

    <li>An <a class="dfnref" href="#AudioDestinationNode-section">AudioDestinationNode</a> interface,
     an AudioNode subclass representing the final destination for all rendered audio.
    </li> 


    <li>An <a class="dfnref" href="#AudioBuffer-section">AudioBuffer</a> interface, for working with memory-resident audio assets.  These can represent one-shot sounds,
    or longer audio clips.
    </li>

    <li>An <a class="dfnref" href="#AudioBufferSourceNode-section">AudioBufferSourceNode</a> interface, an AudioNode which generates audio from an AudioBuffer.
    </li> 

    <li>A <a class="dfnref" href="#MediaElementAudioSourceNode-section">MediaElementAudioSourceNode</a> interface, an AudioNode which is the
	audio source from an <code>audio</code>, <code>video</code>, or other media element.
    </li> 



    <li>A <a class="dfnref" href="#JavaScriptAudioNode-section">JavaScriptAudioNode</a> interface, an AudioNode for generating or processing audio directly in JavaScript.
    </li> 

    <li>An <a class="dfnref" href="#AudioProcessingEvent-section">AudioProcessingEvent</a> interface, which is an event type used with
    <code>JavaScriptAudioNode</code> objects.
    </li> 


    <li>An <a class="dfnref" href="#AudioParam-section">AudioParam</a> interface, for controlling an individual aspect of an AudioNode's functioning, such as volume.
    </li> 

    <li>An <a class="dfnref" href="#AudioGainNode-section">AudioGainNode</a> interface, for explicit gain control.  Because inputs to AudioNodes support multiple connections
     (as a unity-gain summing junction), mixers can be <a href="#MixerGainStructure-section">easily built</a> with AudioGainNodes. 
    </li> 

    <li>A <a class="dfnref" href="#BiquadFilterNode-section">BiquadFilterNode</a> interface, an AudioNode for common low-order filters such as:
    <ul>
          <li> Low Pass</li>
          <li> High Pass </li>
          <li> Band Pass </li>
          <li> Low Shelf </li>
          <li> High Shelf </li>
          <li> Peaking </li>
          <li> Notch </li>
          <li> Allpass </li>
    </ul>
    
    </li> 

    <li>A <a class="dfnref" href="#DelayNode-section">DelayNode</a> interface, an AudioNode which applies a dynamically adjustable variable delay.
    </li> 

    <li>An <a class="dfnref" href="#AudioPannerNode-section">AudioPannerNode</a> interface, for spatializing / positioning audio in 3D space.
    </li> 

    <li>An <a class="dfnref" href="#AudioListener-section">AudioListener</a> interface, which works with an <code>AudioPannerNode</code> for spatialization.
    </li> 

    <li>A <a class="dfnref" href="#ConvolverNode-section">ConvolverNode</a> interface, an AudioNode for applying a 
	<a href="#Convolution-section">real-time linear effect</a> (such as the sound of a concert hall).
    </li> 

    <li>A <a class="dfnref" href="#RealtimeAnalyserNode-section">RealtimeAnalyserNode</a> interface, for use with music visualizers, or other visualization applications.
    </li> 

		    <li>A <a class="dfnref" href="#AudioChannelSplitter-section">AudioChannelSplitter</a> interface,
		     for accessing the individual channels of an audio stream in the routing graph.
		    </li> 

		    <li>A <a class="dfnref" href="#AudioChannelMerger-section">AudioChannelMerger</a> interface,
		     for combining channels from multiple audio streams into a single audio stream.
		    </li> 


    <li>A <a class="dfnref" href="#">DynamicsProcessorNode</a> interface, an AudioNode for dynamic-shaping (compressor / expander) effects.
    </li> 


    <li>A <a class="dfnref" href="#dfn-WaveShaperNode">WaveShaperNode</a> interface, an AudioNode which applies a non-linear waveshaping effect for distortion and other more subtle
    warming effects.
    </li> 

      </ul> 

 
      <div id="conformance" class="section"> 
        <h2>2. Conformance</h2> 
 
        <p> 
          Everything in this specification is normative except for
          examples and sections marked as being informative.
        </p> 
        <p> 
          The keywords “<span class="rfc2119">MUST</span>”,
<span class="rfc2119">MUST NOT</span>”,
<span class="rfc2119">REQUIRED</span>”,
<span class="rfc2119">SHALL</span>”,
<span class="rfc2119">SHALL NOT</span>”,
<span class="rfc2119">RECOMMENDED</span>”,
<span class="rfc2119">MAY</span>” and
<span class="rfc2119">OPTIONAL</span>” in this document are to be
          interpreted as described in
          <cite><a href="http://www.ietf.org/rfc/rfc2119">Key words for use in RFCs to
              Indicate Requirement Levels</a></cite> 
          <a href="#refs-RFC2119">[RFC2119]</a>.
        </p> 
        <p> 
          The following conformance classes are defined by this specification:
        </p> 
        <dl> 
          <dt><dfn id="dfn-conforming-implementation">conforming implementation</dfn></dt> 
          <dd> 
            <p> 
              A user agent is considered to be a
              <a class="dfnref" href="#dfn-conforming-implementation">conforming implementation</a> 
              if it satisfies all of the <span class="rfc2119">MUST</span>-,
              <span class="rfc2119">REQUIRED</span>- and <span class="rfc2119">SHALL</span>-level
              criteria in this specification that apply to implementations.
            </p> 
          </dd>         
        </dl> 
      </div> 
      <div id="terminology" class="section"> 
        <h2>3. Terminology and Algorithms</h2> 
       <p>This specification includes algorithms (steps) as part of the definition of methods.  Conforming implementations (referred to as "user agents" from here on) MAY use other algorithms in the
       implementation of these methods, provided
       the end result is the same.</p> 
      </div> 

      <div id="API-section" class="section"> 
        <h2>4. The Audio API</h2> 
      <div id="AudioContext-section" class="section"> 
        <h2>4.1. The AudioContext Interface</h2> 
        <p> 
          This interface represents a set of <a href="#AudioNode-section"><code>AudioNode</code></a> objects and their connections.
            It allows for arbitrary routing of signals to the <a href="#AudioDestinationNode-section"><code>AudioDestinationNode</code></a>
           (what the user ultimately hears).
          Nodes are created from the context and are then <a href="#ModularRouting-section">connected</a> together.  In most use cases, only a single AudioContext
          is used per document.  An AudioContext is constructed as follows:
        </p> 

        <pre>
        var context = new AudioContext();
        </pre>

        <pre>
        // For implementation WebKit this will be:
        var context = new webkitAudioContext();
        </pre>

        <br />

        <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

        interface <dfn id="dfn-AudioContext">AudioContext</dfn> {

            readonly attribute AudioDestinationNode destination;
            readonly attribute float sampleRate;
            readonly attribute float currentTime;
            readonly attribute AudioListener listener;

            AudioBuffer createBuffer(in unsigned long numberOfChannels, in unsigned long length, in float sampleRate);
            AudioBuffer createBuffer(in ArrayBuffer buffer, in boolean mixToMono);
            
            void decodeAudioData(in ArrayBuffer audioData,
                                 in [Callback] AudioBufferCallback successCallback,
                                 in [Optional, Callback] AudioBufferCallback errorCallback)
                raises(DOMException);
            

            <span class="comment">// AudioNode creation </span>         
            AudioBufferSourceNode createBufferSource();
            JavaScriptAudioNode createJavaScriptNode(in short bufferSize, in short numberOfInputs, in short numberOfOutputs);
            RealtimeAnalyserNode createAnalyser();
            AudioGainNode createGainNode();
            DelayNode createDelayNode();
            BiquadFilterNode createBiquadFilter();
            AudioPannerNode createPanner();
            ConvolverNode createConvolver();
            AudioChannelSplitter createChannelSplitter();
            AudioChannelMerger createChannelMerger();
            DynamicsCompressorNode createDynamicsCompressor();

        }
        </code></pre></div></div> 


        <div class="section">
        <h3 id="attributes-AudioContext">4.1.1. Attributes</h3> 
        <dl>
          <dt id="dfn-destination"><code>destination</code></dt>
          <dd><p>An <a href="#AudioDestinationNode-section"><code>AudioDestinationNode</code></a> with a single input representing the final destination for all audio
         (to be rendered to the audio hardware).  All AudioNodes actively rendering audio will directly or indirectly connect to <code>destination</code>.</p></dd>
        </dl> 
        
        <dl>
          <dt id="dfn-sampleRate"><code>sampleRate</code></dt>
          <dd><p>The sample rate (in sample-frames per second)
          at which the AudioContext handles audio.
         It is assumed that all AudioNodes in the context run at this rate.  In making this assumption, sample-rate converters or "varispeed" processors are not supported in real-time processing.</p></dd>
        </dl> 
        
        <dl>
          <dt id="dfn-currentTime"><code>currentTime</code></dt>
          <dd><p>This is a time in seconds which starts at zero when the context is created and increases in real-time.
         All scheduled times are relative to it. This is not a "transport" time which can be started, paused, and re-positioned.
         It is always moving forward.  A GarageBand-like timeline transport system can be very easily built
         on top of this (in JavaScript).  This time corresponds to an ever-increasing hardware timestamp.
         </p></dd>
        </dl> 
        <dl>
          <dt id="dfn-listener"><code>listener</code></dt>
<dd><p>An <a href="#AudioListener-section"><code>AudioListener</code></a> which is used for 3D <a href="#Spatialization-section">spatialization</a>.</p></dd>
</dl> 
        </div> 

        <div class="section"> 
        <h3 id="methodsandparams-AudioContext">4.1.2. Methods and Parameters</h3> 

        <dl>
          <dt id="dfn-createBuffer">The <code>createBuffer</code> method</dt> 
        <dd>
        <p>Creates an AudioBuffer of the given size.  The audio data in the buffer will be zero-initialized (silent).</p> 

        <p>The <a href="#dfn-numberOfChannels">numberOfChannels</a> parameter determines how many channels the buffer will have. </p>
        <p>The <a href="#dfn-AudioBuffer-length">length</a> parameter determines the size of the buffer in sample-frames. </p>
        <p>The <a href="#dfn-sampleRate">sampleRate</a> parameter describes the sample-rate of the linear PCM audio data in the buffer in sample-frames per second. </p>

        </dd>
        </dl>

        <dl>
          <dt id="dfn-createBuffer-ArrayBuffer">The <code>createBuffer</code> from ArrayBuffer method</dt> 
        <dd>
        <p>Creates an AudioBuffer given the audio file data contained in the ArrayBuffer.  The ArrayBuffer can, for example, be loaded from an XMLHttpRequest 
        with the new <code>responseType</code> and <code>response</code> attributes.</p>

        <p>The <dfn id="dfn-createBuffer-buffer">buffer</dfn> parameter contains the audio file data (for example from a .wav file). </p>
        <p>The <dfn id="dfn-createBuffer-mixToMono">mixToMono</dfn> parameter determines if a mixdown to mono will be performed.  Normally, this would not be set. </p>

        </dd>
      </dl>

      <dl>
<dt id="dfn-decodeAudioData">The <code>decodeAudioData</code> method</dt> 
        <dd>
        <p>
        Asynchronously decodes the audio file data contained in the ArrayBuffer.  The ArrayBuffer can, for example, be loaded from an XMLHttpRequest 
        with the new <code>responseType</code> and <code>response</code> attributes.  Audio file data can be in any of the formats supported
        by the <code>audio</code> element.
        </p>
        
        <p>
          The decodeAudioData() method is preferred over the createBuffer() from ArrayBuffer method because it is asynchronous and does not block
          the main JavaScript thread.
        </p>

        <p><dfn id="dfn-audioData">audioData</dfn> is an ArrayBuffer containing audio file data.</p>
        
        <p><dfn id="dfn-successCallback">successCallback</dfn> is a callback function which will be invoked when the decoding is
        finished.  The single argument to this callback is an AudioBuffer representing the decoded PCM audio data.</p>

        <p><dfn id="dfn-errorCallback">errorCallback</dfn> is a callback function which will be invoked if there is an error decoding 
        the audio file data.</p>
        
        </dd>
      </dl>

      <dl>
<dt id="dfn-createBufferSource">The <code>createBufferSource</code> method</dt> 
        <dd>
        <p>Creates an <a href="#AudioBufferSourceNode-section"><code>AudioBufferSourceNode</code></a>.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createJavaScriptNode">The <code>createJavaScriptNode</code> method</dt> 
        <dd>
        <p>Creates a <a href="#JavaScriptAudioNode-section"><code>JavaScriptAudioNode</code></a> for direct audio processing using JavaScript.</p> 

        <p>The <dfn id="dfn-bufferSize">bufferSize</dfn> parameter determines the buffer size in units of sample-frames.  It must be one of the following values: 256, 512, 1024, 2048, 4096, 8192, 16384.
        This value controls how frequently the <code>onaudioprocess</code> event handler is called and how many sample-frames need to be processed each call.
        Lower values for <code>bufferSize</code> will result in a lower (better) <a href="#Latency-section">latency</a>.
        Higher values will be necessary to avoid audio breakup and <a href="#Glitching-section">glitches</a>.
        The value chosen must carefully balance between latency and audio quality. </p>
        <p>The <dfn id="dfn-createJavaScriptNode-numberOfInputs">numberOfInputs</dfn> parameter determines the number of inputs. </p>
        <p>The <dfn id="dfn-createJavaScriptNode-numberOfOutputs">numberOfOutputs</dfn> parameter determines the number of outputs. </p>
        <p>
        It is invalid for both 
        <code>numberOfInputs</code> and <code>numberOfOutputs</code> to be zero.
        </p>
        </dd>
      </dl>

