index.html 40.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org" />
<title>Stochastic Language Models (n-gram) Specification</title>
<style type="text/css">
.fig { text-align: center; }
span.term { font-style: italic; color: rgb(0, 0, 192); }
.big { font-size: 150%; }
pre { 
   font-family: "Courier New", monospace;
   white-space: pre;
   background-color: rgb(204,204,255);
   padding: 0.5em;
   margin-left: 0;
   border: none;
   width: 100%;
}
pre.xml { margin-left: 0; background-color: rgb(204,204,255) }
pre.dtd { margin-left: 0; background-color: rgb(204,255,204) }
pre.sample { margin-left: 0; background-color: #66FF66; }
.tocline { list-style: none; }
td,th { background-color: rgb(204,255,204); }
.issues { font-style: italic; color: green; }
</style>
<link rel="stylesheet" type="text/css"
href="http://www.w3.org/StyleSheets/TR/W3C-WD" />
</head>
<body>
<div class="head">
<p><a href="http://www.w3.org/"><img height="48" alt="W3C"
src="http://www.w3.org/Icons/w3c_home" width="72" /></a></p>

<h1 class="notoc">Stochastic Language Models (N-Gram)
Specification</h1>

<h2 class="notoc">W3C Working Draft <i>3 January 2001</i></h2>

<dl>
<dt>This version:</dt>

<dd><a
href="http://www.w3.org/TR/2001/WD-ngram-spec-20010103/">
http://www.w3.org/TR/2001/WD-ngram-spec-20010103</a></dd>

<dt>Latest version:</dt>

<dd><a
href="http://www.w3.org/TR/ngram-spec">
http://www.w3.org/TR/ngram-spec</a></dd>

<dt>Previous versions:</dt>

<dd><i>None</i></dd>

<dt>Editors:</dt>

<dd>Michael K. Brown, Avaya Labs<br />
Andreas Kellner, Philips Research Labs<br />
Dave Raggett, W3C/Openwave</dd>
</dl>

<p class="copyright"><a
href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a>
&#169;1999 - 2001 <a href="http://www.w3.org/"><abbr
title="World Wide Web Consortium">W3C</abbr></a><sup>&#174;</sup>
(<a href="http://www.lcs.mit.edu/"><abbr
title="Massachusetts Institute of Technology">MIT</abbr></a>, <a
href="http://www.inria.fr/"><abbr lang="fr"
title="Institut National de Recherche en Informatique et Automatique">
INRIA</abbr></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All
Rights Reserved. W3C <a
href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">
liability</a>, <a
href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">
trademark</a>, <a
href="http://www.w3.org/Consortium/Legal/copyright-documents-19990405">
document use</a> and <a
href="http://www.w3.org/Consortium/Legal/copyright-software-19980720">
software licensing</a> rules apply.</p>

<hr title="Separator from Header" />
</div>

<h2 class="notoc"><a id="abstract"
name="abstract">Abstract</a></h2>

<p>This document defines syntax for representing N-Gram
(Markovian) stochastic grammars within the W3C Speech Interface
Framework. The use of stochastic N-Gram models has a long and
successful history in the research community and is now more and
more effecting commercial systems, as the market asks for more
robust and flexible solutions. The primary purpose of specifying
a stochastic grammar format is to support large vocabulary and
open vocabulary applications. In addition, stochastic grammars
can be used to represent concepts or semantics. This
specification defines the mechanism for combining stochastic and
structured (in this case Context-Free) grammars as well as
methods for combined semantic definitions.</p>

<h2>Status of this Document</h2>

<p>This document is a W3C Working Draft for review by W3C members
and other interested parties. It is a draft document and may be
updated, replaced, or obsoleted by other documents at any time.
It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". A list
of current public W3C Working Drafts can be found at <a
href="http://www.w3.org/TR/">http://www.w3.org/TR</a>.</p>

