index.html
76.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<!--
<!DOCTYPE html PUBLIC "W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN"
"http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" [
<!ENTITY % MATHML.prefixed "IGNORE" >
]>
--><html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Units in MathML</title>
<style type="text/css">
code { font-family: monospace; }
div.constraint,
div.issue,
div.note,
div.notice { margin-left: 2em; }
li p { margin-top: 0.3em;
margin-bottom: 0.3em; }
div.exampleInner pre { margin-left: 1em;
margin-top: 0em; margin-bottom: 0em}
div.exampleOuter {border: 4px double gray;
margin: 0em; padding: 0em}
div.exampleInner { background-color: #d5dee3;
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
border-bottom-width: 4px;
border-bottom-style: double;
border-bottom-color: #d3d3d3;
padding: 4px; margin: 0em }
div.exampleWrapper { margin: 4px }
div.exampleHeader { font-weight: bold;
margin: 4px}
</style>
<link type="text/css" rel="stylesheet" href="http://www.w3.org/StyleSheets/TR/W3C-WG-NOTE.css">
</head>
<body>
<div class="head">
<p>
<a href="http://www.w3.org/"><img width="72" height="48" alt="W3C" src="http://www.w3.org/Icons/w3c_home"></a>
</p>
<h1>
<a id="title"></a>Units in MathML</h1>
<h2>
<a id="w3c-doctype"></a>W3C Working Group Note 10 November 2003</h2>
<dl>
<dt>This version:</dt>
<dd>
<a href="http://www.w3.org/TR/2003/NOTE-mathml-units-20031110/">http://www.w3.org/TR/2003/NOTE-mathml-units-20031110/</a>
</dd>
<dt>Latest version:</dt>
<dd>
<a href="http://www.w3.org/TR/mathml-units/">http://www.w3.org/TR/mathml-units/</a>
</dd>
<dt>Previous version:</dt>
<dd>
<span>This is the first version of this Note.</span>
</dd>
<dt>Editors:</dt>
<dd>Douglas Wilhelm Harder - Invited Expert, University of Waterloo</dd>
<dd>Stan Devitt - Invited Expert, StratumTek</dd>
</dl>
<p class="copyright">
<a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a> © 2003 <a href="http://www.w3.org/"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>®</sup> (<a href="http://www.lcs.mit.edu/"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.org/"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">trademark</a>, <a href="http://www.w3.org/Consortium/Legal/copyright-documents">document use</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-software">software licensing</a> rules apply.</p>
</div>
<hr>
<div>
<h2>
<a id="abstract"></a>Abstract</h2>
<p>MathML is an XML application for describing mathematical
notation, capturing both its structure and content. As such, its
scope does not extend to include units - determinate quantities
adopted as standards of measure - which nevertheless, by their
very nature, occur in an applied mathematical setting. This
Note makes recommendations and suggestions for how units can be
incorporated into MathML.</p>
</div>
<div>
<h2>
<a id="status"></a>Status of this Document</h2>
<p>
<em>This section describes the status of this document
at the time of its publication. Other documents may
supersede this document. A list of current W3C
publications and the latest revision of this technical
report can be found in the <a href="http://www.w3.org/TR/">W3C technical reports
index</a> at http://www.w3.org/TR/.</em>
</p>
<p> This document makes recommendations and suggestions for how
to work with units in MathML. Please report comments and errors
in this document to <a href="mailto:www-math@w3.org">www-math@w3.org</a>.</p>
<p>This document has been produced by the W3C Math Working
Group as part of the <a href="http://www.w3.org/Math/">W3C
Math Activity</a> (<a href="http://www.w3.org/Math/Activity">Activity
statement</a>). The goals of the Working Group are
discussed in the <a href="http://www.w3.org/Math/Documents/Charter2001.html">
Working Group Charter</a>. A list of <a href="http://www.w3.org/TR/2003/REC-MathML2-20031021/appendixi.html">participants
in the W3C Math Working Group</a> is available.</p>
<p>Publication as a Working Group Note does not imply
endorsement by the W3C Membership. This is a draft document
and may be updated, replaced or obsoleted by other documents
at any time. It is inappropriate to cite this document as
other than work in progress. Patent disclosures relevant to
this Note may be found on the Math Working Group's <a href="http://www.w3.org/Math/Disclosures">patent disclosure
page</a>.</p>
</div>
<div class="toc">
<h2>
<a id="contents"></a>Table of Contents</h2>
<p class="toc">1 <a href="#introduction">Introduction</a>
<br>
1.1 <a href="#goals">Goals</a>
<br>
1.2 <a href="#definitions">Definitions</a>
<br>
2 <a href="#display_in_presentation">Display of Units in Presentation MathML</a>
<br>
2.1 <a href="#exceptions">Exceptions</a>
<br>
3 <a href="#inclusion_in_content">Inclusion of Units in Content MathML</a>
<br>
4 <a href="#identifying_in_presentation">Identifying Units in Presentation MathML</a>
<br>
5 <a href="#identifying_in_content">Identifying Unit Symbols in Content MathML</a>
<br>
5.1 <a href="#content">Element Content</a>
<br>
5.2 <a href="#encoding">Encoding Attribute</a>
<br>
5.3 <a href="#definitionURL">Definition URL Attribute</a>
<br>
5.3.1 <a href="#base">Base</a>
<br>
5.3.2 <a href="#name">Unit Name</a>
<br>
5.3.3 <a href="#context">Context</a>
<br>
5.3.4 <a href="#country_code">Country Code</a>
<br>
5.3.5 <a href="#prefix">Prefix</a>
<br>
6 <a href="#compound_in_content">Facilitating the Conversion of Units in MathML</a>
<br>
6.1 <a href="#dimension">Dimension</a>
<br>
6.2 <a href="#SI-equivalent-unit">SI Equivalent Unit</a>
<br>
6.3 <a href="#system">System</a>
<br>
6.4 <a href="#fps">Foot-Pound-Second System of Units</a>
<br>
6.5 <a href="#SI-conversion-factor">SI Conversion Factor</a>
<br>
6.5.1 <a href="#N4004AF">Examples</a>
<br>
7 <a href="#conversions">Conversions Using Semantic Information</a>
<br>
8 <a href="#examples">Examples</a>
<br>
9 <a href="#acknowledgements">Acknowledgements</a>
<br>
</p>
<h3>
<a id="appendices"></a>Appendices</h3>
<p class="toc">A <a href="#bibliography">Bibliography</a>
<br>
B <a href="#prefixes">SI and IEC Prefixes</a>
<br>
B.1 <a href="#SI-prefixes">SI Prefixes</a>
<br>
B.2 <a href="#IEC-prefixes">IEC Prefixes</a>
<br>
C <a href="#dimensions">Dimensions</a>
<br>
C.1 <a href="#base_derived_dimensions">Dimensions with SI Base or Derived Units</a>
<br>
C.2 <a href="#compound_dimensions">Dimensions with Compound SI Units</a>
<br>
</p>
</div>
<hr>
<div class="body">
<div class="div1">
<h2>
<a id="introduction"></a>1 Introduction</h2>
<p>The support of units within MathML <a href="#MathML2">[MathML2]</a> is of primary interest
to those wishing to use MathML to encode measured data. This Note presents a recommendation
for how to include units in any MathML
expression. It deals with both the presentation and content representations of units.</p>
<p>The primary reference for this document is the IEEE/ASTM SI 10-1997
<em>Standard for the Use of the International System of Units (SI): The Modern Metric
System</em><a href="#ieee-astm">[ieee-astm]</a>,
hereafter referred to as <em>the standard</em>.