      <dl>
<dt id="dfn-createAnalyser">The <code>createAnalyser</code> method</dt> 
        <dd>
        <p>Creates a <a href="#RealtimeAnalyserNode-section"><code>RealtimeAnalyserNode</code></a>.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createGainNode">The <code>createGainNode</code> method</dt> 
        <dd>
        <p>Creates an <a href="#AudioGainNode-section"><code>AudioGainNode</code></a>.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createDelayNode">The <code>createDelayNode</code> method</dt> 
        <dd>
        <p>Creates a <a href="#DelayNode-section"><code>DelayNode</code></a> representing a variable delay line.  The initial default delay time will be 0 seconds.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createBiquadFilter">The <code>createBiquadFilter</code> method</dt> 
        <dd>
        <p>Creates a <a href="#BiquadFilterNode-section"><code>BiquadFilterNode</code></a> representing a second order filter which can be configured
        as one of several common filter types.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createPanner">The <code>createPanner</code> method</dt> 
        <dd>
        <p>Creates an <a href="#AudioPannerNode-section"><code>AudioPannerNode</code></a>.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createConvolver">The <code>createConvolver</code> method</dt> 
        <dd>
        <p>Creates a <a href="#ConvolverNode-section"><code>ConvolverNode</code></a>.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createChannelSplitter">The <code>createChannelSplitter</code> method</dt>
        <dd>
        <p>Creates an <a href="#AudioChannelSplitter-section"><code>AudioChannelSplitter</code></a> representing a channel splitter.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createChannelMerger">The <code>createChannelMerger</code> method</dt>
        <dd>
        <p>Creates an <a href="#AudioChannelMerger-section"><code>AudioChannelMerger</code></a> representing a channel merger.</p> 
        </dd>
      </dl>

      <dl>
<dt id="dfn-createDynamicsCompressor">The <code>createDynamicsCompressor</code> method</dt>
        <dd>
        <p>Creates a <a href="#DynamicsCompressorNode-section"><code>DynamicsCompressorNode</code></a>.</p> 
        </dd>
      </dl> 
      </div> 


 
    <div id="AudioNode-section" class="section"> 
    <h2>4.2. The AudioNode Interface</h2> 
    <p> 
      AudioNodes are the building blocks of an <a href="#AudioContext-section"><code>AudioContext</code></a>.
      This interface represents audio sources, the audio destination, and intermediate processing modules.
      These modules can be connected together to form <a href="#ModularRouting-section">processing graphs</a> for rendering audio to the audio hardware.
      Each node can have inputs and/or outputs.
      An <a href="#AudioSourceNode-section"><code>AudioSourceNode</code></a> has no inputs and a single output.
      An <a href="#AudioDestinationNode-section"><code>AudioDestinationNode</code></a> has one input and no outputs and
      represents the final destination to the audio hardware.  Most processing nodes such as filters will have one input and one output.
      
      
    </p> 
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioNode">AudioNode</dfn> {

        void connect(in AudioNode destination, in unsigned long output = 0, in unsigned long input = 0);
        void disconnect(in int output = 0);
        readonly attribute AudioContext context;
        readonly attribute unsigned long numberOfInputs;
        readonly attribute unsigned long numberOfOutputs;

    }
    </code></pre></div></div>


    <div class="section">
    <h3 id="attributes-AudioNode">4.2.1. Attributes</h3> 
    <dl>
<dt id="dfn-context"><code>context</code></dt>
<dd><p>The AudioContext which owns this AudioNode.</p></dd>
</dl> 
    <dl>
<dt id="dfn-numberOfInputs"><code>numberOfInputs</code></dt>
<dd><p>The number of inputs feeding into the AudioNode.  This will be 0 for an AudioSourceNode.</p></dd>
</dl> 
    <dl>
<dt id="dfn-numberOfOutputs"><code>numberOfOutputs</code></dt>
<dd><p>The number of outputs coming out of the AudioNode.  This will be 0 for an AudioDestinationNode.</p></dd>
</dl> 
    </div>
    
    <div class="section"> 
    <h3 id="methodsandparams-AudioNode">4.2.2. Methods and Parameters</h3> 
    <dl>
<dt id="dfn-connect">The <code>connect</code> method</dt> 
    <dd>
    <p>Connects the AudioNode to another AudioNode.</p> 
    <p>The <dfn id="dfn-connect-destination">destination</dfn> parameter is the AudioNode to connect to.</p> 
    <p>The <dfn id="dfn-connect-output">output</dfn> parameter is an index describing which output of the AudioNode from which to connect. An out-of-bound value throws an exception.</p>
    <p>The <dfn id="dfn-connect-input">input</dfn> parameter is an index describing which input of the destination AudioNode to connect to.  An out-of-bound value throws an exception. </p>
    
    <p>
    It is possible to connect an AudioNode output to more than one input with multiple calls to connect().  Thus, "fanout" is supported.
    </p>
    
    </dd>
</dl> 

    <dl>
<dt id="dfn-disconnect">The <code>disconnect</code> method</dt> 
    <dd>
    <p>Disconnects an AudioNode's output.</p> 
    <p>The <dfn id="dfn-disconnect-output">output</dfn> parameter is an index describing which output of the AudioNode to disconnect. </p>
      
    </dd>
</dl> 

  </div> 





    <div id="AudioSourceNode-section" class="section"> 
    <h2>4.3. The AudioSourceNode Interface</h2> 
    <p> 
      This is an abstract interface representing an audio source, an <a href="#AudioNode-section"><code>AudioNode</code></a> which has no inputs and a single output:
    </p>  
      <pre>
      numberOfInputs  : 0
      numberOfOutputs : 1
      </pre>

      <p>
      Subclasses of AudioSourceNode will implement specific types of audio sources.
      </p>

    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioSourceNode">AudioSourceNode</dfn> : AudioNode {

    }
    </code></pre></div></div> 

  </div> 

  


    <div id="AudioDestinationNode-section" class="section"> 
    <h2>4.4. The AudioDestinationNode Interface</h2> 
    <p>
      This is an <a href="#AudioNode-section"><code>AudioNode</code></a> representing the final audio destination and is what the user will ultimately hear.
      It can be considered as an audio output device which is connected to speakers.
      All rendered audio to be heard will be routed to this node, a "terminal" node in the AudioContext's routing graph.  There is only a single AudioDestinationNode
      per AudioContext, provided through the <code>destination</code> attribute of <a href="#AudioContext-section"><code>AudioContext</code></a>.
    </p>  
      <pre>
      numberOfInputs  : 1
      numberOfOutputs : 0
      </pre>

    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioDestinationNode">AudioDestinationNode</dfn> : AudioNode {

        readonly attribute unsigned long numberOfChannels;

    }
    </code></pre></div></div> 

    <div class="section">
    <h3 id="attributes-AudioDestinationNode">4.4.1. Attributes</h3> 
    <dl>
<dt id="dfn-numberOfChannels"><code>numberOfChannels</code></dt>
<dd><p>The number of channels of the destination's input.</p></dd>
</dl> 
    </div> 

  </div> 

  
  <div id="AudioParam-section" class="section"> 
    <h2>4.5. The AudioParam Interface</h2> 
    <p> 
      AudioParam is a parameter controlling an individual aspect of an <a href="#AudioNode-section"><code>AudioNode</code></a>'s functioning, such as volume.
      The parameter can be set immediately to a particular value using the "value" attribute.  Additionally, value changes can be scheduled to happen at very precise times,
      for envelopes, volume fades, LFOs, filter sweeps, grain windows, etc.  In this way, arbitrary timeline-based automation curves can be set on any AudioParam.
      
    </p> 
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioParam">AudioParam</dfn> {

        attribute float value;
        readonly attribute float minValue;
        readonly attribute float maxValue;
        readonly attribute float defaultValue;

        readonly attribute DOMString name;

        <span class="comment">// Should define units constants here (seconds, decibels, cents, etc.) </span>         
        
        readonly attribute short units;

        <span class="comment">// Parameter automation. </span>
        void setValueAtTime(in float value, in float time);
        void linearRampToValueAtTime(in float value, in float time);
        void exponentialRampToValueAtTime(in float value, in float time);

        <span class="comment">// Exponentially approach the target value with a rate having the given time constant. </span>
        void setTargetValueAtTime(in float targetValue, in float time, in float timeConstant);

        <span class="comment">// Sets an array of arbitrary parameter values starting at time for the given duration. </span>
        <span class="comment">// The number of values will be scaled to fit into the desired duration. </span>
        void setValueCurveAtTime(in Float32Array values, in float time, in float duration);
        
        <span class="comment">// Cancels all scheduled parameter changes with times greater than or equal to startTime. </span>
        void cancelScheduledValues(in float startTime);

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-AudioParam">4.5.1. Attributes</h3> 
    <dl>
<dt id="dfn-AudioParam-value"><code>value</code></dt>
<dd><p>The parameter's floating-point value.  If a value is set outside the allowable range described by
    <code>minValue</code> and <code>maxValue</code> an exception is thrown.   </p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioParam-minValue"><code>minValue</code></dt>
<dd><p>Minimum value.  The <code>value</code> attribute must not be set lower than this value.</p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioParam-maxValue"><code>maxValue</code></dt>
<dd><p>Maximum value.  The <code>value</code> attribute must be set lower than this value. </p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioParam-defaultValue"><code>defaultValue</code></dt>
<dd><p>Initial value for the value attribute</p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioParam-name"><code>name</code></dt>
<dd><p>The name of the parameter.</p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioParam-units"><code>units</code></dt>
<dd><p>Represents the type of value (seconds, decibels, cents, etc.).</p></dd>
</dl> 
    </div> 


      <div class="section"> 
      <h3 id="methodsandparams-AudioParam">4.5.2. Methods and Parameters</h3> 
      <dl>
<dt id="dfn-setValueAtTime">The <code>setValueAtTime</code> method</dt>
      <dd>
      <p>Schedules a parameter value change at the given time (relative to the AudioContext .currentTime).</p> 
      <p>The <dfn id="dfn-setValueAtTime-value">value</dfn> parameter is the value the parameter will change to at the given time.</p> 
      <p>The <dfn id="dfn-setValueAtTime-time">time</dfn> parameter is the time (relative to the AudioContext .currentTime).</p>
      </dd>
</dl> 

      <dl>
<dt id="dfn-linearRampToValueAtTime">The <code>linearRampToValueAtTime</code> method</dt>
      <dd>
      <p>Schedules a linear continuous change in parameter value from the previous scheduled parameter value to the given value.</p> 
      <p>The <dfn id="dfn-linearRampToValueAtTime-value">value</dfn> parameter is the value the parameter will linearly ramp to at the given time.</p> 
      <p>The <dfn id="dfn-linearRampToValueAtTime-time">time</dfn> parameter is the time (relative to the AudioContext .currentTime).</p>
      </dd>
</dl> 

      <dl>
<dt id="dfn-exponentialRampToValueAtTime">The <code>exponentialRampToValueAtTime</code> method</dt>
      <dd>
      <p>Schedules an exponential continuous change in parameter value from the previous scheduled parameter value to the given value.
      Parameters representing filter frequencies and playback rate are best changed exponentially because of the way humans perceive sound.
      </p> 
      <p>The <dfn id="dfn-exponentialRampToValueAtTime-value">value</dfn> parameter is the value the parameter will exponentially ramp to at the given time.</p> 
      <p>The <dfn id="dfn-exponentialRampToValueAtTime-time">time</dfn> parameter is the time (relative to the AudioContext .currentTime).</p>
      </dd>
</dl> 

      <dl>
<dt id="dfn-setTargetValueAtTime">The <code>setTargetValueAtTime</code> method</dt>
      <dd>
      <p>Start exponentially approaching the target value at the given time with a rate having the given time constant.
      Among other uses, this is useful for implementing the "decay" and "release" portions of an ADSR envelope.
      Please note that the parameter value does not immediately change to the target value at the given time, but instead gradually changes to the target value.</p> 
      <p>The <dfn id="dfn-setTargetValueAtTime-targetValue">targetValue</dfn> parameter is the value the parameter will *start* changing to at the given time.</p> 
      <p>The <dfn id="dfn-setTargetValueAtTime-time">time</dfn> parameter is the time (relative to the AudioContext .currentTime).</p>
      <p>The <dfn id="dfn-setTargetValueAtTime-timeConstant">timeConstant</dfn> parameter is the time-constant value of first-order filter (exponential) approach to the target value.
      The larger this value is, the slower the transition will be.</p>
      </dd>
</dl>

      <dl>
<dt id="dfn-setValueCurveAtTime">The <code>setValueCurveAtTime</code> method</dt>
      <dd>
      <p>
      Sets an array of arbitrary parameter values starting at the given time for the given duration.
      The number of values will be scaled to fit into the desired duration.
      </p> 
      <p>The <dfn id="dfn-setValueCurveAtTime-values">values</dfn> parameter is a Float32Array representing a parameter value curve.
      These values will apply starting at the given time and lasting for the given duration.
      </p> 
      <p>The <dfn id="dfn-setValueCurveAtTime-time">time</dfn> parameter is the starting time for the curve values (relative to the AudioContext .currentTime).</p>
      <p>The <dfn id="dfn-setValueCurveAtTime-duration">duration</dfn> parameter is the time-constant value of first-order filter (exponential) approach to the target value.</p>
      </dd>
</dl> 

      <dl>
<dt id="dfn-cancelScheduledValues">The <code>cancelScheduledValues</code> method</dt>
      <dd>
      <p>Cancels all scheduled parameter changes with times greater than or equal to startTime.</p> 
      <p>The <dfn id="dfn-cancelScheduledValues-startTime">startTime</dfn> parameter is the starting time at and after which any previously scheduled parameter changes will be cancelled.</p>
      </dd>
</dl> 

    </div> 
  </div> 


  <div class="section"> 
  <h3 id="AudioGain-section">4.6. AudioGain</h3> 

  <p> 
    This interface is a particular type of <code>AudioParam</code> which specifically controls the gain (volume) of some aspect of the audio processing.
    The unit type is "linear gain".  The <code>minValue</code> is 0.0, and although the nominal <code>maxValue</code> is 1.0, higher values are allowed
    (no exception thrown).
    