<p>This specification describes markup for representing
statistical language models, and forms part of the proposals for
the W3C Speech Interface Framework. This document has been
produced as part of the <a href="http://www.w3.org/Voice/">W3C
Voice Browser Activity</a>, following the procedures set out for
the <a href="http://www.w3.org/Consortium/Process/">W3C
Process</a>. The authors of this document are members of the <a
href="http://www.w3.org/Voice/Group/">Voice Browser Working
Group</a> (W3C Members only). This document is for public review,
and comments and discussion are welcomed on the public mailing
list &lt;<a
href="mailto:www-voice@w3.org">www-voice@w3.org</a>&gt;. To
subscribe, send an email to &lt;<a
href="mailto:www-voice-request@w3.org">www-voice-request@w3.org</a>&gt;
with the word <em>subscribe</em> in the subject line (include the
word <em>unsubscribe</em> if you want to unsubscribe). The <a
href="http://lists.w3.org/Archives/Public/www-voice/">archive</a>
for the list is accessible online.</p>

<h2 class="notoc"><a name="TOC" id="TOC">Table of
Contents</a></h2>

<ul>
<li class="tocline">1. <a href="#S1">Introduction</a></li>

<li class="tocline">2. <a href="#S2">N-Gram Grammar
Representation</a></li>

<li class="tocline">3. <a href="#S3">Grammar Declaration</a></li>

<li class="tocline">4. <a href="#S4">Grammar Importation</a></li>

<li class="tocline">5. <a href="#S5">Lexicon Declaration</a></li>

<li class="tocline">6. <a href="#S6">N-Gram Event Count
Declaration</a></li>

<li class="tocline">7. <a href="#S7">Backoff Weight
Declaration</a></li>

<li class="tocline">8. <a href="#S8">Distant N-Gram
Declaration</a></li>

<li class="tocline">9. <a href="#S9">Interpolation of
Models</a></li>

<li class="tocline">10. <a href="#S10">Class Grammars</a></li>

<li class="tocline">11. <a href="#DTD">Document Type Definition</a></li>

<li class="tocline">12. <a href="#A1">Appendix I - Alternative
Formats</a></li>

<li class="tocline">13. <a href="#A2">Appendix II - Semantic
Tags</a></li>

<li class="tocline">14. <a href="#refs">Further Reading</a></li>
</ul>

<h2><a name="S1" id="S1">1. Introduction</a></h2>

<p>This document defines syntax for representing N-Gram
(Markovian) stochastic grammars within the W3C Voice Browser
Markup Language. The parent language for specification of a
stochastic grammar is XML, however for efficiency some variance
from strict XML syntax will be used. Elements of the grammar
specification already defined in the XML specification will not
be repeated here (e.g. character encoding), thus avoiding any
potential inconsistency with the current or future XML
specifications.</p>

<p>The primary purpose of specifying a stochastic grammar format
is to support large vocabulary and open vocabulary applications.
In addition, stochastic grammars can be used to represent
concepts or semantics. This specification defines the mechanism
for combining stochastic and structured (in this case
Context-Free) grammars as well as methods for combined semantic
definitions. Since some structured grammars are also stochastic,
we will avoid confusion from here on by only referring to these
grammars as N-Gram grammars, or in some cases simply N-Grams.</p>

<p>An N-Gram grammar is a representation of an N-th order Markov
language model in which the probability of occurrence of a symbol
is conditioned upon the prior occurrence of N-1 other symbols.
N-Gram grammars are typically constructed from statistics
obtained from a large corpus of text using the co-occurrences of
words in the corpus to determine word sequence probabilities.
N-Gram grammars have the advantage of be able to cover a much
larger language than would normally be derived directly from a
corpus. Open vocabulary applications are easily supported with
N-Gram grammars.</p>

<p>This specification is influenced by a variety of preceding
N-Gram grammar formats. This specification is not explicitly
based on any particular preceding format. Concepts are similar
but the syntax is largely original in this specification due to
the XML parent language.</p>