This Note only interprets what is defined in the standard and should not be used as a
replacement.</p>
<div class="div2">
<h3>
<a id="goals"></a>1.1 Goals</h3>
<p>The goals of this Note are to provide suggestions and recommendations
for encoding the presentation, identification, and inclusion of units in both Presentation
and Content MathML.</p>
</div>
<div class="div2">
<h3>
<a id="definitions"></a>1.2 Definitions</h3>
<p>The term
<em>unit name</em>
refers to the actual name of a unit (for example, meter, feet, torr), while
<em>unit symbol</em>
refers to usually a smaller number of characters used to represent the associated unit
(for example, m, ft, Torr). Unit symbols are not abbreviations, and abbreviations should never
be used as symbols.
For example, use <em>A</em> and not <em>amp</em>. For archaic units with no defined symbol,
use the unit name as the unit symbol.</p>
<p>A <em>compound unit</em> is a unit which is written as a product of powers of unit symbols
and constants.</p>
</div>
</div>
<div class="div1">
<h2>
<a id="display_in_presentation"></a>2 Display of Units in Presentation MathML</h2>
<p>Section 3.5 of the standard is
devoted to the style and usage of writing unit names and symbols. The following highlights
the most relevant points brought up in this section and suggests
possible interpretations in MathML.</p>
<p>When writing compound unit names, the standard recommends that they be written in
full English with standard pluralization and spacing, for example,
<em>kilograms per cubic meter</em>
and
<em>meters per second squared</em>. MathML is concerned with the incorporation of
units into mathematical expressions, and so the unit names are often inappropriate.
It is recommended instead that the unit symbols are used at all times.</p>
<p>Unit symbols are written in roman (upright) type, are not altered in the plural,
are not followed by a period except at the end of a sentence, and no space
is left between a prefix
and a unit symbol. This is accomplished in MathML by using the
<code>mi</code> element. Single character symbols must be qualified by setting the
<code>mathvariant</code> attribute to <code>normal</code> as otherwise they would be italicized.
For example,</p>
<div class="exampleInner">
<pre><mi mathvariant='normal'>m</mi> </pre>
</div>
<p>The standard recommends that a raised dot is used to
indicate the product of two units. In Presentation MathML, this may be done through
the use of the mathematical operator <code><mo>&middot;</mo></code>.
For example, the newton meter may be expressed as</p>
<div class="exampleInner">
<pre><mrow>
<mi mathvariant='normal' class='MathML-Unit'>N</mi>
<mo>&middot;</mo>
<mi mathvariant='normal' class='MathML-Unit'>m</mi>
</mrow> </pre>
</div>
<p>A quotient of two or more units may be expressed in one of the following ways:</p>
<table cellpadding="2" border="2">
<tbody>
<tr>
<th rowspan="1" colspan="1">MathML Source</th><th rowspan="1" colspan="1">Display</th><th rowspan="1" colspan="1">Description</th>
</tr>
<tr>
<td rowspan="1" colspan="1"><code><mi mathvariant='normal' class='MathML-Unit'>J</mi> <mo>/</mo> <mi mathvariant='normal' class='MathML-Unit'>kg</mi></code></td><td rowspan="1" colspan="1"><img src="units/eq_1.png" alt="J/kg"></td><td rowspan="1" colspan="1">J/kg</td>
</tr>
<tr>
<td rowspan="1" colspan="1"><code><mi mathvariant='normal' class='MathML-Unit'>J</mi> <mo>&middot;</mo> <msup><mi mathvariant='normal' class='MathML-Unit'>kg</mi> <mn>-1</mn></msup><mfrac></code></td><td rowspan="1" colspan="1"><img src="units/eq_2.png" alt="J*kg^-1"></td><td rowspan="1" colspan="1">J·kg<sup>-1</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1"><code><mfrac><mi mathvariant='normal' class='MathML-Unit'>J</mi> <mi mathvariant='normal' class='MathML-Unit'>kg</mi></mfrac></code></td><td rowspan="1" colspan="1"><img src="units/eq_3.png" alt="J over Kg"></td><td rowspan="1" colspan="1">the ratio of J over kg</td>
</tr>
</tbody>
</table>
<p>In representing a quotient, do not use more than one solidus (/) in the same expression unless
parentheses are inserted to avoid ambiguity.</p>
<p>In expressing a quantity containing a value and a unit symbol, a space shall be left
between them. In MathML this is achieved by using the mathematical operator
<code><mo rspace="thickmathspace">&InvisibleTimes;</mo></code>. If the
default spacing used for <code>&InvisibleTimes;</code> is not acceptable (it is
often zero), extra space is added in MathML with the
<code>rspace</code>
attribute. For example, <code>35 mm</code> may be expressed as</p>
<div class="exampleInner">
<pre><mrow>
<mn>35</mn> <mo rspace='thickmathspace'>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>mm</mi>
</mrow> </pre>
</div>
<p>In expressing a quantity containing a value and a compound unit, the unit should remain
distinct from the value. For example, in expressing 10 kg·m/s, one would use:</p>
<div class="exampleInner">
<pre><mrow>
<mn>10</mn> <mo rspace='thickmathspace'>&InvisibleTimes;</mo>
<mfrac>
<mrow>
<mi mathvariant='normal' class='MathML-Unit'>kg</mi> <mo>&middot;</mo> <mi
mathvariant='normal' class='MathML-Unit'>m</mi>
</mrow> <mi mathvariant='normal' class='MathML-Unit'>s</mi>
</mfrac>
</mrow></pre>
</div>
<p>and not</p>
<div class="exampleInner">
<pre><mfrac>
<mrow>
<mn>10</mn> <mo rspace='thickmathspace'>&InvisibleTimes;</mo>
<mi>kg</mi> <mo>&middot;</mo> <mi mathvariant='normal'>m</mi>
</mrow> <mi mathvariant='normal'>s</mi>
</mfrac> </pre>
</div>
<p>For both unit symbols and compound units, the unit should be the last term in the product.</p>
<div class="div2">
<h3>
<a id="exceptions"></a>2.1 Exceptions</h3>
<p>As MathML may be used in the display of intermediate steps of a calculation, not all
of the above rules may apply. For example, in finding the speed of a body which moved
thirty meters in five seconds, the Presentation MathML markup may be:
</p>
<div class="exampleInner">
<pre><mrow>
<mfrac>
<mrow>
<mn>30</mn>
<mo rspace='thickmathspace'>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>m</mi>
</mrow>
<mrow>
<mn>5</mn>
<mo rspace='thickmathspace'>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>s</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mn>6</mn>
<mo rspace='thickmathspace'>&InvisibleTimes;</mo>
<mfrac>
<mi mathvariant='normal' class='MathML-Unit'>m</mi>
<mi mathvariant='normal' class='MathML-Unit'>s</mi>
</mfrac>
</mrow> </pre>
</div>
<p> which displays as <img src="units/eq_4.png" alt="30 meters in 5 seconds"></p>
<p>Certain non-SI units have, through common usage, symbols which differ in the
plural. For example, the pound may be represented by the symbol
<code>lb</code>
or
<code>lbs</code> , depending on the amount being measured. Similarly, 3.2 yards is often
written 3.2 yds.</p>
<p>The symbol kWh for the kilowatthour instead of kW·h is also acceptable.</p>
<p>Exceptions to the requirement that a space separate the quantity and unit are
the symbols for degree, minute, and second of plane angle. In this case, it would be
appropriate to use the
<code>mo</code>
operator. For example,</p>
<div class="exampleInner">
<pre><mn>32</mn>
<mo>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>°</mi>
<mn>18</mn>
<mo>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>'</mi>
<mn>54</mn>
<mo>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>"</mi></pre>
</div>
</div>
</div>
<div class="div1">
<h2>
<a id="inclusion_in_content"></a>3 Inclusion of Units in Content MathML</h2>
<p>In expressing a quantity with units,
as with Presentation MathML, it is recommended that the unit be the last child of an
<code>apply</code>
element which has a