    
  </p> 
  <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

  interface <dfn id="dfn-AudioGain">AudioGain</dfn> : AudioParam {

  };
  </code></pre></div></div> 

  </div>
  
  
  
  

  <div id="AudioGainNode-section" class="section"> 

    <h2>4.7. The AudioGainNode Interface</h2> 
    <p> 
      Changing the gain of an audio signal is a fundamental operation in audio applications.  This interface is an AudioNode with a single input and single output:
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    
    <p>
     which changes the gain of (scales) the incoming audio signal by a certain amount.
       The default amount is 1.0 (no gain change).
     The <code>AudioGainNode</code> is one of the building blocks for creating <a href="#MixerGainStructure-section">mixers</a>.
     The implementation must make gain changes to the audio stream smoothly, without introducing noticeable clicks or glitches.  This process is called "de-zippering".
      
    </p> 
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioGainNode">AudioGainNode</dfn> : AudioNode {

        AudioGain gain;

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-AudioGainNode">4.7.1. Attributes</h3> 
    <dl>
<dt id="dfn-AudioGainNode-gain"><code>gain</code></dt>
<dd><p>An AudioGain object representing the amount of gain to apply.  The default value
    (<code>gain.value</code>) is 1.0 (no gain change).  See <a href="#AudioGain-section"><code>AudioGain</code></a> for more information. </p></dd>
</dl> 
    </div> 

  </div> 


  <div id="DelayNode-section" class="section"> 

    <h2>4.8. The DelayNode Interface</h2> 
    <p> 
      A delay-line is a fundamental building block in audio applications.  This interface is an AudioNode with a single input and single output:
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    
    <p>
     which delays the incoming audio signal by a certain amount.  The default amount is 0.0 seconds (no delay).
     When the delay time is changed, the implementation must make the transition smoothly, without introducing noticeable clicks or glitches to the audio stream.
      
    </p> 
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-DelayNode">DelayNode</dfn> : AudioNode {

        AudioParam delayTime;

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-DelayNode-AudioGainNode">4.8.1. Attributes</h3> 
    <dl>
<dt id="dfn-DelayNode-AudioGainNode-delayTime"><code>delayTime</code></dt>
<dd><p>An AudioParam object representing the amount of delay (in seconds) to apply.  The default value
    (<code>delayTime.value</code>) is 0.0 (no delay).  The minimum value is 0.0 and the maximum value is currently 1.0 (but this is arbitrary and could be increased).</p></dd>
</dl> 
    </div> 

  </div> 











  <div id="AudioBuffer-section" class="section"> 
    <h2>4.9. The AudioBuffer Interface</h2> 
    <p> 
      This interface represents a memory-resident audio asset (for one-shot sounds and other short audio clips).  
      Its format is non-interleaved linear PCM with a nominal range of -1.0 -> +1.0.  It can contain one or more channels.
      It is analogous to a WebGL texture.  Typically, it would be expected that the length of the PCM data would be fairly short (usually somewhat less than a minute).  For longer
      sounds, such as music soundtracks, streaming should be used with the <code>audio</code> element and <code>MediaElementAudioSourceNode</code>.
      
    </p> 
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioBuffer">AudioBuffer</dfn> {

        <span class="comment">// linear gain (default 1.0) </span>         
        attribute AudioGain gain;
        
        readonly attribute float sampleRate;
        readonly attribute float length;

        <span class="comment">// in seconds </span>         
        readonly attribute float duration;  

        readonly attribute int numberOfChannels;

        Float32Array getChannelData(in unsigned long channel);

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-AudioBuffer">4.9.1. Attributes</h3> 
    <dl>
<dt id="dfn-AudioBuffer-gain"><code>gain</code></dt>
<dd><p>The amount of gain to apply when using this buffer in any <code>AudioBufferSourceNode</code>.  The default value is 1.0. </p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBuffer-sampleRate"><code>sampleRate</code></dt>
<dd><p>The sample-rate for the PCM audio data in samples per second.</p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBuffer-length"><code>length</code></dt>
<dd><p>Length of the PCM audio data in sample-frames.</p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBuffer-duration"><code>duration</code></dt>
<dd><p>Duration of the PCM audio data in seconds.</p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBuffer-numberOfChannels"><code>numberOfChannels</code></dt>
<dd><p>The number of discrete audio channels.</p></dd>
</dl> 
    </div> 

    <div class="section"> 
    <h3 id="methodsandparams-AudioBuffer">4.9.2. Methods and Parameters</h3> 

    <dl>
<dt id="dfn-AudioBuffer-getChannelData">The <code>getChannelData</code> method</dt> 
    <dd>
    <p>Gets direct access to the audio data stored in an AudioBuffer.</p> 
    <p>The <dfn id="dfn-AudioBuffer-channel">channel</dfn> parameter is an index representing the particular channel to get data for. </p>
    </dd>
  </dl> 
    </div>


  </div> 





  <div id="AudioBufferSourceNode-section" class="section"> 

    <h2>4.10. The AudioBufferSourceNode Interface</h2> 
    <p> 
      This interface represents an audio source from an in-memory audio asset in an <code>AudioBuffer</code>.  It generally will be used for short audio assets 
      which require a high degree of scheduling flexibility (can playback in rhythmically perfect ways).      
    </p>
    
    <pre>
    numberOfInputs  : 0
    numberOfOutputs : 1
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioBufferSourceNode">AudioBufferSourceNode</dfn> : AudioSourceNode {

        <span class="comment">// Playback this in-memory audio asset  </span>   
        <span class="comment">// Many sources can share the same buffer  </span>   
        attribute AudioBuffer buffer;

        readonly attribute AudioGain gain;
        attribute AudioParam playbackRate; 
        attribute boolean loop;

        void noteOn(in float when);
        void noteGrainOn(in float when, in float grainOffset, in float grainDuration);
        void noteOff(in float when);

    }
    </code></pre></div></div>



    <div class="section"> 
    <h3 id="attributes-AudioBufferSourceNode">4.10.1. Attributes</h3> 
    <dl>
<dt id="dfn-AudioBufferSourceNode-buffer"><code>buffer</code></dt>
<dd><p>Represents the audio asset to be played. </p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBufferSourceNode-gain"><code>gain</code></dt>
<dd><p>The default gain at which to play back the buffer.  The default gain.value is 1.0. </p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBufferSourceNode-playbackRate"><code>playbackRate</code></dt>
<dd><p>The speed at which to render the audio stream.  The default playbackRate.value is 1.0. </p></dd>
</dl> 
    <dl>
<dt id="dfn-AudioBufferSourceNode-loop"><code>loop</code></dt>
<dd><p>Indicates if the audio data should play in a loop. </p></dd>
</dl> 
    </div> 

  </div> 


  <div class="section"> 
  <h3 id="methodsandparams-AudioBufferSourceNode">4.10.2. Methods and Parameters</h3> 
  <dl>
<dt id="dfn-AudioBufferSourceNode-noteOn">The <code>noteOn</code> method</dt> 
  <dd>
  <p>Schedules a sound to playback at an exact time.</p> 
  <p>The <dfn id="dfn-AudioBufferSourceNode-noteOn-when">when</dfn> parameter describes at what time (in seconds) the sound should start playing.
  This time is relative to the <b>currentTime</b> attribute of the AudioContext.  If 0 is passed in for this value or if the
  value is less than <b>currentTime</b>, then the sound will start playing immediately.
  </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-noteGrainOn">The <code>noteGrainOn</code> method</dt> 
  <dd>
  <p>Schedules a portion of a sound to playback at an exact time.</p> 
  <p>The <dfn id="dfn-noteGrainOn-when">when</dfn> parameter describes at what time (in seconds) the sound should start playing.
  This time is relative to the <b>currentTime</b> attribute of the AudioContext.  If 0 is passed in for this value or if the
  value is less than <b>currentTime</b>, then the sound will start playing immediately.
  </p> 

  <p>The <dfn id="dfn-grainOffset">grainOffset</dfn> parameter describes the offset in the buffer (in seconds) for the portion to be played.</p> 
  <p>The <dfn id="dfn-grainDuration">grainDuration</dfn> parameter describes the duration of the portion (in seconds) to be played.  </p>
  </dd>
  </dl>

  <dl>
<dt id="dfn-noteOff">The <code>noteOff</code> method</dt> 
  <dd>
  <p>Schedules a sound to stop playback at an exact time.</p> 
  <p>The <dfn id="dfn-noteOff-when">when</dfn> parameter describes at what time (in seconds) the sound should stop playing.
  This time is relative to the <b>currentTime</b> attribute of the AudioContext.  If 0 is passed in for this value or if the
  value is less than <b>currentTime</b>, then the sound will stop playing immediately.
  </p> 
  </dd>
  </dl> 





  <div id="MediaElementAudioSourceNode-section" class="section"> 

    <h2>4.11. The MediaElementAudioSourceNode Interface</h2> 
    <p> 
      This interface represents an audio source from an <code>audio</code> or <code>video</code> element.
        The element's <code>audioSource</code> attribute implements this.      
    </p>
    
    <pre>
    numberOfInputs  : 0
    numberOfOutputs : 1
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-MediaElementAudioSourceNode">MediaElementAudioSourceNode</dfn> : AudioSourceNode {

    }
    </code></pre></div></div> 

  </div> 

  <div id="JavaScriptAudioNode-section" class="section"> 

    <h2>4.12. The JavaScriptAudioNode Interface</h2> 
    <p> 
      This interface is an AudioNode which can generate, process, or analyse audio directly using JavaScript.
      It can have a variable number of inputs and outputs, although it must have at least one input or output.
      A basic implementation may choose not to support more than one input or output.
    </p>
    
    <pre>
    numberOfInputs  : N >= 0
    numberOfOutputs : M >= 0
    (either N or M must be greater than zero)
    </pre>

    <p>
    The JavaScriptAudioNode is constructed with a <code>bufferSize</code> which must be one of the following values: 256, 512, 1024, 2048, 4096, 8192, 16384.
    This value controls how frequently the <code>onaudioprocess</code> event handler is called and how many sample-frames need to be processed each call.
    Lower numbers for <code>bufferSize</code> will result in a lower (better) <a href="#Latency-section">latency</a>.
    Higher numbers will be necessary to avoid audio breakup and <a href="#Glitching-section">glitches</a>.
    The value chosen must carefully balance between latency and audio quality.
</p>

<p>
    <code>numberOfInputs</code> and <code>numberOfOutputs</code> determine the number of inputs and number of outputs.  It is invalid for both 
    <code>numberOfInputs</code> and <code>numberOfOutputs</code> to be zero.
    </p>
    
    <pre>
    var node = context.createJavaScriptNode(bufferSize, numberOfInputs, numberOfOutputs);
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-JavaScriptAudioNode">JavaScriptAudioNode</dfn> : AudioNode {

        attribute EventListener onaudioprocess;
        
        readonly attribute long bufferSize;

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-JavaScriptAudioNode">4.12.1. Attributes</h3> 
    <dl>
<dt id="dfn-onaudioprocess"><code>onaudioprocess</code></dt>
<dd><p>An event listener which is called periodically for audio processing.
    An event of type <a href="#AudioProcessingEvent-section"><code>AudioProcessingEvent</code></a> will be passed to the event handler. </p></dd>
</dl> 
    <dl>
<dt id="dfn-onaudioprocess-bufferSize"><code>bufferSize</code></dt>
<dd><p>The size of the buffer (in sample-frames) which needs to be processed each time
     <code>onprocessaudio</code> is called.  Legal values are (256, 512, 1024, 2048, 4096, 8192, 16384). </p></dd>
</dl> 
    </div> 

  </div> 




  <div id="AudioProcessingEvent-section" class="section"> 

    <h2>4.13. The AudioProcessingEvent Interface</h2> 
    <p> 
      This interface is a type of <code>Event</code> which is passed to the <code>onaudioprocess</code> event handler used by
       <a href="#JavaScriptAudioNode-section"><code>JavaScriptAudioNode</code></a>.
    </p>
    
		<p>
			The event handler processes audio from the inputs (if any) by accessing the audio data from the <code>inputBuffer</code> attribute.
			The audio data which is the result of the processing (or the synthesized data if there are no inputs) is then placed into the 
			<code>outputBuffer</code>.
		</p>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioProcessingEvent">AudioProcessingEvent</dfn> : Event {

        JavaScriptAudioNode node;
        readonly attribute float playbackTime;
        readonly attribute sequence &lt;AudioBuffer&gt; inputBuffer;
        readonly attribute sequence &lt;AudioBuffer&gt; outputBuffer; 