<p>This specification is written to be consistent with the
corresponding Context-Free Grammar (CFG) XML format specified in
a companion document entitled <a
href="http://www.w3.org/TR/2000/WD-grammar-spec-20000710.html">"Speech
Recognition Grammar Specification for the W3C Speech Interface
Framework"</a>. At some point in the near future it is expected
that these documents will be unified to ensure consistency among
the common components of the specifications. To simplify this
unification this document also borrows from some of the CFG
examples. In maintaining such consistency the XML form of the
deterministic grammar format will the primary definition followed
in this specification to maintain compatibility with the XML
based N-Gram format defined here. Specifications will be defined
in <span style="color: #9966FF">lavender boxes</span> and
examples will be given in <span style="color: #009933">green
boxes</span>.</p>

<h2>Why N-Grams?</h2>

<p>In simple speech recognition/speech understanding systems, the
expected input sentences are often modeled by a strict grammar
(such as a CFG). In this case, the user is only allowed to utter
those sentences, that are explicitly covered by the (often
hand-written) grammar. Experience shows that a context free
grammar with reasonable complexity can never foresee all the
different sentence patterns, users come up with in spontaneous
speech input. This approach is therefore not sufficient for
robust speech recognition/understanding tasks or free text input
applications such as dictation.</p>

<p>N-Gram language models are traditionally used in large
vocabulary speech recognition systems to provide the recognizer
with an a-priori likelihood <b>P(W)</b> of a given word sequence
<b>W</b>. The N-Gram language model is usually derived from large
training texts that share the same language characteristics as
expected input. This information complements the acoustic model
<b>P(W|O)</b> that models the articulatory features of the
speakers. Together, these two components allow a system to
compute the most likely input sequence <b>W' = argmax<sub>W</sub>
P(W|O)</b>, where <b>O</b> is the input signal observations as
<b>W' = argmax<sub>W</sub> P(O|W) P(W).</b></p>

<p>In contrast, N-Gram language models rely on the likelihood of
sequences of words, such as word pairs (in the case of bigrams)
or word triples (in the case of trigrams) and are therefore less
restrictive. The use of stochastic N-Gram models has a long and
successful history in the research community and is now more and
more effecting commercial systems, as the market asks for more
robust and flexible solutions.</p>

<p>There are many possible ways to combine N-Gram models and
context free grammars within a single voice browser system such
as</p>

<ul>
<li>using an N-Gram model in the recognizer and a CFG in a
(separate) understanding component</li>

<li>integrating special N-Gram rules at various levels in a CFG
to allow for flexible input in specific context</li>

<li>using a CFG to model the structure of phrases (e.g. numeric
expressions) that incorporated in a higher-level N-Gram model
(class N-Grams)</li>
</ul>

<p>For this reason, cross-referencing between N-Gram models and
CFGs is an important feature of the markup described below.</p>

<h3><a name="A3" id="A3">List of tags and Attributes</a></h3>

<table border="1" width="80%" cellpadding="5" summary=
"3 columns: tag name, attributes, and section defined">
<caption>See Section 11 for the <a href="#DTD">Document Type 
Definition</a></caption>
<tr align="left">
<th>Element</th>
<th>Attributes</th>
<th>see chapter</th>
</tr>

<tr>
<td><b>&lt;n-gram&gt;</b></td>
<td>type</td>
<td><a href="#S3">3. Grammar Declaration</a></td>
</tr>

<tr>
<td><b>&lt;import&gt;</b></td>
<td>uri<br />
name [opt]</td>
<td><a href="#S4">4. Grammar Importation</a></td>
</tr>

<tr>
<td><b>&lt;lexicon&gt;</b></td>
<td>order [opt]</td>
<td><a href="#S5">5. Lexicon Declaration</a></td>
</tr>

<tr>
<td><b>&lt;token&gt;</b></td>
<td>index [opt]</td>
<td><a href="#S5">5. Lexicon Declaration</a></td>
</tr>

<tr>
<td><b>&lt;tree&gt;</b></td>
<td>gap[opt]<br />
depth[opt]</td>
<td><a href="#S6">6. N-Gram Event Count Declaration</a> <br />
<a href="#S7">7. Backoff Weight Declaration</a> <br />
<a href="#S8">8. Distant N-Gram Declaration</a></td>
</tr>