<code>times</code>
element as the first child. It is also preferable if compound units are kept
separate as a nested apply at the end of a product.</p>
</div>
<div class="div1">
<h2>
<a id="identifying_in_presentation"></a>4 Identifying Units in Presentation MathML</h2>
<p>The presentation element
<code>mi</code>
does not take any attributes which may be used to indicate that it represents a unit. Content
MathML must be used to identify individual or compound units.</p>
</div>
<div class="div1">
<h2>
<a id="identifying_in_content"></a>5 Identifying Unit Symbols in Content MathML</h2>
<p>MathML 2.0 introduced externally
defined symbols with the
<code>csymbol</code>
element. This element allows the author to use identifiers with externally defined semantics.</p>
<p>The attribute
<code>definitionURL</code>
is a pointer to the external definition of the semantics of the symbol. The attribute
<code>encoding</code>
gives the syntax of the definition pointed to by the definition URL. Thus, the
<code>csymbol</code>
content element as such is the appropriate tool for identifying a symbol as being a unit.</p>
<p>The
<code>csymbol</code>
element should not be used to encapsulate a compound unit. For example, the following unit
of speed should not be constructed using a single <code>csymbol</code> element:
<code><csymbol>centimeters per second</csymbol></code>
or
<code><csymbol>cm/s</csymbol></code>.</p>
<p>Such compound units should be represented by explicit products or quotients of
simple units.</p>
<div class="div2">
<h3>
<a id="content"></a>5.1 Element Content</h3>
<p>The content of the <code>csymbol</code> element may consist of any
encoding which is desired to represent the unit and is not restricted in any way beyond
those already set in the MathML 2.0
specification.</p>
<p>The symbol g<sub>0</sub>
or g<sub>n</sub>
is often used to represent the unit of acceleration due to freefall. The semantics are
already defined by the attributes, and thus the content may be used to indicate the display
of this unit.
For example,</p>
<div class="exampleInner">
<pre><csymbol definitionURL='http://.../units/gravity'><msub><mi>g</mi><mi>n</mi></msub></csymbol></pre>
</div>
</div>
<div class="div2">
<h3>
<a id="encoding"></a>5.2 Encoding Attribute</h3>
<p>The <code>encoding</code> attribute is optional and is used to help parse the actual defintion.
It is only needed if the intention is to actually interpret the definitions by machine.</p>
</div>
<div class="div2">
<h3>
<a id="definitionURL"></a>5.3 Definition URL Attribute</h3>
<p>The
<code>definitionURL</code>
attribute may be used to uniquely identify a unit. The following is a recommendation for
a unique definition URL.</p>
<p>The definition URL is made up of two to five parts:</p>
<div class="exampleInner">
<pre>http://<em>base</em>/units/<em>unit name</em>[/<em>context</em>][/<em>country</em>][#<em>prefix</em>]</pre>
</div>
<p>where the context, country, and prefix are optional. The use of these parts is
described below:</p>
<div class="div3">
<h4>
<a id="base"></a>5.3.1 Base</h4>
<p>To this point, no fixed URL has been chosen to represent the
base of these definition URLs, so for the remainder of this Note, the base will be
indicated by ellipsis:
<code>...</code>. For example,</p>
<div class="exampleInner">
<pre><csymbol definitionURL='http://.../units/meter'>m</csymbol></pre>
</div>
</div>
<div class="div3">
<h4>
<a id="name"></a>5.3.2 Unit Name</h4>
<p>The unit name is spelled in full without any prefix. With
the myriad of spellings available for each unit name, even within SI, it is recommended
that the American English spelling with
standard translations to lower case ASCII characters be used wherever possible. For
example, the German Fuß and the Ångström should use the definition URLs
<code>http://.../units/foot/de</code>
and
<code>http://.../units/angstrom</code>, respectively.</p>
<p>In cases where the (nonstandard) unit symbol is an abbreviation of a compound unit name, the
unit symbol should be used in place of the unit name. For example,
<em>gallons per minute</em>
and
<em>revolutions per minute</em>
should use the definition URLs should use the definition URLs
<code>http://.../units/gpm</code>
and
<code>http://.../units/rpm</code> , respectively.</p>
<p>The unit name was chosen over the unit symbol for the definition URL as the name is
less likely to conflict with other unit names, and unit names tend to be more easily
converted to ASCII. For example, the symbol for the ohm is Ω (&Omega;).</p>
</div>
<div class="div3">
<h4>
<a id="context"></a>5.3.3 Context</h4>
<p>The context is used only where the name is insufficient to
properly qualify the unit either through common usage or an international or scientific
agreement. No SI base units, derived units
with special names and symbols, or derived units with special names admitted for reasons of
safeguarding human health requires a context as they are understood to be the default. Of
the units in use with and in temporary use with SI, the only which require a context are
the angular minute and second, <code>http://.../units/minute/angular</code>
and
<code>http://.../units/second/angular</code>, respectively.</p>
<p>An example of where a context is necessary is the U.S. survey mile. The default
international mile has the definition URL
<code>http://.../units/mile</code>
whereas the U.S. survey mile would use the definition URL
<code>http://.../units/mile/survey/us</code>. In this case, the context is necessary as the standard U.S. mile is equal to the international
mile.</p>
<p>Over the years, the definitions of the various SI units have been modified. In most
cases, the definitions have been made more exact, so previous measurements are
still valid up to the
precision of the former definition. The one exception to this is the definition of the
liter. In 1901, the liter was defined as <em>the unit of volume occupied by a mass of one
kilogram of pure water at its maximum density and at standard atmospheric pressure.</em>
The definition of the liter was changed in 1964 to be a special name for the cubic
decimeter. These two definitions differ by approximately 28 parts per million, and thus
it is necessary to
differentiate between these two units. The context of the original liter could be the year the
definition was made, so the definition URL would be <code>http://.../units/liter/1901</code>.</p>
<p>A date may be used in other cases where a definition has changed, where the date
refers to the year the definition in question was made.</p>
<p>In some cases, a unit
may have multiple definitions which may be differentiated by the dimension. In this
case, the dimension could be used as the context. For example, the langley may either
be defined as
<img src="units/eq_5.png" alt="cal/cm^2">
(surface energy density) or
<img src="units/eq_6.png" alt="cal/(cm^2 × min)">
(surface power density). The definition URLs for these two units may be
<code>http://.../units/langley/surface_energy_density</code>
and
<code>http://.../units/langley/surface_power_density</code>, respectively.</p>
</div>
<div class="div3">
<h4>
<a id="country_code"></a>5.3.4 Country Code</h4>
<p>By default, the country is referred to by the ISO 3166
country codes. In the case of historical units, where possible, the modern successor
of that country should be used. Where this is not possible,
ISO 3166-2 Regional codes may be used, again, if possible.</p>
<p>For example, the definition URL of the Scottish mile would be
<code>http://.../units/mile/gb-sct</code>.</p>
<p>This breaks down when referring to ancient units. It would be nonsensical to