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-AudioProcessingEvent">4.13.1. Attributes</h3> 
    <dl>
<dt id="dfn-node"><code>node</code></dt>
<dd><p>The <code>JavaScriptAudioNode</code> associated with this processing event.  </p></dd>
</dl> 

    <dl>
<dt id="dfn-playbackTime"><code>playbackTime</code></dt>
<dd><p>The time when the audio will be played.
      This time is in relation to the context's <code>currentTime</code> attribute.
      <code>playbackTime</code> allows for very tight synchronization between processing directly in JavaScript with the other events in the context's
      rendering graph.
        </p></dd>
</dl> 


    <dl>
<dt id="dfn-inputBuffer"><code>inputBuffer</code></dt>
<dd><p>An array of AudioBuffers (one per input) containing the input audio data.
    The length of this array is equal to the number of inputs of the associated <code>JavaScriptAudioNode</code>.  </p></dd>
</dl> 
    <dl>
<dt id="dfn-outputBuffer"><code>outputBuffer</code></dt>
<dd><p>An array of AudioBuffers (one per output) where the output audio data should be written.
    The length of this array is equal to the number of outputs of the associated <code>JavaScriptAudioNode</code>. </p></dd>
</dl> 
    </div> 

  </div> 



  <div id="AudioPannerNode-section" class="section"> 

    <h2>4.14. The AudioPannerNode Interface</h2> 
    <p> 
      This interface represents a processing node which <a href="#Spatialization-section">positions / spatializes</a> an incoming audio stream in three-dimensional space.
      The spatialization is in relation the the <a href="#AudioContext-section"><code>AudioContext</code></a>'s <a href="#AudioListener-section"><code>AudioListener</code></a> (<code>listener</code> attribute).      
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    

    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioPannerNode">AudioPannerNode</dfn> : AudioNode {

        <span class="comment">// Panning model </span>         
        const unsigned short EQUALPOWER = 0;
        const unsigned short HRTF = 1;
        const unsigned short SOUNDFIELD = 2;

        <span class="comment">// Default for stereo is HRTF </span>
        attribute unsigned short panningModel;

        <span class="comment">// Uses a 3D cartesian coordinate system </span>
        void setPosition(in float x, in float y, in float z);
        void setOrientation(in float x, in float y, in float z);
        void setVelocity(in float x, in float y, in float z);

        <span class="comment">// Distance model and attributes </span>         
        attribute unsigned short distanceModel;
        attribute float refDistance;
        attribute float maxDistance;
        attribute float rolloffFactor;

        <span class="comment">// Directional sound cone </span>         
        attribute float coneInnerAngle;
        attribute float coneOuterAngle;
        attribute float coneOuterGain;

        <span class="comment">// Dynamically calculated gain values </span>         
        readonly attribute AudioGain coneGain;
        readonly attribute AudioGain distanceGain;

    };
    </code></pre></div></div> 


  </div> 

  <div class="section"> 
  <h3 id="constants-AudioPannerNode">4.14.1. Constants</h3> 

  <dl>
<dt id="dfn-EQUALPOWER"><code>EQUALPOWER</code></dt>
<dd><p>A simple and efficient spatialization algorithm using equal-power panning. </p></dd>
</dl> 
  <dl>
<dt id="dfn-HRTF"><code>HRTF</code></dt>
<dd><p>A higher quality spatialization algorithm using a convolution with measured impulse responses from human subjects.
  This panning method renders stereo output. </p></dd>
</dl> 
  <dl>
<dt id="dfn-SOUNDFIELD"><code>SOUNDFIELD</code></dt>
<dd><p>An algorithm which spatializes multi-channel audio using sound field algorithms. </p></dd>
</dl> 

  </div> 



  <div class="section"> 
  <h3 id="attributes-AudioPannerNode">4.14.2. Attributes</h3> 
  <dl>
<dt id="dfn-AudioPannerNode-listener"><code>listener</code></dt>
<dd><p>Represents the <b>listener</b> whose position and orientation is used together with
  the panner's position and orientation to determine how the audio will be spatialized. </p></dd>
</dl> 

  <dl>
<dt id="dfn-AudioPannerNode-panningModel"><code>panningModel</code></dt>
<dd><p>Determines which spatialization algorithm  will be used to position the audio in 3D space.  See the <b>constants</b>
  for the available choices.  The default is <b>HRTF</b>. </p></dd>
</dl> 

  <dl>
<dt id="dfn-AudioPannerNode-distanceModel"><code>distanceModel</code></dt>
<dd><p>Determines which algorithm will be used to reduce the volume of an audio source as it moves away from the
    listener.  TODO: add constants </p></dd>
</dl> 


  <dl>
<dt id="dfn-AudioPannerNode-refDistance"><code>refDistance</code></dt>
<dd><p>A reference distance for reducing volume as source move further from the listener. </p></dd>
</dl> 
  <dl>
<dt id="dfn-AudioPannerNode-maxDistance"><code>maxDistance</code></dt>
<dd><p>The maximum distance between source and listener, after which the volume will not be reduced any further. </p></dd>
</dl> 
  <dl>
<dt id="dfn-AudioPannerNode-rolloffFactor"><code>rolloffFactor</code></dt>
<dd><p>Describes how quickly the volume is reduced as source moves away from listener. </p></dd>
</dl> 

  <dl>
<dt id="dfn-AudioPannerNode-coneInnerAngle"><code>coneInnerAngle</code></dt>
<dd><p>A parameter for directional audio sources, this is an angle, inside of which there will be no volume reduction. </p></dd>
</dl> 
  <dl>
<dt id="dfn-AudioPannerNode-coneOuterAngle"><code>coneOuterAngle</code></dt>
<dd><p>A parameter for directional audio sources, this is an angle, outside of which the volume will be
    reduced to a constant value of <b>coneOuterGain</b>. </p></dd>
</dl> 

  <dl>
<dt id="dfn-AudioPannerNode-coneOuterGain"><code>coneOuterGain</code></dt>
<dd><p>A parameter for directional audio sources, this is the amount of volume reduction outside of
  the <b>coneOuterAngle</b>. </p></dd>
</dl> 

  </div> 


  <h3 id="AudioPannerNode-methods_and_parameters">4.14.3. Methods and Parameters</h3> 
  <dl>
<dt id="dfn-AudioPannerNode-setPosition">The <code>setPosition</code> method</dt> 
  <dd>
  <p>Sets the position of the audio source relative to the <b>listener</b> attribute.  A 3D cartesian coordinate system is used.</p> 
  <p>The <dfn id="dfn-AudioPannerNode-setPosition-x-y-z">x, y, z</dfn> parameters represent the coordinates in 3D space.  </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-AudioPannerNode-setOrientation">The <code>setOrientation</code> method</dt> 
  <dd>
  <p>Describes which direction the audio source is pointing in the 3D cartesian coordinate space.  Depending on how directional the sound is (controlled by the <b>cone</b> attributes),
    a sound pointing away from the listener can be very quiet or completely silent.</p> 
    <p>The <dfn id="dfn-AudioPannerNode-setOrientation-x-y-z">x, y, z</dfn> parameters represent a direction vector in 3D space.  </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-AudioPannerNode-setVelocity">The <code>setVelocity</code> method</dt> 
  <dd>
  <p>Sets the velocity vector of the audio source.  This vector controls both the direction of travel and the speed in 3D space.
  This velocity relative to the listener's velocity is used to determine how much doppler shift (pitch change) to apply.</p> 
  <p>The <dfn id="dfn-AudioPannerNode-setVelocity-x-y-z">x, y, z</dfn> parameters describe a direction vector indicating direction of travel and intensity.  </p> 
  </dd>


  </dl>




  <div id="AudioListener-section" class="section"> 

    <h2>4.15. The AudioListener Interface</h2> 
    <p> 
      This interface represents the position and orientation of the person listening to the audio scene.  All <a href="#AudioPannerNode-section"><code>AudioPannerNode</code></a>
      objects spatialize in relation to the AudioContext's <code>listener</code>.
      
      See <a href="#Spatialization-section">this</a> section
      for more details about spatialization.
      
    </p> 
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioListener">AudioListener</dfn> {

        <span class="comment">// linear gain (default 1.0) </span>         
        attribute float gain;

        <span class="comment">// same as OpenAL (default 1.0) </span>         
        attribute float dopplerFactor;

        <span class="comment">// in meters / second (default 343.3) </span>         
        attribute float speedOfSound;

        <span class="comment">// Uses a 3D cartesian coordinate system </span>
        void setPosition(in float x, in float y, in float z);
        void setOrientation(in float x, in float y, in float z, in float xUp, in float yUp, in float zUp);
        void setVelocity(in float x, in float y, in float z);

    };
    </code></pre></div></div> 


  </div> 


  <div class="section"> 
  <h3 id="attributes-AudioListener">4.15.1. Attributes</h3> 
  <dl>
<dt id="dfn-AudioListener-gain"><code>gain</code></dt>
<dd><p>A linear gain used in conjunction with <a href="#AudioPannerNode-section"><code>AudioPannerNode</code></a> objects when spatializing. </p></dd>
</dl> 

  <dl>
<dt id="dfn-AudioListener-dopplerFactor"><code>dopplerFactor</code></dt>
<dd><p>A constant used to determine the amount of pitch shift to use when rendering a doppler effect. </p></dd>
</dl> 
  <dl>
<dt id="dfn-AudioListener-speedOfSound"><code>speedOfSound</code></dt>
<dd><p>The speed of sound used for calculating doppler shift.  The default value is 343.3 meters / second. </p></dd>
</dl> 

  </div> 


  <h3 id="AudioListener-methods_and_parameters">4.15.2. Methods and Parameters</h3> 
  <dl>
<dt id="dfn-AudioListener-setPosition">The <code>setPosition</code> method</dt> 
  <dd>
  <p>Sets the position of the listener in a 3D cartesian coordinate space.  <code>AudioPannerNode</code> objects use this position relative to individual audio sources for spatialization.</p> 
  <p>The <dfn id="dfn-AudioListener-setPosition-x-y-z">x, y, z</dfn> parameters represent the coordinates in 3D space.  </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-setOrientation">The <code>setOrientation</code> method</dt> 
  <dd>
  <p>Describes which direction the listener is pointing in the 3D cartesian coordinate space.  Both a <b>front</b> vector and an <b>up</b> vector are provided.</p> 
  <p>The <dfn id="dfn-setOrientation-x-y-z">x, y, z</dfn> parameters represent a <b>front</b> direction vector in 3D space.  </p> 
  <p>The <dfn id="dfn-setOrientation-xUp-yUp-zUp">xUp, yUp, zUp</dfn> parameters represent an <b>up</b> direction vector in 3D space.  </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-setVelocity">The <code>setVelocity</code> method</dt> 
  <dd>
  <p>Sets the velocity vector of the listener.  This vector controls both the direction of travel and the speed in 3D space.
  This velocity relative an audio source's velocity is used to determine how much doppler shift (pitch change) to apply.</p> 
  <p>The <dfn id="dfn-setVelocity-x-y-z">x, y, z</dfn> parameters describe a direction vector indicating direction of travel and intensity.  </p> 
  </dd>
</dl> 







  <div id="ConvolverNode-section" class="section"> 

    <h2>4.16. The ConvolverNode Interface</h2> 
    <p> 
      This interface represents a processing node which applies a <a href="#Convolution-section">linear convolution effect</a> given an impulse response.
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-ConvolverNode">ConvolverNode</dfn> : AudioNode {

        <span class="comment">// Contains the (possibly multi-channel) impulse response </span>
        attribute AudioBuffer buffer;

        // attribute ImpulseResponse response;

    };
    </code></pre></div></div> 


  </div> 


  <div class="section"> 
  <h3 id="attributes-ConvolverNode">4.16.1. Attributes</h3> 
  <dl>
<dt id="dfn-buffer"><code>buffer</code></dt>
<dd><p>A mono or multi-channel audio buffer containing the impulse response used by the convolver. </p></dd>
</dl> 

  </div> 




  <div id="RealtimeAnalyserNode-section" class="section"> 

    <h2>4.17. The RealtimeAnalyserNode Interface</h2> 
    <p> 
      This interface represents a node which is able to provide real-time frequency and time-domain <a href="#RealtimeAnalysis-section">analysis</a> information.
      The audio stream will be passed un-processed from input to output.    