<tr>
<td><b>&lt;interpolation&gt;</b></td>
<td>type[opt]</td>
<td><a href="#S9">9. Interpolation of Models</a></td>
</tr>

<tr>
<td><b>&lt;component&gt;</b></td>
<td>weight</td>
<td><a href="#S9">9. Interpolation of Models</a></td>
</tr>
</table>

<h2><a name="S2" id="S2">2. N-Gram Grammar
Representation</a></h2>

<p>Most former publicly available N-Gram grammar file formats use
log probabilities to represent the word sequence probabilities.
For small amount of training data or missing data sequences,
backoff weights are also often precomputed and included in the
format. In the format presented here we depart from this
tradition and represent the core statistical information with
word sequence event counts.</p>

<p>Motivations for using counts includes:</p>

<ul>
<li>using counts leaves the decision on the actual implementation
of the N-Gram model to the platform</li>

<li>counts allow for a data reduction (both, by using integer
instead of float and by allowing for pruning)</li>

<li>counts are more robust in terms of manipulations of the
tree</li>
</ul>

<p>Backoff weights are eliminated from the required components of
the format since these weights may be computed easily from the
count data. Backoff weights may optionally be included as an
addendum, to be described later.</p>

<p>Another departure from traditional N-Gram file formats is the
presentation of data in depth-first rather than breadth-first
order. The two main advantages of this ordering are the
elimination of some redundancy, hence reducing file size, and
more convenient ordering for stream processing and data
loading.</p>

<p>The file format consists lines of data tuples, each
representing a branch and the succeeding node of the grammar
tree. The branch data is a list of indices representing the word
sequence of the N-Gram. Following the word sequence data is a
list of one or two integers representing the node branching
factor and event count. Consistent with this tuple per line
format, the first entry is a 'zerogram', a virtual null branch
with successor node being the actual root of the grammar tree
(see pseudo-code example later).</p>

<p>The root node is followed by the corresponding unigram branch
and node data, followed by similar data for p=2,3,...,L until the
leaf ply L is reached (a <i>ply</i> is the <i>set of branches</i>
at a given depth). If cutoff has been applied, then L&lt;N, the
order of the N-Gram model. This is followed by other set members
of plies (L-1) and (L) until the branch set of ply (L-1) is
exhausted, at which point another member of ply (L-2) is
presented and the process repeated at ply (L-1). This process is
continued until all branches of ply p=1 have been exhausted.</p>

<p class="fig"><img alt="diagram of N-Gram tree" src="tree2.gif"
height="272" width="465" /></p>

<h2><a name="S3" id="S3">3. Grammar Declaration</a></h2>

<p>The N-Gram Grammar declaration is consistent with the XML
format of the structural grammar specification as described in <a
href="http://www.w3.org/TR/2000/WD-grammar-spec-20000710.html#S4.2">
Section 4.2</a> of that document. The <a href="#DTD">document type
definition</a> for the N-Gram specification is given in Section
11.</p>

<p>The following example, borrowed and modified from that
specification, is extended as shown, where []'s indicate optional
components. Following the XML convention the language and variant
are indicated by a "xml:lang" attribute on the root "grammar"
element.</p>

<pre class="xml">
&lt;N-Gram xml:lang="en-US"&gt;
 <i>[importation declarations]
 [lexicon declaration
    [N-Gram event counts
       [backoff weights] [semantic tags]]]
 [interpolation of models]
</i>&lt;/n-gram&gt;
</pre>

<p>A single optional grammar declaration is allowed in the XML
grammar document. This grammar declaration may be imported into a
parent N-Gram or CFG declaration and may in turn import other
N-Gram or CFG declarations as described by import rules (cf. <a
href="#S4">Section 4</a>). The lexicon, which is required if
N-Gram counts are specified, contains index definition of symbols
that may represent speech events (i.e. words) or references to
other grammars or grammar rules (cf. <a href="#S5">Section
5</a>). The N-Gram event counts are presented in a depth-first
order format described in <a href="#S6">Section 6</a>.
Optionally, precomputed backoff weights may be declared (cf. <a
href="#S7">Section 7</a>), and optional distant or skip N-Grams
may be declared (cf. <a href="#S8">Section 8</a>). In the event
that all optional sections of the grammar declaration are
missing, the grammar is a null grammar equivalent to an
epsilon-transition or zerogram model.</p>