refer to the Roman mile as an Italian mile. In these cases, the adjective form of
the civilization is used. Some examples are given below:</p>
<ul>
<li>
<p>arabic</p>
</li>
<li>
<p>athenian</p>
</li>
<li>
<p>egyptian</p>
</li>
<li>
<p>greek</p>
</li>
<li>
<p>hebrew</p>
</li>
<li>
<p>ionian</p>
</li>
<li>
<p>persian</p>
</li>
<li>
<p>prussian</p>
</li>
<li>
<p>rabbinical</p>
</li>
<li>
<p>roman</p>
</li>
<li>
<p>talmudic</p>
</li>
</ul>
</div>
<div class="div3">
<h4>
<a id="prefix"></a>5.3.5 Prefix</h4>
<p>SI accomodates decimal multiples and submultiples of units
to be represented by placing prefixes in front of the symbols. The IEC introduced
prefixes to represent binary multiples of units. A unit with a prefix is represented by
appending the prefix to the
definition URL using the fragment identifier <code>#</code>. For the prefix <code>μ</code> (micro)
use the recommended ASCII equivalent,
<code>u</code>.</p>
<p>Examples:</p>
<table cellpadding="2" border="2">
<tbody>
<tr>
<th rowspan="1" colspan="1">Unit Name</th><th rowspan="1" colspan="1">Symbol</th><th rowspan="1" colspan="1">Recommended Definition URL</th>
</tr>
<tr>
<td rowspan="1" colspan="1">centimeter</td><td rowspan="1" colspan="1">cm</td><td rowspan="1" colspan="1"><code>http://.../units/meter#c</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">micrometer</td><td rowspan="1" colspan="1">μm</td><td rowspan="1" colspan="1"><code>http://.../units/meter#u</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">kilogram</td><td rowspan="1" colspan="1">kg</td><td rowspan="1" colspan="1"><code>http://.../units/gram#k</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">kibibyte (1024 bytes)</td><td rowspan="1" colspan="1">KiB</td><td rowspan="1" colspan="1"><code>http://.../units/byte#Ki</code></td>
</tr>
</tbody>
</table>
<p>A full list of prefixes are given in <a href="#IEC-prefixes"><b>B.2 IEC Prefixes</b></a>. Unlike other parts of the
definition URL, the prefixes should be capitalized where necessary.</p>
</div>
</div>
</div>
<div class="div1">
<h2>
<a id="compound_in_content"></a>6 Facilitating the Conversion of Units in MathML</h2>
<p>A unit is
a standard of measurement. In order to convert, for example, 1.35 dynes to newtons, two
pieces of information are necessary:</p>
<ol class="1">
<li>
<p>The dimension of the unit, and</p>
</li>
<li>
<p>Either:
</p>
<ol class="a">
<li>
<p>The associated system of units, or</p>
</li>
<li>
<p>The conversion to a known system of units.</p>
</li>
</ol>
</li>
</ol>
<p>At this point, the measurement can be converted to any other unit of equal dimension.</p>
<p>Suppose we wish to convert 15.3 kilometers per hour to feet
per second. Both are measurements of speed, the second being the unit of speed in the
foot-pound-second system of units. If we know
that the conversion of km/h to SI is approximately 0.277778 m/s, then the conversion from m/s
is the conversion of m to ft over the conversion of s to s, that is, 3.28084. Thus,
the conversion is 15.3×0.277778×3.28084 ft/s = 13.9436 ft/s.</p>
<p>Suppose we want to convert 3.532 calorie hours to erg seconds. This problem may be reduced
to converting the first unit to a common system of units, say SI, and then converting the
corresponding SI unit to cgs system of units.</p>
<p>Given that cal·h and erg·s are units of action (the dimension), if we know that
the conversion of 1 cal·s to SI is 15062.4 kg·m<sup>2</sup>/s. The conversion from SI to cgs is a multiplication by 10<sup>7</sup>. Thus
3.532 cal·h = 3.532×15062.4×10<sup>7</sup>erg·s = 5.32e11
erg·s.</p>
<p>Again, consider converting 83.7 statvolts per centimeter to volts per meter. This
problem may be reduced to converting a unit in the electrostatic system of units (emu)
to SI.</p>
<p>Given that sV/cm is a unit of electric field strength, we may take the
product of the conversions of corresponding units of mass, length time, and electric
current to get the conversion to SI.
This product is 10<sup>-3</sup>×10<sup>-2</sup>/(1<sup>3</sup>×2997924580<sup>-1</sup>) = 29979.2458, and therefore the conversion to SI of 87.3 statV/cm is 29979.2458
V/m.</p>
<p>It is always possible to determine all of this information by interpreting
the MathML appropriately, although by transmitting plain MathML the task may be quite
difficult. Even a unit as simple as cm/s may be stored in any of three ways:</p>
<div class="exampleInner">
<pre><apply>
<divide/>
<csymbol definitionURL='http://.../units/meter#c>cm</csymbol>
<csymbol definitionURL='http://.../units/second>s</csymbol>
</apply>
<apply>
<times/>
<csymbol definitionURL='http://.../units/meter#c>cm</csymbol>
<apply>
<power/>
<csymbol definitionURL='http://.../units/second>s</csymbol>
<cn type='integer'>-1</cn>
</apply>
</apply>
<csymbol definitionURL='http://.../units/kyne'>kyn</csymbol></pre>
</div>
<p>In general, it is quite difficult to pick a unit from an expression. This section
describes a method for facilitating the transmission of unit information by making use of the
<code>semantics</code>
element.</p>
<p>Each <code>semantics</code> element would contain the attribute
<code>definitionURL="http://.../units/"</code>. The first
child element would be the unit encoded in either Content or Presentation MathML.</p>
<p>The remaining annotations may be used to facilitate interpretation and conversion of
the given unit.</p>
<ul>
<li>
<p>dimension</p>
</li>
<li>
<p>SI-equivalent-unit</p>
</li>
<li>
<p>system</p>
</li>
<li>
<p>SI-conversion-factor</p>
</li>
</ul>
<div class="div2">
<h3>
<a id="dimension"></a>6.1 Dimension</h3>
<p>A dimension is something which may be measured. Within the
scientific community, most objects may be measured in units of length, mass, time,
electric current, thermodynamic temperature,
amount of substance, or luminous intensity (base dimensions) or as products of powers of
these (derived dimensions). Currency may also be taken to be a base dimension in some fields
such as economics.</p>
<p>A system of units is a collection of units which assign specific standards of measure
(units) to a set of base and derived dimensions. Knowing the dimension of that which
is being measured
already goes a long way to helping conversions of units. The International System of Units
(SI) is one such system of units used to describe physical phenomena and has been chosen
to be the standard of such measurement.</p>
<p>If the dimension of a unit and the conversion of that unit to SI (see
<a href="#SI-conversion-factor">SI conversion factor</a> ) are known, then converting
the given information to any other system of units is straight forward so long as the
conversion from SI to the target unit is known.</p>
<p>For example, 4.37 yds may be encoded as:</p>
<div class="exampleInner">
<pre><apply>
<times/>
<cn type='real'>4.37</cn>
<semantics definitionURL='http://.../units/'>
<csymbol definitionURL='http://.../units/yard'>yds</csymbol>
<annotation definitionURL='http://.../dimension/length'/>
<annotation-xml encoding='MathML' definitionURL='http://.../SI-conversion-factor'>
<cn type='real'>0.9144</cn>
</annotation-xml>
</semantics>
</apply> </pre>
</div>
<p>Thus, any application reading this data and wishing to convert it to cgs need only
extract the dimension, the conversion factor, and look up the appropriate conversion
of the unit of length in
SI (m) to the unit of length in cgs (cm) to get 4.37 yds = 400 cm.</p>
<p>The dimension may also be used to encode information which may be lost in the
representation. For example, while a reasonable SI unit of torque is the
<code>J/rad</code>, it is common to use the unit <code>N m</code>