    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1    ← it has been suggested to have no outputs here - waiting for people's opinions
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-RealtimeAnalyserNode">RealtimeAnalyserNode</dfn> : AudioNode {

        <span class="comment">// Real-time frequency-domain data </span>        
        void getFloatFrequencyData(in Float32Array array);
        void getByteFrequencyData(in Uint8Array array);

        <span class="comment">// Real-time waveform data </span>        
        void getByteTimeDomainData(in Uint8Array array);

        attribute unsigned long fftSize;
        readonly attribute unsigned long frequencyBinCount;

        attribute float minDecibels;
        attribute float maxDecibels;

        attribute float smoothingTimeConstant;

    };
    </code></pre></div></div> 


  </div> 


  <div class="section"> 
  <h3 id="attributes-RealtimeAnalyserNode">4.17.1. Attributes</h3> 
  <dl>
<dt id="dfn-fftSize"><code>fftSize</code></dt>
<dd><p>The size of the FFT used for frequency-domain analsis.  This must be a power of two. </p></dd>
</dl> 
  <dl>
<dt id="dfn-frequencyBinCount"><code>frequencyBinCount</code></dt>
<dd><p>Half the FFT size. </p></dd>
</dl> 
  <dl>
<dt id="dfn-minDecibels"><code>minDecibels</code></dt>
<dd><p> The minimum power value in the scaling range for the FFT analysis data 
   for conversion to unsigned byte values.     
   </p></dd>
</dl> 
  <dl>
<dt id="dfn-maxDecibels"><code>maxDecibels</code></dt>
<dd><p> The maximum power value in the scaling range for the FFT analysis data 
      for conversion to unsigned byte values. </p></dd>
</dl> 
  <dl>
<dt id="dfn-smoothingTimeConstant"><code>smoothingTimeConstant</code></dt>
<dd><p> A value from 0.0 -> 1.0 where 0.0 represents no time averaging 
    with the last analysis frame. </p></dd>
</dl> 

  </div> 


  <h3 id="getFloatFrequencyData-methods_and_parameters">4.17.2. Methods and Parameters</h3> 
  <dl>
<dt id="dfn-getFloatFrequencyData">The <code>getFloatFrequencyData</code> method</dt> 
  <dd>
  <p>Copies the current frequency data into the passed floating-point array.  If the array has fewer elements than the frequencyBinCount, the excess elements will be dropped.         
  </p> 
  <p>The <dfn id="dfn-getFloatFrequencyData-array">array</dfn> parameter is where frequency-domain analysis data will be copied. </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-getByteFrequencyData">The <code>getByteFrequencyData</code> method</dt> 
  <dd>
  <p>Copies the current frequency data into the passed unsigned byte array.  If the array has fewer elements than the frequencyBinCount, the excess elements will be dropped.         
  </p> 
  <p>The <dfn id="dfn-getByteFrequencyData-array">array</dfn> parameter is where frequency-domain analysis data will be copied. </p> 
  </dd>
  </dl>

  <dl>
<dt id="dfn-getByteTimeDomainData">The <code>getByteTimeDomainData</code> method</dt> 
  <dd>
  <p>Copies the current time-domain (waveform) data into the passed unsigned byte array.  If the array has fewer elements than the frequencyBinCount, the excess elements will be dropped.         
  </p> 
  <p>The <dfn id="dfn-getByteTimeDomainData-array">array</dfn> parameter is where time-domain analysis data will be copied. </p> 
  </dd>
</dl>  









  <div id="AudioChannelSplitter-section" class="section"> 

    <h2>4.18. The AudioChannelSplitter Interface</h2> 
    <p>
      The <code>AudioChannelSplitter</code> is for use in more advanced applications and would often be used in conjunction with
       <a href="#AudioChannelMerger-section"><code>AudioChannelMerger</code></a>.
    </p>

    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 6 // number of "active" (non-silent) outputs is determined by number of channels in the input
    </pre>

    <p>
      This interface represents an AudioNode for accessing the individual channels of an audio stream in the routing graph.
      It has a single input, and a number of "active" outputs which equals the number of channels in the input audio stream.  For example, if a stereo
      input is connected to an <code>AudioChannelSplitter</code> then the number of active outputs will be two (one from the left channel and one from the right).
      There are always a total number of 6 outputs,
      supporting up to 5.1 output (note: this upper limit of 6 is arbitrary and could be increased to support 7.2, and higher).  Any outputs which are not "active" will
      output silence and would typically not be connected to anything.
    </p>
    
    
    <h3 id="example-channel-splitter">Example:</h3>
    <img src="channel-splitter.png" alt="Audio graph illustrating 2 AudioChannelSplitter examples: a simple stereo splitter with left and right channels; and a 5.1 splitter with with channels for left, right, center, LFE, SL, and SR."/>
    
    <p>
    One application for <code>AudioChannelSplitter</code> is for doing "matrix mixing" where individual gain control of each channel is desired.
    </p>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioChannelSplitter">AudioChannelSplitter</dfn> : AudioNode {

    };
    </code></pre></div></div>

  </div> 


  <div id="AudioChannelMerger-section" class="section"> 

    <h2>4.19. The AudioChannelMerger Interface</h2> 
    <p>
      The <code>AudioChannelMerger</code> is for use in more advanced applications and would often be used in conjunction with
       <a href="#AudioChannelSplitter-section"><code>AudioChannelSplitter</code></a>.
    </p>

    <pre>
    numberOfInputs  : 6  // number of connected inputs may be less than this
    numberOfOutputs : 1
    </pre>
    
    
    <p>
      This interface represents an AudioNode for combining channels from multiple audio streams into a single audio stream.
      It has 6 inputs, but not all of them need be connected.  There is a single output whose audio stream has a number of channels
      equal to the sum of the numbers of channels of all the connected inputs.  For example, if an <code>AudioChannelMerger</code>
      has two connected inputs (both stereo), then the output will be four channels, the first two from the first input and the
      second two from the second input.  In another example with two connected inputs (both mono), the output will be two channels (stereo),
      with the left channel coming from the first input and the right channel coming from the second input.
    </p>


    <h3 id="example-channel-merger">Example:</h3>
    <img src="channel-merger.png" alt="Audio graph illustrating 2 AudioChannelMerger examples: a simple stereo merger with left and right input channels; and a 5.1 merger with with input channels for left, right, center, LFE, SL, and SR."/>
    
    
    <p>
    Be aware that it is possible to connect an <code>AudioChannelMerger</code> in such a way that it outputs an audio stream with a large number of channels greater
    than the maximum supported by the system (currently 6 channels for 5.1).  In this case, if the output is connected to anything else then an exception will
    be thrown indicating an error condition.  Thus, the <code>AudioChannelMerger</code> should be used in situations where the numbers of input channels is well
    understood.
    </p>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-AudioChannelMerger">AudioChannelMerger</dfn> : AudioNode {

    };
    </code></pre></div></div>

  </div> 


  <div id="DynamicsCompressorNode-section" class="section"> 

    <h2>4.20. The DynamicsCompressorNode Interface</h2> 
    <p> 
      DynamicsCompressorNode is an AudioNode processor implementing a dynamics compression effect.
    </p>
    
    <p>
    Dynamics compression is very commonly used in musical production and game audio.  It lowers the volume
    of the loudest parts of the signal and raises the volume of the softest parts.  Overall, a louder, richer, and fuller sound can be achieved.  It is especially important in games
    and musical applications where large numbers of individual sounds are played simultaneous to control the overall signal level and help avoid clipping (distorting) the audio output to
    the speakers.
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-DynamicsCompressorNode">DynamicsCompressorNode</dfn> : AudioNode {

        // a few attributes such as threshold, attack, and release should be defined here.

    }
    </code></pre></div></div> 

  </div> 


  <div id="BiquadFilterNode-section" class="section"> 

    <h2>4.21. The BiquadFilterNode Interface</h2> 
    <p> 
      BiquadFilterNode is an AudioNode processor implementing very common low-order filters.
    </p>
    
    <p>
    Low-order filters are the building blocks of basic tone controls (bass, mid, treble), graphic equalizers, and more advanced filters.  Multiple BiquadFilterNode filters can be
    combined to form more complex filters.  The filter parameters such as "frequency" can be changed over time for filter sweeps, etc.  Each BiquadFilterNode can be configured as 
    one of a number of common filter types as shown in the IDL below.
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-BiquadFilterNode">BiquadFilterNode</dfn> : AudioNode {

        // Filter type.
        const unsigned short LOWPASS = 0;
        const unsigned short HIGHPASS = 1;
        const unsigned short BANDPASS = 2;
        const unsigned short LOWSHELF = 3;
        const unsigned short HIGHSHELF = 4;
        const unsigned short PEAKING = 5;
        const unsigned short NOTCH = 6;
        const unsigned short ALLPASS = 7;

        attribute unsigned short type;
        readonly attribute AudioParam frequency; // in Hertz
        readonly attribute AudioParam Q; // Quality factor
        readonly attribute AudioParam gain; // in Decibels

    }
    </code></pre></div></div> 

  </div> 

  <p>The filter types are briefly described below. We note that all of these filters are very commonly
  used in audio processing.  In terms of implementation, they have all been derived from standard analog filter prototypes.  For more technical
    details, we refer the reader to the excellent <a
    href="http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt">reference</a> by Robert Bristow-Johnson.</p>

  <div class="section">
    <h3 id="BiquadFilterNode-description-section">4.21.1 LOWPASS</h3>
    <p>A <a
    href="http://en.wikipedia.org/wiki/Low-pass_filter">lowpass
    filter</a> allows frequencies below the cutoff frequency 
    to pass through and attenuates frequencies above the cutoff.  LOWPASS implements a standard second-order resonant lowpass filter with 12dB/octave rolloff.</p>

    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The cutoff frequency above which the frequencies are
	 attenuated</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Controls how peaked the response will be at the cutoff
	 frequency.  A large value makes the response more peaked.</dd>
       <dt>gain</dt>
	 <dd>Not used in this filter type</dd>
      </dl>				    
    </blockquote>

    <h3 id="highpass">4.21.2 HIGHPASS</h3>

    <p>A <a
    href="http://en.wikipedia.org/wiki/High-pass_filter">highpass
    filter</a> is the opposite of a lowpass filter.  Frequencies above
    the cutoff frequency are passed through, but frequencies below the
    cutoff are attenuated.    HIGHPASS implements a standard second-order resonant highpass filter with 12dB/octave rolloff.
    </p>
    
    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The cutoff frequency below which the frequencies are
	 attenuated</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Controls how peaked the response will be at the cutoff
	 frequency.  A large value makes the response more peaked.</dd>
       <dt>gain</dt>
	 <dd>Not used in this filter type</dd>
      </dl>				    
    </blockquote>
        				  
    <h3 id="bandpass">4.21.3 BANDPASS</h3>

    <p>A <a
    href="http://en.wikipedia.org/wiki/Band-pass_filter">bandpass
    filter</a> allows a range of frequencies to pass through and
    attenuates the frequencies below and above this frequency range.  BANDPASS implements a second-order bandpass filter.
    </p>
    
    <blockquote>				      
      <dl>
       <dt>frequency</dt>
	 <dd>The center of the frequency band</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Controls the width of the band.  The width becomes narrower
	 as the Q value increases.</dd>
       <dt>gain</dt>
	 <dd>Not used in this filter type</dd>
      </dl>
    </blockquote>				    

    <h3 id="lowshelf">4.21.4 LOWSHELF</h3>
    <p>The lowshelf filter allows all frequencies through, but adds a
    boost (or attenuation) to the lower frequencies.  LOWSHELF implements a second-order lowshelf filter.
    </p>
    
    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The upper limit of the frequences where the boost (or
	 attenuation) is applied.</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Not used in this filter type.</dd>
       <dt>gain</dt>
	 <dd>The boost, in dB, to be applied.  If the value is negative,
	 the frequencies are attenuated.</dd>
      </dl>				    
    </blockquote>

    <h3 id="highshelf">4.21.5 HIGHSHELF</h3>
    <p>The highshelf filter is the opposite of the lowshelf filter and
    allows all frequencies through, but adds a
    boost to the higher frequencies.  HIGHSHELF implements a second-order highshelf filter.
  </p>

    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The lower limit of the frequences where the boost (or
	 attenuation) is applied.</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Not used in this filter type.</dd>
       <dt>gain</dt>
	 <dd>The boost, in dB, to be applied.  If the value is negative,
	 the frequencies are attenuated.</dd>
      </dl>				    
    </blockquote>
				  
    <h3 id="peaking">4.21.6 PEAKING</h3>
    <p>The peaking filter allows all frequencies through, but adds a
    boost (or attenuation) to a range of frequencies.
    </p>
    
    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The center frequency of where the boost is applied.</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Controls the width of the band of frequencies that are
	 boosted.  A large value implies a narrow width.</dd>
       <dt>gain</dt>
	 <dd>The boost, in dB, to be applied.  If the value is negative,
	 the frequencies are attenuated.</dd>
      </dl>				    
    </blockquote>
				  
    <h3 id="notch">4.21.7 NOTCH</h3>

    <p>The notch filter (also known as a <a
    href="http://en.wikipedia.org/wiki/Band-stop_filter">band-stop or
    band-rejection filter</a> is the opposite of a bandpass filter.
    It allows all frequencies through, except for a set of
    frequencies.
    </p>
    
    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The center frequency of where the notch is applied.</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Controls the width of the band of frequencies that are
	 attenuated.  A large value implies a narrow width.</dd>
       <dt>gain</dt>
	 <dd>Not used in this filter type.</dd>
      </dl>				    
    </blockquote>
				  
    <h3 id="allpass">4.21.8 ALLPASS</h3>

    <p>An <a
    href="http://en.wikipedia.org/wiki/All-pass_filter#Digital_Implementation">allpass
    filter</a> allows all frequencies through, but changes the phase
    relationship between the various frequencies.  ALLPASS implements a second-order allpass filter.
    </p>

    <blockquote>
      <dl>
       <dt>frequency</dt>
	 <dd>The frequency where the center of the phase transition occurs.
	   Viewed another way, this is the frequency with maximal <a href="http://en.wikipedia.org/wiki/Group_delay">group delay</a>.</dd>
       <dt><a href="http://en.wikipedia.org/wiki/Q_factor">Q</a></dt>
	 <dd>Controls how sharp the phase transition is at the center
	 frequency.  A larger value implies a sharper transition and a larger group delay.</dd>
       <dt>gain</dt>
	 <dd>Not used in this filter type.</dd>
      </dl>				    
    </blockquote>

  </div>
			  
  <div id="WaveShaperNode-section" class="section"> 

    <h2>4.22. The WaveShaperNode Interface</h2> 
    <p> 
      WaveShaperNode is an AudioNode processor implementing non-linear distortion effects.
    </p>
    
    <p>
    Non-linear waveshaping distortion is commonly used for both subtle non-linear warming, or more obvious distortion effects.  Arbitrary non-linear shaping curves
    may be specified.
    </p>
    
    <pre>
    numberOfInputs  : 1
    numberOfOutputs : 1
    </pre>
    
    <div class="block"><div class="blockTitleDiv"><span class="blockTitle">IDL</span></div><div class="blockContent"><pre class="code"><code class="idl-code"> 

    interface <dfn id="dfn-WaveShaperNode">WaveShaperNode</dfn> : AudioNode {

        attribute Float32Array curve;

    }
    </code></pre></div></div> 


    <div class="section"> 
    <h3 id="attributes-WaveShaperNode">4.22.1. Attributes</h3> 
    <dl>
<dt id="dfn-curve"><code>curve</code></dt>
<dd><p>The shaping curve used for the waveshaping effect.  The input signal is nominally within
    the range -1 -> +1.  Each input sample within this range will index into the shaping curve with a signal level of
     zero corresponding to the center value of the curve array.  Any sample value less than -1 will correspond to the first value in the curve array.
     Any sample value less greater than +1 will correspond to the last value in the curve array.
      </p></dd>
</dl> 

    </div> 




  </div> 




</div>

    <div id="AudioElementIntegration-section" class="section"> 
    <h2>5. Integration with the <code>audio</code> and <code>video</code> elements</h2> 

<p>
A <a href="#MediaElementAudioSourceNode-section"><code>MediaElementAudioSourceNode</code></a> can be "adopted" from an HTMLMediaElement using an AudioContext method.</p>
<br /><br />

<div class="block"><div class="blockTitleDiv"><span class="blockTitle">ECMAScript</span></div><div class="blockContent"><pre class="code"><code class="es-code"> 
var mediaElement = document.getElementById('mediaElementID');
var sourceNode = context.createMediaElementSource(mediaElement);
sourceNode.connect(filterNode);
</code></pre></div></div> 



  </div>


  <div id="MixerGainStructure-section" class="section"> 
  <h2>6. Mixer Gain Structure</h2> 

  <h3 id="MixerGainStructure-background"> Background</h3>
  <p>
  One of the most important considerations when dealing with audio processing graphs is how to adjust the gain (volume) at various points.  For example, in a standard mixing board model,
  each input bus has pre-gain, post-gain, and send-gains.  Submix and master out busses also have gain control.  The gain control described here can be used to implement
  standard mixing boards as well as other architectures.
  </p>

  <div class="section">
  <h3 id="SummingJunction-section"> Summing Inputs</h3>
  </div>
  
  <p>
  The inputs to <a href="#AudioNode-section"><code>AudioNodes</code></a> have the ability to accept connections from multiple outputs.
  The input then acts as a unity gain summing junction with each output signal being added with the others:
  </p>

  <img src="unity-gain-summing-junction.png" alt="unity-gain-summing-junction" />

<p>
  In cases where the channel layouts of the outputs do not match, an <a href="#UpMix-section">up-mix</a> will occur to the highest number of channels.
</p>

  <h3 id="gain_control"> Gain Control</h3>
  <p>
  But many times, it's important to be able to control the gain for each of the output signals.  The <a href="#AudioGainNode-section"><code>AudioGainNode</code></a> gives this control:
  </p>

  <img src="mixer-architecture-new.png" alt="mixer-architecture-new" />
  
  <p>
  Using these two concepts of unity gain summing junctions and AudioGainNodes, it's possible to construct simple or complex mixing scenarios.
  </p>
  
  <h3 id="example_mixer_with_send_busses"> Example: Mixer with Send Busses</h3>
  
  <p>
  In a routing scenario involving multiple sends and submixes, explicit control is needed over the volume or "gain" of each connection to a mixer.
  Such routing topologies are very common and exist in even the simplest of electronic gear sitting around in a basic recording studio.
  </p>

  <p>
  Here's an example with two send mixers and a main mixer.  Although possible, for simplicity's sake, pre-gain control and insert effects are not illustrated:
  </p>
  
  <img src="mixer-gain-structure.png" alt="mixer-gain-structure" />
  
  <p>
    This diagram is using a shorthand notation where "send 1", "send 2", and "main bus" are actually inputs to AudioNodes, but here are represented as summing busses,
    where the intersections g2_1, g3_1, etc. represent the "gain" or volume for the given source on the given mixer.
    In order to expose this gain, an <a href="#dfn-AudioGainNode"> <code>AudioGainNode</code></a> is used:
  </p>
  
  <p>
  Here's how the above diagram could be constructed in JavaScript:
  </p>
 
  <div class="example-mixer-gain-structure"><div class="exampleHeader">Example</div> 
 
          <div class="block"><div class="blockTitleDiv"><span class="blockTitle">ECMAScript</span></div><div class="blockContent"><pre class="code"><code class="es-code"> 

var context = 0;
var compressor = 0;
var reverb = 0;
var delay = 0;
var s1 = 0;
var s2 = 0;

var source1 = 0;
var source2 = 0;
var g1_1 = 0;
var g2_1 = 0;
var g3_1 = 0;
var g1_2 = 0;
var g2_2 = 0;
var g3_2 = 0;

<span class="comment">// Setup routing graph </span>
function setupRoutingGraph() {
    context = new AudioContext();

    compressor = context.createDynamicsCompressor();

    <span class="comment">// Send1 effect </span>
    reverb = context.createConvolver();
    <span class="comment">// Convolver impulse response may be set here or later </span>

    <span class="comment">// Send2 effect </span>
    delay = context.createDelayNode();

    <span class="comment">// Connect final compressor to final destination </span>
    compressor.connect(context.destination);

    <span class="comment">// Connect sends 1 &amp; 2 through effects to main mixer </span>
    s1 = context.createGainNode();
    reverb.connect(s1);
    s1.connect(compressor);
    
    s2 = context.createGainNode();
    delay.connect(s2);
    s2.connect(compressor);

    <span class="comment">// Create a couple of sources </span>
    source1 = context.createBufferSource();
    source2 = context.createBufferSource();
    source1.buffer = manTalkingBuffer;
    source2.buffer = footstepsBuffer;

    <span class="comment">// Connect source1 </span>
    g1_1 = context.createGainNode();
    g2_1 = context.createGainNode();
    g3_1 = context.createGainNode();
    source1.connect(g1_1);
    source1.connect(g2_1);
    source1.connect(g3_1);
    g1_1.connect(compressor);
    g2_1.connect(reverb);
    g3_1.connect(delay);

    <span class="comment">// Connect source2 </span>
    g1_2 = context.createGainNode();
    g2_2 = context.createGainNode();
    g3_2 = context.createGainNode();
    source2.connect(g1_2);
    source2.connect(g2_2);
    source2.connect(g3_2);
    g1_2.connect(compressor);
    g2_2.connect(reverb);
    g3_2.connect(delay);

    <span class="comment">// We now have explicit control over all the volumes g1_1, g2_1, ..., s1, s2 </span>
    g2_1.gain.value = 0.2; <span class="comment"> // For example, set source1 reverb gain </span>

    <span class="comment"> // Because g2_1.gain is of type "AudioGain" which is an "AudioParam", </span>
    <span class="comment"> // an automation curve could also be attached to it. </span>
    <span class="comment"> // A "mixing board" UI could be created in canvas or WebGL controlling these gains. </span>
}

 </code></pre></div></div> 
  
  
  </div>


<br /><br />



	    <div id="DynamicLifetime-section">
	    <h2>7. Dynamic Lifetime</h2>

			<h3 id="DynamicLifetime-background">Background</h3>
	      <p>
	      In addition to allowing the creation of static routing configurations, it should also be possible to do custom effect routing on dynamically allocated voices which have
	      a limited lifetime.  For the purposes of this discussion, let's call these short-lived voices "notes".  Many audio applications incorporate the ideas of notes, examples being drum machines,
	      sequencers, and 3D games with many one-shot sounds being triggered according to game play.
	      </p>

	      <p>
	      In a traditional software synthesizer, notes are dynamically allocated and released from a pool of available resources.
	      The note is allocated when a MIDI note-on message is received.
	      It is released when the note has finished playing either due to it having reached the end of its sample-data (if non-looping),
	      it having reached a sustain phase of its envelope which is zero, or due to a MIDI note-off message putting it into the release phase of its envelope.
	      In the MIDI note-off case, the note is not released immediately, but only when the release envelope phase has finished. At any given time,
	      there can be a large number of notes playing but the set of notes is constantly changing as new notes are added into the routing graph, and old ones are released.
	      </p>

	      <p>
	      The audio system automatically deals with tearing-down the part of the routing graph for individual "note" events.
	      A "note" is represented by an <code>AudioBufferSourceNode</code>, which can be directly connected to other processing nodes.  When the note has finished playing, the context will automatically
	      release the reference to the <code>AudioBufferSourceNode</code>, which in turn will release references to any nodes it is connected to, and so on.  The nodes will automatically get disconnected
	      from the graph and will be deleted when they have no more references.  Nodes in the graph which are long-lived and shared between dynamic voices can be managed explicitly.
	      Although it sounds complicated, this all happens automatically with no extra JavaScript handling required.
	      </p>

				<h3 id="example-dynamic-allocation">Example</h3>

	        <div class="example"><div class="exampleHeader">Example</div> 
	        <img src="dynamic-allocation.png" alt="dynamic-allocation" />

	        <p>The low-pass filter, panner, and second gain nodes are directly connected from the one-shot sound.  So when it has finished playing the context will
	         automatically release them (everything within the dotted line).  If there are no longer any JavaScript references to the one-shot sound and connected nodes, then they will be immediately 
	         removed from the graph and deleted. The streaming source, has a global reference and will remain connected until it is explicitly disconnected.

	        Here's how it might look in JavaScript:
	        </p> 
	        <div class="block"><div class="blockTitleDiv"><span class="blockTitle">ECMAScript</span></div><div class="blockContent"><pre class="code"><code class="es-code"> 

	var context = 0;
	var compressor = 0;
	var gainNode1 = 0;
	var streamingAudioSource = 0;

	<span class="comment">// Initial setup of the "long-lived" part of the routing graph </span> 
	function setupAudioContext() {
	    context = new AudioContext();

	    compressor = context.createDynamicsCompressor();
	    gainNode1 = context.createGainNode();

        // Create a streaming audio source.
	    var audioElement = document.getElementById('audioTagID');
	    streamingAudioSource = context.createMediaElementSource(audioElement);
	    streamingAudioSource.connect(gainNode1);

	    gainNode1.connect(compressor);
	    compressor.connect(context.destination);
	}

	<span class="comment">// Later in response to some user action (typically mouse or key event) </span>
	<span class="comment">// a one-shot sound can be played. </span>
	function playSound() {
	    var oneShotSound = context.createBufferSource();
	    oneShotSound.buffer = dogBarkingBuffer;

	    <span class="comment">// Create a filter, panner, and gain node. </span>
	    var lowpass = context.createLowPass2Filter();
	    var panner = context.createPanner();
	    var gainNode2 = context.createGainNode();

	    <span class="comment">// Make connections </span>
	    oneShotSound.connect(lowpass);
	    lowpass.connect(panner);
	    panner.connect(gainNode2);
	    gainNode2.connect(compressor);

	    <span class="comment">// Play 0.75 seconds from now (to play immediately pass in 0.0)</span>
	    oneShotSound.noteOn(context.currentTime + 0.75);
	}
	        </code></pre></div></div> 
	        </div> 
	        </div> 


  <br /><br />
  <div id="ChannelLayouts-section" class="section"> 
  <h2>8. Channel Layouts</h2>

  <p>
  It's important to define the channel ordering (and define some abbreviations) for different layouts. 
  </p>

  <p>
    The channel layouts are clear:
  </p>

  <pre>
  Mono
    0: M: mono
    
  Stereo
    0: L: left
    1: R: right
  </pre>
  
  <p>
  A more advanced implementation can handle channel layouts for quad and 5.1:
  </p>

  <pre>
  Quad
    0: L:  left
    1: R:  right
    2: SL: surround left
    3: SR: surround right

  5.1
    0: L:   left
    1: R:   right
    2: C:   center
    3: LFE: subwoofer
    4: SL:  surround left
    5: SR:  surround right
  </pre>

  <p>
  Other layouts can also be considered.
  </p>

  <div id="UpMix-section" class="section"> 
  <h2>9. Channel up-mixing and down-mixing</h2>
  
  For now, only considers cases for mono, stereo, quad, 5.1.  Later other channel layouts can be defined.
  <h3 id="up_mixing">Up Mixing</h3>
  <p>
  Consider what happens when converting an audio stream with a lower number of channels to one with a higher number of channels.
  This can be necessary when <a href="#SummingJunction-section">mixing several outputs together</a> where the channel layouts differ.  It can also be necessary if the rendered audio
  stream is played back on a system with more channels.
  </p>
  
<pre>
Mono up-mix:
    
    1 -> 2 : equal-power up-mix from mono to stereo
        output.L = 0.707 * input;
        output.R = 0.707 * input;

    1 -> 4 : equal-power up-mix from mono to quad
        output.L = 0.707 * input;
        output.R = 0.707 * input;
        output.SL = 0;
        output.SR = 0;

    1 -> 5.1 : up-mix from mono to 5.1
        output.L = 0;
        output.R = 0;
        output.C = input; // put in center channel
        output.LFE = 0;
        output.SL = 0;
        output.SR = 0;

Stereo up-mix:

    2 -> 4 : up-mix from stereo to quad
        output.L = input.L;
        output.R = input.R;
        output.SL = 0;
        output.SR = 0;

    2 -> 5.1 : up-mix from stereo to 5.1
        output.L = input.L;
        output.R = input.R;
        output.C = 0;
        output.LFE = 0;
        output.SL = 0;
        output.SR = 0;

Quad up-mix:

    4 -> 5.1 : up-mix from stereo to 5.1
        output.L = input.L;
        output.R = input.R;
        output.C = 0;
        output.LFE = 0;
        output.SL = input.SL;
        output.SR = input.SR;

</pre>

  <h3 id="down_mixing">Down Mixing</h3>
  <p>
  A down-mix will be necessary, for example, if processing 5.1 source material, but playing back stereo.
  </p>
  
  <pre>
  
Mono down-mix:

    2 -> 1 : stereo to mono
        output = 0.5 * (input.L + input.R);

    4 -> 1 : quad to mono
        output = 0.25 * (input.L + input.R + input.SL + input.SR);

    5.1 -> 1 : 5.1 to mono
        ???