where the second unit is understood to be a radial measure. Some other examples of units
which may be used to represent different quantites are:</p>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">Unit</th><th rowspan="1" colspan="1">Possible
Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">coulomb</td><td rowspan="1" colspan="1">electric
charge, quantity of electricity</td>
</tr>
<tr>
<td rowspan="1" colspan="1">volt</td><td rowspan="1" colspan="1">electric
potential difference, electromotive force</td>
</tr>
<tr>
<td rowspan="1" colspan="1">watt</td><td rowspan="1" colspan="1">power, radiant
flux</td>
</tr>
<tr>
<td rowspan="1" colspan="1">newton meter</td><td rowspan="1" colspan="1">energy,
torque</td>
</tr>
</tbody>
</table>
<p>A list of possible dimensions is given in <a href="#dimensions"><b>C Dimensions</b></a>.</p>
</div>
<div class="div2">
<h3>
<a id="SI-equivalent-unit"></a>6.2 SI Equivalent Unit</h3>
<p>In this case, the <code>annotation-xml</code> element is the SI equivalent unit, and
gives a MathML encoding of the equivalent SI unit. This annotation is redundant if the
dimension of the unit is given, as the conversion from
the dimension to the equivalent unit is a matter of a table look up, though it may be used
if an unnamed dimension is being used. For example, the rate of change of power per unit
of time is an unnamed dimension, thus, for example, one encoding of 30.523 Hp/min may be:</p>
<div class="exampleInner">
<pre><apply>
<times/>
<cn type='real'>30.523</cn>
<semantics definitionURL='http://.../units/'>
<apply>
<divide/>
<csymbol definitionURL='http://.../units/horsepower'>Hp</csymbol>
<csymbol definitionURL='http://.../units/minute'>min</csymbol>
</apply>
<annotation-xml encoding='MathML' definitionURL='http://.../SI-equivalent-unit'>
<apply>
<divide/> <csymbol
definitionURL='http://.../units/watt'>W</csymbol> <csymbol
definitionURL='http://.../units/second'>s</csymbol>
</apply>
</annotation-xml>
<annotation-xml encoding='MathML' definitionURL='http://.../SI-conversion-factor'>
<cn type='real'>12.428331193037837</cn>
</annotation-xml>
</semantics>
</apply> </pre>
</div>
</div>
<div class="div2">
<h3>
<a id="system"></a>6.3 System</h3>
<p>A system of units is a collection of base units and products of
powers of those units used to measure various physical phenomena.</p>
<p>A system of
units is said to be self-consistent if any two products of units within that system which
have the same dimensions are equal. For example, SI is consistent while UK and US systems
systems of units are not. For example, in either system, the unit of power, the Hp, is not
equal to the compound unit lb·ft<sup>2</sup>/s<sup>3</sup>. Neither is the unit of
force, the pound-force, equal to the compound unit lb·ft/s<sup>2</sup>.</p>
<p>In general, the system annotation should only be used when the system is
self-consistent. The following systems are self consistent:</p>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">System Name</th><th rowspan="1" colspan="1">Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">International System of Units</td><td rowspan="1" colspan="1"><code><annotation definitionURL='http://.../system/SI'/></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Centimeter-Gram-Second</td><td rowspan="1" colspan="1"><code><annotation definitionURL='http://.../system/cgs'/></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Electrostatic System of Units</td><td rowspan="1" colspan="1"><code><annotation definitionURL='http://.../system/esu'/></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Electromagnetic System of Units</td><td rowspan="1" colspan="1"><code><annotation definitionURL='http://.../system/emu'/></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Atomic System of Units</td><td rowspan="1" colspan="1"><code><annotation definitionURL='http://.../system/atomic'/></code></td>
</tr>
</tbody>
</table>
<p>The system annotation should be used if the unit is either the default
unit in the given system for the particular dimension, or is equal to that unit.</p>
<p>For example, the system annotation may be used for either J or kg·m<sup>2</sup>/s<sup>2</sup>
but should not be used for kJ. All three could use the energy dimension annotation, but the
first two would use the SI system annotation whereas the latter would use the SI conversion
factor XML
annotation with content <code><cn type="integer">1000</cn></code>.</p>
</div>
<div class="div2">
<h3>
<a id="fps"></a>6.4 Foot-Pound-Second System of Units</h3>
<p>Due to the ubiquitous nature of the
foot-pound-second system of units in some countries some mention of this system of
units is necessary. It is recommended that the dimension and SI
conversion factor annotations be used. Some conversion factors between the fps system and
SI are provided in the following table. Exact conversions are marked in bold.</p>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">Name</th><th rowspan="1" colspan="1">Symbol</th><th rowspan="1" colspan="1">SI Equivalent Unit</th><th rowspan="1" colspan="1">Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">foot</td><td rowspan="1" colspan="1">ft</td><td rowspan="1" colspan="1">m</td><td rowspan="1" colspan="1"><code>0.3048</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">pound</td><td rowspan="1" colspan="1">lb</td><td rowspan="1" colspan="1">kg</td><td rowspan="1" colspan="1"><code>0.45359237</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">poundal</td><td rowspan="1" colspan="1">pdl</td><td rowspan="1" colspan="1">N</td><td rowspan="1" colspan="1"><code>0.138254954376</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">pound-force</td><td rowspan="1" colspan="1">lbf</td><td rowspan="1" colspan="1">N</td><td rowspan="1" colspan="1"><code>4.4482216152605</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">horsepower</td><td rowspan="1" colspan="1">Hp</td><td rowspan="1" colspan="1">W</td><td rowspan="1" colspan="1"><code>745.69987158227022</code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">pound(-force)s per square inch</td><td rowspan="1" colspan="1">psi</td><td rowspan="1" colspan="1">Pa</td><td rowspan="1" colspan="1"><code>6894.757293</code></td>
</tr>
</tbody>
</table>
<p>The conversions of most other fps units may be found by taking products of
powers of the above conversion factors.</p>
</div>
<div class="div2">
<h3>
<a id="SI-conversion-factor"></a>6.5 SI Conversion Factor</h3>
<p>The SI conversion factor <code>annotation-xml</code> encoding
is a MathML encoding of the conversion factor between that unit and the equivalent SI
unit of the same dimension. In the previous example, the
conversion from lbf·ft to J/rad is 3389544870828501/2500000000000000 = 1.3558179483314004.</p>
<div class="div3">
<h4>
<a id="N4004AF"></a>6.5.1 Examples</h4>
<p>Some examples of using units with the semantics encoding
are:</p>
<p>980.665 cm/s</p>
<div class="exampleInner">
<pre><apply>
<times/>
<cn type='real'>980.665</cn>
<semantics definitionURL='.../units'>
<apply>
<times/>
<csymbol definitionURL='.../units/meter#c'>cm</csymbol>
<csymbol definitionURL='.../units/second'>s</csymbol>
</apply>
<annotation definitionURL='http://.../dimension/speed'/>
<annotation definitionURL='http://.../system/cgs'/>
<annotation-xml encoding='MathML' definitionURL='http://.../SI-conversion-factor'>
<cn type='rational'>1</sep>100</cn>
</annotation-xml>
</semantics>
</apply></pre>
</div>
<p>1 atm = 103.325 kPa</p>
<div class="exampleInner">
<pre><apply>
<eq/>
<apply>
<times/>
<cn type='integer'>1</cn>
<semantics definitionURL='http://.../units/'>
<csymbol definitionURL='http://.../units/atmosphere'>atm</csymbol>
<annotation definitionURL='http://.../dimension/pressure'/>
<annotation-xml encoding='MathML' definitionURL='http://.../SI-conversion-factor'>
<cn type='integer'>101325</cn>
</annotation-xml>
</semantics>
<cn type='integer'>1</cn>
</apply>
<apply>
<times/>
<cn type='real'>101.325</cn>
<semantics definitionURL='http://.../units/'>
<csymbol definitionURL='http://.../units/pascal#k'>kPa</csymbol>
<annotation definitionURL='http://.../dimension/pressure'/>
<annotation-xml encoding='MathML' definitionURL='http://.../SI-conversion-factor'>
<cn type='integer'>1000</cn>
</annotation-xml>
</semantics>
</apply>
</apply></pre>
</div>
</div>
</div>
</div>
<div class="div1">
<h2>
<a id="conversions"></a>7 Conversions Using Semantic Information</h2>
</div>
<div class="div1">
<h2>
<a id="examples"></a>8 Examples</h2>
<p>The fuel efficency of some cars is as good as 4.4 L/(100 km).</p>
<div class="exampleInner">
<pre><mrow>
<mn>4.4</mn>
<mo>&InvisibleTimes;</mo>
<mfrac>
<mi>L</mi>
<mrow>
<mn>100</mn>
<mo>&InvisibleTimes;</mo>
<mi mathvariant='normal' class='MathML-Unit'>km</mi>
</mrow>
</mfrac>
</mrow> </pre>
</div>
<div class="exampleInner">
<pre><apply>
<times/>
<cn type='real'>4.4</cn>
<semantics>
<apply>
<divide/>
<csymbol definitionURL='http://.../units/liter'>L</csymbol>
<apply>
<times/>
<cn type='integer'>100</cn>
<csymbol definitionURL='http://.../units/meter#k'>km</csymbol>
</apply>
</apply>
</semantics>
</apply> </pre>
</div>
</div>
<div class="div1">
<h2>
<a id="acknowledgements"></a>9 Acknowledgements</h2>
<p>The first editor would like to thank Stan Devitt, Robert Miner, Max
Froumentin, Laurent Bernardin, and Jacques Carette for helping me with this Note. In
particular, Dr. Devitt suggested the use of the
<code>semantics</code>
element for isolating a unit, and Dr. Miner helped initiate the Note. The first editor would also like to
thank Jeff Giles for additional comments.</p>
</div>
</div>
<div class="back">
<div class="div1">
<h2>
<a id="bibliography"></a>A Bibliography</h2>
<dl>
<dt class="label">
<a id="ieee-astm"></a>ieee-astm</dt>
<dd>IEEE/ASTM SI 10-1997
<em>Standard for Use of the International System of Units (SI): The Modern Metric
System</em>, IEEE Inc., New York, 1997.</dd>
<dt class="label">
<a id="MathML2"></a>MathML2</dt>
<dd>David Carlisle, Patrick Ion, Robert Miner, Nico Poppelier, <a href="http://www.w3.org/TR/2003/REC-MathML2-20031021/">Mathematical Markup Language (MathML) Version 2.0, second edition</a>, W3C Recommendation 21 October 2003</dd>
</dl>
</div>
<div class="div1">
<h2>
<a id="prefixes"></a>B SI and IEC Prefixes</h2>
<p>Prefixes are used to form names and symbols
of decimal or binary multiples and decimal submultiples of units. These prefixes or their
symbols are attached to names or symbols, forming what are
called <em>multiples and submultiples of units</em>.</p>
<p>SI prefixes are used to represent decimal multiples and submultiples of units. As 10<sup>3</sup>
= 1000 ˜ 1024 is approximately equal to 2<sup>10</sup>, it has been common to use SI prefixes to represent binary multiples of
information units, though this is not universal. For example, in referring to the bit
rates of a modem, the prefixes indicate powers of 10, not 2. The IEC introduced binary
prefixes in 1998 to correct the confusion resulting from this.</p>
<div class="div2">
<h3>
<a id="SI-prefixes"></a>B.1 SI Prefixes</h3>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">Multiplication Factor</th><th rowspan="1" colspan="1">Prefix</th><th rowspan="1" colspan="1">Symbol</th><th rowspan="1" colspan="1">Example</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">10<sup>24</sup></td><td rowspan="1" colspan="1">yotta</td><td rowspan="1" colspan="1">Y</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#Y">Ym</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>21</sup></td><td rowspan="1" colspan="1">zetta</td><td rowspan="1" colspan="1">Z</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#Z">Zm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>18</sup></td><td rowspan="1" colspan="1">exa</td><td rowspan="1" colspan="1">E</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#E">Em</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>15</sup></td><td rowspan="1" colspan="1">peta</td><td rowspan="1" colspan="1">P</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#P">Pm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>12</sup></td><td rowspan="1" colspan="1">tera</td><td rowspan="1" colspan="1">T</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#T">Tm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>9</sup></td><td rowspan="1" colspan="1">giga</td><td rowspan="1" colspan="1">G</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#G">Gm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>6</sup></td><td rowspan="1" colspan="1">mega</td><td rowspan="1" colspan="1">M</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#M">Mm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>3</sup>
= 1000</td><td rowspan="1" colspan="1">kilo</td><td rowspan="1" colspan="1">k</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#k">km</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>2</sup>
= 100</td><td rowspan="1" colspan="1">hecto</td><td rowspan="1" colspan="1">h</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#h">hm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>1</sup>
= 10</td><td rowspan="1" colspan="1">deka</td><td rowspan="1" colspan="1">da</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#da">dam</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-1</sup>
= 0.1</td><td rowspan="1" colspan="1">deci</td><td rowspan="1" colspan="1">d</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#d">dm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-2</sup>
= 0.01</td><td rowspan="1" colspan="1">centi</td><td rowspan="1" colspan="1">c</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#c">cm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-3</sup>
= 0.001</td><td rowspan="1" colspan="1">milli</td><td rowspan="1" colspan="1">m</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#m">mm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-6</sup></td><td rowspan="1" colspan="1">micro</td><td rowspan="1" colspan="1">μ</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#u">μm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-9</sup></td><td rowspan="1" colspan="1">nano</td><td rowspan="1" colspan="1">n</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#n">nm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-12</sup></td><td rowspan="1" colspan="1">pico</td><td rowspan="1" colspan="1">p</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#p">pm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-15</sup></td><td rowspan="1" colspan="1">femto</td><td rowspan="1" colspan="1">f</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#f">fm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-18</sup></td><td rowspan="1" colspan="1">atto</td><td rowspan="1" colspan="1">a</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#a">am</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-21</sup></td><td rowspan="1" colspan="1">zepto</td><td rowspan="1" colspan="1">z</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#z">zm</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">10<sup>-24</sup></td><td rowspan="1" colspan="1">yocto</td><td rowspan="1" colspan="1">y</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/meter#y">ym</csymbol></code></td>
</tr>
</tbody>
</table>
</div>
<div class="div2">
<h3>