Stereo down-mix:

    4 -> 2 : quad to stereo
        output.L = 0.5 * (input.L + input.SL);
        output.R = 0.5 * (input.R + input.SR);

    5.1 -> 2 : 5.1 to stereo
        ???

</pre>






  </div>

  <div id="EventScheduling-section" class="section"> 
  <h2>10. Event Scheduling</h2> 
    Need more detail here, but for now:
    <ul>
    	<li> Audio events such as start/stop play and volume fades can be scheduled to happen in a rhythmically perfect way (sample-accurate scheduling)</li>
    	<li> Allows sequencing applications such as drum-machines, digital-dj mixers.  Ultimately, it may be useful for DAW applications.</li>
    	<li> Allows rhythmically accurate segueways from one section of music to another (as is possible with the FMOD engine)</li>
    	<li> Allows scheduling of sound "grains" for granular synthesis effects.</li>
    </ul>

    </div>







<div id="Spatialization-section" class="section"> 
<h2>11. Spatialization / Panning </h2>

<h3 id="Spatialization-background"> Background</h3>

<p>
A common feature requirement for modern 3D games is the ability to dynamically spatialize and move multiple audio sources in 3D space.
Game audio engines such as OpenAL, FMOD, Creative's EAX, Microsoft's XACT Audio, etc. have this ability.
</p>

<p>
Using an <code>AudioPannerNode</code>, an audio stream can be spatialized or positioned in space relative to an <code>AudioListener</code>.  An <a href="#AudioContext-section"><code>AudioContext</code></a> will
contain a single <code>AudioListener</code>.   Both panners and listeners have a position in 3D space using a cartesian coordinate system.
<code>AudioPannerNode</code> objects (representing the source stream) have an <code>orientation</code> vector representing in which direction the sound is projecting.
Additionally, they have a <code>sound cone</code> representing how directional the sound is.  For example, the sound could be omnidirectional, in which case it would be heard
anywhere regardless of its orientation, or it can be more directional and heard only if it is facing the listener.
<code>AudioListener</code> objects (representing a person's ears) have an <code>orientation</code> and <code>up</code> vector representing in which direction the person is facing.
Because both the source stream and the listener can be moving, they both have a <code>velocity</code> vector representing both the speed and direction of movement.  Taken together,
these two velocities can be used to generate a doppler shift effect which changes the pitch.
</p>

<h3 id="panning_algorithm">Panning Algorithm</h3>

<p>
The following algorithms can be implemented:
</p>

<ul>
  
  <li> Equal-power (Vector-based) panning
    <br/>
    This is a simple and relatively inexpensive algorithm which provides basic, but reasonable results.
    <br />
  </li>

  <li> Sound-field (<a href="http://www.ambisonic.net/">Ambisonics</a>)
    <br/>
    Attempts to recreate the acoustic field.
    <br />
  </li>
  
  <li> <a href="http://en.wikipedia.org/wiki/Head-related_transfer_function">HRTF</a> panning (stereo only)
      <br/>
      This requires a set of HRTF impulse responses recorded at a variety of azimuths and elevations.  There are a small number of open/free impulse responses available.
      The implementation requires a highly optimized convolution function.  It is somewhat more costly than "equal-power", but provides a more spatialized sound.
      <br />
      <img src="HRTF_panner.png" alt="HRTF_panner" />
    </li>

  <li> Pass-through
    <br />
    This is mostly useful for stereo sources to pass the left/right channels unpanned to the left/right speakers.  Similarly for 5.0 sources,
    the channels can be passed unchanged.
    <br />
  </li>

</ul>


<h3 id="distance_effects"> Distance Effects</h3>
  <ul>
    <li>Sources farther away are typically quieter than nearer ones.</li>
    <li>Different rolloff curves are assignable per-source: linear, inverse, exponential</li>
  </ul>

<h3 id="sound_cones"> Sound Cones</h3>

  <p>
  The listener and each sound source have an orientation vector describing which way they are facing.
  Each sound source's sound projection characteristics are described by an inner and outer "cone" describing the
  sound intensity as a function of the source/listener angle from the source's orientation vector.   Thus, a sound source
  pointing directly at the listener will be louder than if it is pointed off-axis. Sound sources can also be omni-directional.
  </p>



<h3 id="doppler_shift"> Doppler Shift</h3>
  <ul>
  	<li> Introduces a pitch shift which can realistically simulate moving sources</li>
  	<li> Depends on: source / listener velocity vectors, speed of sound, doppler factor</li>
  </ul>


</div>







<div class="section"> 
<h2 id="Convolution-section">12. Linear Effects using Convolution</h2>

<h3 id="Convolution-section-background">Background</h3>
<p>
<a href="http://en.wikipedia.org/wiki/Convolution">Convolution</a> is a mathematical process which can be applied to an audio signal to achieve many interesting high-quality linear effects.
Very often, the effect is used to simulate an acoustic space such as a concert hall, cathedral, or outdoor amphitheater.  It can also
be used for complex filter effects, like a muffled sound coming from inside a closet, sound underwater, sound coming through a telephone,
or playing through a vintage speaker cabinet.  This technique is very commonly used in major motion picture and music production and is
considered to be extremely versatile and of high quality.
</p>

<p>
Each unique effect is defined by an <code>impulse response</code>.  An impulse response can be represented as an audio file and <a href="#recording-impulse-responses">can be recorded</a> from 
a real acoustic space such as a cave, or can be synthetically generated through a great variety of techniques.
</p>

<h3 id="motivation_for_use_as_a_standard">Motivation for use as a Standard</h3>
<p>
A key feature of many game audio engines (OpenAL, FMOD, Creative's EAX, Microsoft's XACT Audio, etc.) is a reverberation effect for simulating the sound of being in an acoustic space.
But the code used to generate the effect has generally been custom and algorithmic (generally using
a hand-tweaked set of delay lines and allpass filters which feedback into each other).  In nearly all cases, not only is the implementation custom, but
the code is proprietary and closed-source, each company adding its own "black magic" to achieve its unique quality.
Each implementation being custom with a different set of parameters makes it impossible to achieve a uniform desired effect.  And the code
being proprietary makes it impossible to adopt a single one of the implementations as a standard.  Additionally, algorithmic reverberation effects
are limited to a relatively narrow range of different effects, regardless of how the parameters are tweaked.
</p>

<p>
A convolution effect solves these problems by using a very precisely defined mathematical algorithm as the basis of its processing.
An impulse response represents an exact sound effect to be applied to an audio stream and
is easily represented by an audio file which can be referenced by URL.  The range of possible effects is enormous.
</p>



<h3 id="reverb_effect_with_matrixing">Reverb Effect (with matrixing)</h3>

<p>
Single channel convolution operates on a mono audio source, using a mono impulse response.  But to achieve a more spacious sound,
multi-channel audio sources and impulse responses must be considered.  Audio sources and playback systems can be stereo, 5.1, or more
channels.  In the general case the source has N input channels, the impulse response has K channels, and the playback system has M output channels.
Thus it's a matter of how to matrix these channels to achieve the final result.  The following diagram, illustrates the common cases for stereo
playback where N, K, and M are all less than or equal to 2.  Similarly, the matrixing for 5.1 and other playback configurations can be defined.
</p>

<img src="reverb-matrixing.png" alt="reverb-matrixing" />


<h3 id="recording-impulse-responses">Recording Impulse Responses</h3>

<p class="norm">This section is informative.</p> 

<img src="impulse-response.png" alt="impulse-response" />
<br /><br />

<p>
The most <a href="http://pcfarina.eng.unipr.it/Public/Papers/226-AES122.pdf">modern</a>
 and accurate way to record the impulse response of a real acoustic space is to use
a long exponential sine sweep.  The test-tone can be as long as 20 or 30 seconds, or longer.
</p>

<p>
  Several recordings of the
test tone played through a speaker can be made with microphones placed and oriented at various positions in the room.  It's important
to document speaker placement/orientation, the types of microphones, their settings, placement, and orientations for each recording taken.
</p>

<p>
Post-processing is required for each of these recordings by performing an inverse-convolution with the test tone,
yielding the impulse response of the room with the corresponding microphone placement.  These impulse responses are then
ready to be loaded into the convolution reverb engine to re-create the sound of being in the room.
</p>

<h3 id="tools">Tools</h3>
<p>
Two command-line tools have been written:
</p>
<p>
 <code>generate_testtones</code> generates an exponential sine-sweep test-tone and its inverse.  Another
tool <code>convolve</code> was written for post-processing.  With these tools, anybody with recording equipment can record their own impulse responses.
  To test the tools in practice, several recordings were made in a warehouse space with interesting
acoustics.  These were later post-processed with the command-line tools.
</p>

<pre>

% generate_testtones -h
Usage: generate_testtone
	[-o /Path/To/File/To/Create] Two files will be created: .tone and .inverse
	[-rate &lt;sample rate&gt;] sample rate of the generated test tones
	[-duration &lt;duration&gt;] The duration, in seconds, of the generated files
	[-min_freq &lt;min_freq&gt;] The minimum frequency, in hertz, for the sine sweep

% convolve -h
Usage: convolve input_file impulse_response_file output_file
</pre>
        
<br />


<h3 id="recording_setup">Recording Setup</h3>
<img src="recording-setup.png" alt="recording-setup" />
<br /><br />

<p>
Audio Interface: Metric Halo Mobile I/O 2882 
</p>

<br /><br />


<img src="microphones-speaker.png" alt="microphones-speaker" />
<br /><br />

<img src="microphone.png" alt="microphone" />
<img src="speaker.png" alt="speaker" />
<p>
Microphones: AKG 414s, Speaker: Mackie HR824
</p>
<br />

<h3 id="warehouse_space">The Warehouse Space</h3>

<img src="warehouse.png" alt="warehouse" />
<br /><br />

</div>



<div id="JavaScriptProcessing-section" class="section"> 
<h2>13. JavaScript Synthesis and Processing</h2>

<p class="norm">This section is informative.</p> 

<p>
The Mozilla project has conducted <a href="https://wiki.mozilla.org/Audio_Data_API">Experiments</a> to synthesize and process audio directly in JavaScript.
This approach is interesting for a certain class of audio processing and they have produced a number of impressive demos.  This specification includes
a means of synthesizing and processing directly using JavaScript by using a special subtype of <a href="#AudioNode-section"><code>AudioNode</code></a>
called <a href="#JavaScriptAudioNode-section"><code>JavaScriptAudioNode</code></a>.
</p>

<p>
Here are some interesting examples where direct JavaScript processing can be useful:
</p>

<h3 id="custom_dsp_effects">Custom DSP Effects</h3>
<p>
Unusual and interesting custom audio processing can be done directly in JS.
It's also a good test-bed for prototyping new algorithms. This is an extremely rich area.
</p>

<h3 id="educational_applications-javascript_performance">Educational Applications</h3>
<p>
JS processing is ideal for illustrating concepts in computer music synthesis and processing,
 such as showing the de-composition of a square wave into its harmonic components, FM synthesis techniques, etc.
</p>

<h3 id="javascript_performance">JavaScript Performance</h3>
<p>
JavaScript has a variety of <a href="#JavaScriptPerformance-section">performance issues</a> so it is not suitable for all types of audio processing.
The approach proposed in this document includes the ability to perform computationally intensive aspects of the audio processing (too expensive for JavaScript to compute in real-time) 
such as multi-source 3D spatialization and convolution in optimized C++ code.  Both direct JavaScript processing and C++ optimized code can be combined due to the APIs
 <a href="#ModularRouting-section">modular approach</a>.
</p>


<div id="RealtimeAnalysis-section" class="section"> 
<h2>14. Realtime Analysis</h2>




</div>


<div id="Performance-section" class="section"> 
<h2>15. Performance Considerations</h2>

<div class="section"> 
<h3 id="Latency-section">15.1. Latency: What it is and Why it's Important</h3>
</div>

<img src="latency.png" alt="latency" />

<p>
For web applications, the time delay between mouse and keyboard events (keydown, mousedown, etc.) and a sound being heard is important.
</p>

<p>
  This time delay is called latency and is caused by several factors (input device latency, internal buffering latency, DSP processing latency, output device latency, distance of user's ears from speakers, etc.), and is cummulative.  The larger this latency is, the less satisfying the user's experience is going
  to be.  In the extreme, it can make musical production or game-play impossible.  At moderate levels it can affect timing and give the impression of
  sounds lagging behind or the game being non-responsive.  For musical applications the timing problems affect rhythm.  For gaming, the timing problems affect precision of  gameplay.
  For interactive applications, it generally cheapens the users experience much in the same way that very low animation frame-rates do.
  Depending on the application, a reasonable latency can be from as low as 3-6 milliseconds to 25-50 milliseconds.
</p>
</div>


<div class="section">
<h3 id="Glitching-section">15.2. Audio Glitching</h3>
</div>
<p>
  Audio glitches are caused by an interruption of the normal continuous audio stream, resulting in loud clicks and pops.  It is considered to be
  a catastrophic failure of a multi-media system and must be avoided.  It can be caused by problems with the threads responsible for delivering the audio
  stream to the hardware, such as scheduling latencies caused by threads not having the proper priority and time-constraints.  It can also be caused by
  the audio DSP trying to do more work than is possible in real-time given the CPU's speed.
</p>
</div>


<h3 id="hardware_scalability">15.3. Hardware Scalability</h3>
<p>
The system should gracefully degrade to allow audio processing under resource constrained conditions without dropping audio frames.
</p>

<p>
First of all, it should be clear that regardless of the platform, the audio processing load should never be enough to completely lock up the 
machine.  Second, the audio rendering needs to produce a clean, un-interrupted audio stream without audible
<a href="#Glitching-section">glitches</a>.
</p>	

<p>
The system should be able to run on a range of hardware, from mobile phones and tablet devices to laptop and desktop computers.
But the more limited compute resources on a phone device make it necessary to consider techniques to scale back and reduce the complexity
of the audio rendering.  For example, voice-dropping algorithms can be implemented to reduce the total number of notes playing at any given time.
</p>
	



<p>
Here's a list of some techniques which can be used to limit CPU usage:
</p>

<h4 id="cpu_monitoring">15.3.1. CPU monitoring</h4>
<p>
In order to avoid audio breakup, CPU usage must remain below 100%.
</p>
<p>
The relative CPU usage can be dynamically measured for each AudioNode (and chains of connected nodes) as a percentage of the rendering time
quantum.  In a single-threaded implementation, overall CPU usage must remain below 100%.  The measured usage may be used internally in the implementation
for dynamic adjustments to the rendering.  It may also be exposed through a <code>cpuUsage</code> attribute of <code>AudioNode</code>
for use by JavaScript.
</p>

<p>
In cases where the measured CPU usage is near 100% (or whatever threshold is considered too high), then an attempt to add additional
<code>AudioNodes</code> into the rendering graph can trigger voice-dropping.
</p>

<h4 id="voice_dropping">15.3.2. Voice Dropping</h4>
<p>
	Voice-dropping is a technique which limits the number of voices (notes) playing at the same time to keep CPU usage within a reasonable range.
	There can either be an upper threshold on the total number of voices allowed at any given time, or CPU usage can be dynamically monitored
	and voices dropped when CPU usage exceeds a threshold.  Or a combination of these two techniques can be applied.  When CPU usage is monitored
	for each voice, it can be measured all the way from the AudioSourceNode through any effect processing nodes which apply uniquely to that voice.
</p>

<p>	
  When a voice is "dropped", it
	needs to happen in such a way that it doesn't introduce audible clicks or pops into the rendered audio stream.  One way to achieve this is to
	quickly fade-out the rendered audio for that voice before completely removing it from the rendering graph.
</p>	

<p>	
	When it is determined that one or more voices must be dropped, there are various strategies for picking which voice(s) to drop out of the
	total ensemble of voices currently playing.  Here are some of the factors which can be used in combination to help with this decision:
</p>

<ul>
	<li> Older voices, which have been playing the longest can be dropped instead of more recent voices. </li>
	<li> Quieter voices, which are contributing less to the overall mix may be dropped instead of louder ones. </li>
	<li> Voices which are consuming relatively more CPU resources may be dropped instead of less "expensive" voices.</li>
	<li> An AudioNode can have a <code>priority</code> attribute to help determine the relative importance of the voices.</li>
</ul>

<h4 id="simplification">15.3.3. Simplification of Effects Processing</h4>

<p>
Most of the effects described in this document are relatively inexpensive and will likely be able to run even on the slower mobile devices.
However, the <a href="#ConvolverNode-section">convolution effect</a> can be configured with a variety of impulse responses, some of which
will likely be too heavy for mobile devices.  Generally speaking, CPU usage scales with the length of the impulse response and the number of channels it has.  Thus, it is reasonable to consider that impulse responses which exceed a certain length will not be allowed to run.
The exact limit can be determined based on the speed of the device.  Instead of outright rejecting convolution with these long responses,
it may be interesting to consider truncating the impulse responses to the maximum allowed length and/or reducing the number of channels
of the impulse response.
</p>

<p>
In addition to the convolution effect.  The <a href="#AudioPannerNode-section"><code>AudioPannerNode</code></a> may also be expensive
if using the HRTF panning model.  For slower devices, a cheaper algorithm such as EQUALPOWER can be used to conserve compute resources.
</p>

<h4 id="sample_rate">15.3.4. Sample Rate</h4>
<p>
For very slow devices, it may be worth considering running the rendering at a lower sample-rate than normal.  For example, the sample-rate 
can be reduced from 44.1KHz to 22.05KHz.  This decision must be made when the <code>AudioContext</code> is created, because changing the sample-rate on-the-fly can be difficult
to implement and will result in audible glitching when the transition is made.
</p>


<h4 id="pre-flighting">15.3.5. Pre-flighting</h4>
<p>
It should be possible to invoke some kind of "pre-flighting" code (through JavaScript) to roughly determine the power of the machine.
The JavaScript code can then use this information to scale back any more intensive processing it may normally run on a more powerful machine.
Also, the underlying implementation may be able to factor in this information in the voice-dropping algorithm.
</p>

<p>
	TODO: add specification and more detail here
</p>

<h4 id="authoring">15.3.6. Authoring for different user agents</h4>
JavaScript code can use information about user-agent to scale back any more intensive processing it may normally run on a more powerful machine.

<h4 id="scalability">15.3.7. Scalability of Direct JavaScript Synthesis / Processing</h4>
<p>
Any audio DSP / processing code done directly in JavaScript should also be concerned about scalability.  To the extent possible, the JavaScript
code itself needs to monitor CPU usage and scale back any more ambitious processing when run on less powerful devices.  If it's an "all or nothing" type of processing, then user-agent check or pre-flighting should be done to avoid generating an audio stream with audio breakup.
</p>
</div>


<div class="section"> 
<h3 id="JavaScriptPerformance-section">15.4. JavaScript Issues with real-time Processing and Synthesis: </h3>

While processing audio in JavaScript, it is extremely challenging to get reliable, glitch-free audio while achieving a reasonably low-latency,
especially under heavy processor load.

<ul>
    <li> JavaScript is very much slower than heavily optimized C++ code and is not able to take advantage of SSE optimizations and multi-threading which is
        critical for getting good performance on today's processors.  Optimized native code can be on the order of twenty times faster for processing FFTs as
        compared with JavaScript.  It is not efficient enough for heavy-duty processing of audio such as convolution and 3D spatialization of large numbers of audio sources. </li>
    <li> setInterval() and XHR handling will steal time from the audio processing.  In a reasonably complex game, some JavaScript resources will be
      needed for game physics and graphics. This creates challenges because audio rendering is deadline driven (to avoid glitches and get low enough latency).</li>
    <li> JavaScript does not run in a real-time processing thread and thus can be pre-empted by many other threads running on the system.</li>
    <li> Garbage Collection (and autorelease pools on Mac OS X) can cause unpredictable delay on a JavaScript thread. </li>
    <li> Multiple JavaScript contexts can be running on the main thread, stealing time from the context doing the processing. </li>
    <li> Other code (other than JavaScript) such as page rendering runs on the main thread. </li>
    <li> Locks can be taken and memory is allocated on the JavaScript thread.  This can cause additional thread preemption. </li>
</ul>

The problems are even more difficult with today's generation of mobile devices which have processors with relatively poor performance and power consumption / battery-life issues.
</div>


<br />
<br />


<div id="ExampleApplications-section" class="section"> 
<h2>16. Example Applications</h2> 

<p class="norm">This section is informative.</p> 

<p>
Please see the <a href="http://chromium.googlecode.com/svn/trunk/samples/audio/index.html">demo</a> page for working examples.	
</p>

<p>
Here are some of the types of applications a web audio system should be able to support:
</p>

<h3 id="basic_sound_playback">Basic Sound Playback</h3>
<p>
	Simple and <a href="#Latency-section"><strong>low-latency</strong></a> playback of sound effects in response to simple user actions such as mouse click, roll-over, key press.
</p>

<br />

<h3 id="three-d_environments_and_games">3D Environments and Games</h3>

<img src="quake.png" alt="quake" />
<img src="beach-demo.png" alt="beach-demo" />

<br /><br />

<p>
An <a href="http://techcrunch.com/2010/04/01/google-html5-quake/">HTML5 version of Quake</a> has already been created.  Audio features such as 3D spatialization and convolution for room simulation could be used to great effect.
</p>

<p>
3D environments with audio are common in games made for desktop applications and game consoles.
Imagine a 3D island environment with spatialized audio, seagulls flying overhead, the waves crashing against the shore, the
crackling of the fire, the creaking of the bridge, and the rustling of the trees in the wind.  The sounds can be positioned
naturally as one moves through the scene.  Even going underwater, low-pass filters can be tweaked for just the right underwater sound.
</p>

  <br /><br />


<img src="box2d.png" alt="box2d" />
<img src="8-ball.png" alt="8-ball" />

<br /><br />
<p>
<a href="http://www.box2d.org/">Box2D</a> is an interesting open-source library for 2D game physics.  It has various implementations, including one
based on Canvas 2D.  A demo has been created with dynamic sound effects for each of the object collisions, taking into account the velocities vectors and
positions to spatialize the sound events, and modulate audio effect parameters such as filter cutoff.
</p>

<p>
A virtual pool game with multi-sampled sound effects has also been created.
</p>

<br />

<h3 id="musical_applications">Musical Applications</h3>

<img src="garage-band.png" alt="garage-band" />
<img src="shiny-drum-machine.png" alt="shiny-drum-machine" />
<img src="tonecraft.png" alt="tonecraft" />

<br /><br />
Many music composition and production applications are possible.  Applications requiring tight scheduling of audio events can be implemented and can be both educational and entertaining.  Drum machines, digital DJ applications, and even timeline-based digital music production software with some of the features of <a href="http://en.wikipedia.org/wiki/GarageBand">GarageBand</a> can be written.
<br />

<br />

<h3 id="music_visualizers">Music Visualizers</h3>
<img src="music-visualizer.png" alt="music-visualizer" />


<br /><br />
When combined with WebGL GLSL shaders, realtime analysis data can be presented in entertaining ways.  These can be as advanced as any found in iTunes.
<br /><br />

<h3 id="educational_applications-javascript-processing">Educational Applications</h3>
<img src="javascript-processing.png" alt="javascript-processing" />

<p>
A variety of educational applications can be written, illustrating concepts in music theory and computer music synthesis and processing.
</p>
<br />

<h3 id="artistic_audio_exploration">Artistic Audio Exploration</h3>

<p>
There are many creative possibilites for artistic sonic environments for installation pieces.
</p>
<br />

</div>

<div id="SecurityConsiderations-section" class="section"> 
<h2>17. Security Considerations</h2> 
<p> 
  This section is <em>informative.</em> 
</p> 
</div> 

<div id="PrivacyConsiderations-section" class="section"> 
<h2>18. Privacy Considerations</h2> 
<p> 
This section is <em>informative</em>.

When giving various information on available AudioNodes, the Web Audio API potentially exposes information on characteristic features of the client
 (such as audio hardware sample-rate) to any page that makes use of the AudioNode interface. Additionally, timing information can be collected through the
  RealtimeAnalyzerNode or JavaScriptAudioNode interface. The information could subsequently be used to create a fingerprint of the client. 
</p>

<p>
Currently audio input is not specified in this document, but it will involve gaining access to the client machine's audio input or microphone.  This
will require asking the user for permission in an appropriate way, perhaps via the
 <a href="http://developers.whatwg.org/video-conferencing-and-peer-to-peer-communication.html#video-conferencing-and-peer-to-peer-communication">getUserMedia() API</a>.
</p>

</div> 


<div id="requirements" class="section"> 
<h2>19. Requirements and Use Cases</h2> 
<p>
Please see <a href="#ExampleApplications-section">Example Applications</a>
</p>
</div> 

  
    </div> 
   </div>
   </div>
   </div>
   
  </div> 
</div> 
<div>
  <h2 class="no-num" id="references">References</h2>
  <h3 class="no-num" id="normative-references">Normative references</h3>
    <dl>
      <dt id="refs-RFC2119">[RFC2119]</dt>
      <dd><cite><a href="http://tools.ietf.org/html/rfc2119">Key words for use in RFCs to Indicate Requirement Levels</a></cite>, Scott Bradner. IETF.</dd>
    </dl>


  <h3 class="no-num" id="informative-references">Informative references</h3>
    <dl>
      <dt id="refs-XHR">[XHR]</dt>
      <dd><cite><a href="http://dev.w3.org/2006/webapi/XMLHttpRequest-2/">XMLHttpRequest Level 2</a></cite>, Anne van Kesteren. W3C.</dd>
    </dl>
</div>
  </body> 
</html>