<a id="IEC-prefixes"></a>B.2 IEC Prefixes</h3>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">Multiplication Factor</th><th rowspan="1" colspan="1">Full
Technical Name</th><th rowspan="1" colspan="1">Prefix</th><th rowspan="1" colspan="1">Symbol</th><th rowspan="1" colspan="1">Example</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">2<sup>60</sup></td><td rowspan="1" colspan="1">exabinary</td><td rowspan="1" colspan="1">exbi</td><td rowspan="1" colspan="1">Ei</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/byte#Ei">EiB</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">2<sup>50</sup></td><td rowspan="1" colspan="1">petabinary</td><td rowspan="1" colspan="1">pebi</td><td rowspan="1" colspan="1">Pi</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/byte#Pi">PiB</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">2<sup>40</sup></td><td rowspan="1" colspan="1">terabinary</td><td rowspan="1" colspan="1">tebi</td><td rowspan="1" colspan="1">Ti</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/byte#Ti">TiB</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">2<sup>30</sup></td><td rowspan="1" colspan="1">gigabinary</td><td rowspan="1" colspan="1">gibi</td><td rowspan="1" colspan="1">Gi</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/byte#Gi">GiB</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">2<sup>20</sup></td><td rowspan="1" colspan="1">megabinary</td><td rowspan="1" colspan="1">mebi</td><td rowspan="1" colspan="1">Mi</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/byte#Mi">MiB</csymbol></code></td>
</tr>
<tr>
<td rowspan="1" colspan="1">2<sup>10</sup></td><td rowspan="1" colspan="1">kilobinary</td><td rowspan="1" colspan="1">kibi</td><td rowspan="1" colspan="1">Ki</td><td rowspan="1" colspan="1"><code><csymbol definitionURL="http://.../units/byte#Ki">KiB</csymbol></code></td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="div1">
<h2>
<a id="dimensions"></a>C Dimensions</h2>
<p>This appendix contains a list
of suggested values for the <code>definitionURL</code> element for dimensions which may be used in the dimension annotation
of a semantics group. Also listed is the standard SI unit of that dimension.</p>
<p>Fragment identifiers are not used, as indices into the dimension pages may later be
used to identify, for example, the SI unit, e.g., <code>http://.../dimension/length#SI</code>
</p>
<div class="div2">
<h3>
<a id="base_derived_dimensions"></a>C.1 Dimensions with SI Base or Derived Units</h3>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">Dimension</th><th rowspan="1" colspan="1">Definition URL</th><th rowspan="1" colspan="1">SI Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">length</td><td rowspan="1" colspan="1">http://.../dimension/length</td><td rowspan="1" colspan="1">m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">mass</td><td rowspan="1" colspan="1">http://.../dimension/mass</td><td rowspan="1" colspan="1">kg</td>
</tr>
<tr>
<td rowspan="1" colspan="1">time</td><td rowspan="1" colspan="1">http://.../dimension/time</td><td rowspan="1" colspan="1">s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric current</td><td rowspan="1" colspan="1">http://.../dimension/electric_current</td><td rowspan="1" colspan="1">A</td>
</tr>
<tr>
<td rowspan="1" colspan="1">thermodynamic temperature</td><td rowspan="1" colspan="1">http://.../dimension/thermodynamic_temperature</td><td rowspan="1" colspan="1">K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">amount of substance</td><td rowspan="1" colspan="1">http://.../dimension/amount_of_substance</td><td rowspan="1" colspan="1">mol</td>
</tr>
<tr>
<td rowspan="1" colspan="1">luminous intensity</td><td rowspan="1" colspan="1">http://.../dimension/luminous_intensity</td><td rowspan="1" colspan="1">cd</td>
</tr>
<tr>
<td rowspan="1" colspan="1">amount of information</td><td rowspan="1" colspan="1">http://.../dimension/amount_of_information</td><td rowspan="1" colspan="1">B</td>
</tr>
<tr>
<td rowspan="1" colspan="1">plane angle</td><td rowspan="1" colspan="1">http://.../dimension/plane_angle</td><td rowspan="1" colspan="1">rad</td>
</tr>
<tr>
<td rowspan="1" colspan="1">solid angle</td><td rowspan="1" colspan="1">http://.../dimension/solid_angle</td><td rowspan="1" colspan="1">sr</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric capacitance</td><td rowspan="1" colspan="1">http://.../dimension/electric_capacitance</td><td rowspan="1" colspan="1">F</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric charge</td><td rowspan="1" colspan="1">http://.../dimension/electric_charge</td><td rowspan="1" colspan="1">C</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric conductance</td><td rowspan="1" colspan="1">http://.../dimension/electric_conductance</td><td rowspan="1" colspan="1">S</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric inductance</td><td rowspan="1" colspan="1">http://.../dimension/electric_inductance</td><td rowspan="1" colspan="1">H</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric potential difference</td><td rowspan="1" colspan="1">http://.../dimension/electric_potential_difference</td><td rowspan="1" colspan="1">V</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric resistance</td><td rowspan="1" colspan="1">http://.../dimension/electric_resistance</td><td rowspan="1" colspan="1">Ω</td>
</tr>
<tr>
<td rowspan="1" colspan="1">energy</td><td rowspan="1" colspan="1">http://.../dimension/energy</td><td rowspan="1" colspan="1">J</td>
</tr>
<tr>
<td rowspan="1" colspan="1">force</td><td rowspan="1" colspan="1">http://.../dimension/force</td><td rowspan="1" colspan="1">N</td>
</tr>
<tr>
<td rowspan="1" colspan="1">frequency</td><td rowspan="1" colspan="1">http://.../dimension/frequence</td><td rowspan="1" colspan="1">Hz</td>
</tr>
<tr>
<td rowspan="1" colspan="1">illuminance</td><td rowspan="1" colspan="1">http://.../dimension/illuminance</td><td rowspan="1" colspan="1">lx</td>
</tr>
<tr>
<td rowspan="1" colspan="1">luminous flux</td><td rowspan="1" colspan="1">http://.../dimension/luminous_flux</td><td rowspan="1" colspan="1">lm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">magnetic flux</td><td rowspan="1" colspan="1">http://.../dimension/magnetic_flux</td><td rowspan="1" colspan="1">Wb</td>
</tr>
<tr>
<td rowspan="1" colspan="1">magnetic flux density</td><td rowspan="1" colspan="1">http://.../dimension/magnetic_flux_density</td><td rowspan="1" colspan="1">T</td>
</tr>
<tr>
<td rowspan="1" colspan="1">power</td><td rowspan="1" colspan="1">http://.../dimension/power</td><td rowspan="1" colspan="1">W</td>
</tr>
<tr>
<td rowspan="1" colspan="1">pressure</td><td rowspan="1" colspan="1">http://.../dimension/pressure</td><td rowspan="1" colspan="1">Pa</td>
</tr>
</tbody>
</table>
</div>
<div class="div2">
<h3>
<a id="compound_dimensions"></a>C.2 Dimensions with Compound SI Units</h3>
<table border="1" cellpadding="3">
<thead>
<tr>
<th rowspan="1" colspan="1">Dimension</th><th rowspan="1" colspan="1">Definition URL</th><th rowspan="1" colspan="1">Example Compound SI Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">absorbed dose rate</td><td rowspan="1" colspan="1">http://.../dimension/absorbed_dose_rate</td><td rowspan="1" colspan="1">Gy/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">acceleration</td><td rowspan="1" colspan="1">http://.../dimension/acceleration</td><td rowspan="1" colspan="1">m/s<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">action</td><td rowspan="1" colspan="1">http://.../dimension/action</td><td rowspan="1" colspan="1">kg·m<sup>2</sup>/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">angular acceleration</td><td rowspan="1" colspan="1">rad/s<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">angular speed</td><td rowspan="1" colspan="1">http://.../dimension/angular_speed</td><td rowspan="1" colspan="1">rad/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">area</td><td rowspan="1" colspan="1">http://.../dimension/area</td><td rowspan="1" colspan="1">m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">concentration</td><td rowspan="1" colspan="1">http://.../dimension/concentration</td><td rowspan="1" colspan="1">mol/m<sup>3</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">current density</td><td rowspan="1" colspan="1">http://.../dimension/current_density</td><td rowspan="1" colspan="1">A/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">dynamic viscosity</td><td rowspan="1" colspan="1">http://.../dimension/dynamic_viscosity</td><td rowspan="1" colspan="1">Pa·s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric charge density</td><td rowspan="1" colspan="1">http://.../dimension/electric_charge_density</td><td rowspan="1" colspan="1">C/m<sup>3</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric field strength</td><td rowspan="1" colspan="1">http://.../dimension/electric_field_strength</td><td rowspan="1" colspan="1">V/m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">electric flux density</td><td rowspan="1" colspan="1">http://.../dimension/electric_flux_density</td><td rowspan="1" colspan="1">C/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">energy density</td><td rowspan="1" colspan="1">http://.../dimension/electric_density</td><td rowspan="1" colspan="1">J/m<sup>3</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">entropy</td><td rowspan="1" colspan="1">http://.../dimension/entropy</td><td rowspan="1" colspan="1">J/K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">exposure</td><td rowspan="1" colspan="1">http://.../dimension/exposure</td><td rowspan="1" colspan="1">C/kg</td>
</tr>
<tr>
<td rowspan="1" colspan="1">heat capacity</td><td rowspan="1" colspan="1">http://.../dimension/heat_capacity</td><td rowspan="1" colspan="1">J/K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">heat flux density</td><td rowspan="1" colspan="1">http://.../dimension/heat_flux_density</td><td rowspan="1" colspan="1">W/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">irradiance</td><td rowspan="1" colspan="1">http://.../dimension/irradiance</td><td rowspan="1" colspan="1">W/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">kinematic viscosity</td><td rowspan="1" colspan="1">http://.../dimension/kinematic_viscosity</td><td rowspan="1" colspan="1">m<sup>2</sup>/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">linear frequency</td><td rowspan="1" colspan="1">http://.../dimension/linear_frequence</td><td rowspan="1" colspan="1">1/(m·s)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">linear mass density</td><td rowspan="1" colspan="1">http://.../dimension/linear_mass_density</td><td rowspan="1" colspan="1">kg/m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">luminance</td><td rowspan="1" colspan="1">http://.../dimension/luminance</td><td rowspan="1" colspan="1">cd/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">magentic field strength</td><td rowspan="1" colspan="1">http://.../dimension/magentic_field_strength</td><td rowspan="1" colspan="1">A/m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">mass density</td><td rowspan="1" colspan="1">http://.../dimension/mass_density</td><td rowspan="1" colspan="1">kg/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">molar energy</td><td rowspan="1" colspan="1">http://.../dimension/molar_energy</td><td rowspan="1" colspan="1">J/mol</td>
</tr>
<tr>
<td rowspan="1" colspan="1">molar entropy</td><td rowspan="1" colspan="1">http://.../dimension/molar_entropy</td><td rowspan="1" colspan="1">J/(mol·K)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">molar heat capacity</td><td rowspan="1" colspan="1">http://.../dimension/molar_heat_mass</td><td rowspan="1" colspan="1">J/(mol·K)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">moment of force</td><td rowspan="1" colspan="1">http://.../dimension/moment_of_force</td><td rowspan="1" colspan="1">J/rad</td>
</tr>
<tr>
<td rowspan="1" colspan="1">moment of inertia</td><td rowspan="1" colspan="1">http://.../dimension/moment_of_inertia</td><td rowspan="1" colspan="1">kg·m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">momentum</td><td rowspan="1" colspan="1">http://.../dimension/momentum</td><td rowspan="1" colspan="1">kg·m/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">permeability</td><td rowspan="1" colspan="1">http://.../dimension/permeability</td><td rowspan="1" colspan="1">H/m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">permittivity</td><td rowspan="1" colspan="1">http://.../dimension/permittivity</td><td rowspan="1" colspan="1">F/m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">power density</td><td rowspan="1" colspan="1">http://.../dimension/power_density</td><td rowspan="1" colspan="1">W/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">radiance</td><td rowspan="1" colspan="1">http://.../dimension/radiance</td><td rowspan="1" colspan="1">W/(m<sup>2</sup>·sr)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">radiant intenstiy</td><td rowspan="1" colspan="1">http://.../dimension/radiant_intensity</td><td rowspan="1" colspan="1">W/sr</td>
</tr>
<tr>
<td rowspan="1" colspan="1">specific heat capacity</td><td rowspan="1" colspan="1">http://.../dimension/specific_heat_capacity</td><td rowspan="1" colspan="1">J/(kg·K)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">specific energy</td><td rowspan="1" colspan="1">http://.../dimension/specific_energy</td><td rowspan="1" colspan="1">J/kg</td>
</tr>
<tr>
<td rowspan="1" colspan="1">specific entropy</td><td rowspan="1" colspan="1">http://.../dimension/specific_entroy</td><td rowspan="1" colspan="1">J/(kg·K)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">specific volume</td><td rowspan="1" colspan="1">http://.../dimension/specific_volume</td><td rowspan="1" colspan="1">m<sup>3</sup>/kg</td>
</tr>
<tr>
<td rowspan="1" colspan="1">surface energy density</td><td rowspan="1" colspan="1">http://.../dimension/surface_energy_density</td><td rowspan="1" colspan="1">J/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">surface power density</td><td rowspan="1" colspan="1">http://.../dimension/surface_power_density</td><td rowspan="1" colspan="1">W/m<sup>2</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">surface tension</td><td rowspan="1" colspan="1">http://.../dimension/surface_tension</td><td rowspan="1" colspan="1">N/m</td>
</tr>
<tr>
<td rowspan="1" colspan="1">thermal conductivity</td><td rowspan="1" colspan="1">http://.../dimension/thermal_conductivity</td><td rowspan="1" colspan="1">W/(m·K)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">speed</td><td rowspan="1" colspan="1">http://.../dimension/speed</td><td rowspan="1" colspan="1">m/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">volume</td><td rowspan="1" colspan="1">http://.../dimension/volume</td><td rowspan="1" colspan="1">m<sup>3</sup></td>
</tr>
<tr>
<td rowspan="1" colspan="1">volume flow</td><td rowspan="1" colspan="1">http://.../dimension/volume_flow</td><td rowspan="1" colspan="1">m<sup>3</sup>/s</td>
</tr>
<tr>
<td rowspan="1" colspan="1">wave number</td><td rowspan="1" colspan="1">http://.../dimension/wave_number</td><td rowspan="1" colspan="1">1/m</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</body>
</html>