<h2><a name="S4" id="S4">4. Grammar Importation</a></h2>

<p>Importation declarations in the superior grammar may be used
to import components of an inferior grammar. Importation
declarations of inferior N-Gram grammars may be used to declare
additional event counts to be added to the union of N-Gram event
counts in the superior grammar. If desired, the entire superior
N-Gram grammar may be constructed solely from imported grammars.
This is particularly useful for applying variable count cutoff
computation at the server using a CGI query, as illustrated in
the first example, thus altering the default cutoff to save
download time. Importation of backoff weights is generally not
useful since modification of the event counts generally alters
the full set of backoff weights, which should be recomputed after
all N-Gram event counts are compiled.</p>

<p>An arbitrary number of importation rules may optionally be
declared as follows:</p>

<pre class="xml">
&lt;import uri="<i>protocol://host/path/path_info?query_string</i>" 
        name="<i>namestring</i>"/&gt;
</pre>

<p>The <code>name</code> attribute is optional. The absence of the
name attribute indicates that the imported grammar, which must be
an N-Gram grammar, will be treated as a contribution to the
superior N-Gram grammar and added to the union of N-Gram event
counts of the superior grammar. The presence of a
<code>name</code> attribute indicates that the imported grammar is
an inferior grammar to be referenced by the superior grammar as
described later.</p>

<p>For example:</p>

<pre class="sample">
&lt;import uri=
 "http://www.example.com/ngram.pl/mygrammar.g?depth=3"/&gt;
&lt;import uri=
 "http://www.grammars.com/cities-states.xml"
 name="places"/&gt;
 
    ... &lt;gramref import="mygrammar"/&gt; ...
    ... &lt;ruleref import="places#start"/&gt; ...
</pre>

<p>In the first import example the general purpose Perl script
<code>ngram.pl</code> can process any raw N-Gram event count
file, such as <code>mygrammar.g</code>, to produce the proper XML
formatted N-Gram declaration while trimming the file contents at
the server. The second import example is a simple file transfer
of an inferior named N-Gram grammar.</p>

<p>The corresponding CFG compatible references are shown. The
first example shows a reference to a grammar. Generally starting
tokens are determined by the monogram probabilities of the N-Gram
model. The second example shows a reference to a grammar and a
particular starting symbol. The starting symbol in this case can
be acoustically null and used simply to set preconditions for the
real starting symbols. Then the real starting symbols will be
conditioned only on the start symbol or histories starting with
the start symbol.</p>

<p>In principle, it is possible to import named N-Gram grammars
into a CFG and vice versa. Yet another alternative is to import a
named inferior N-Gram grammar into a superior N-Gram grammar. In
practice, the utility of some combinations may be limited,
however since it is easy to define the appropriate syntax, this
is done to provide maximum flexibility.</p>

<p>Each of these alternatives requires an additional reference
mechanism. To be consistent with the CFG rule reference
specification, <a
href="http://www.w3.org/TR/2000/WD-grammar-spec-20000710.html#S2.2">
Section 2.2</a>, this rule reference format may also be used
in the N-Gram lexicon declaration (cf. <a href="#S5">Section
5</a>). Hence, a symbol in an N-Gram lexicon can reference a
named N-Gram grammar, N-Gram rule, or a CFG rule. Several start
symbols can be defined for an N-Gram grammar and referenced by an
appropriate <code>&lt;ruleref ...&gt;</code>.</p>

<h2><a name="S5" id="S5">5. Lexicon Declaration</a></h2>

<p>The N-Gram lexicon section consists of a single lexicon tag
set containing lexical entries to define indices for the
succeeding N-Gram event count rules. A lexical entry may contain
a word symbol or rule reference. Rule references are always
references to an external inferior grammar rule.</p>

<p>A lexicon may optionally be declared as follows:</p>

<pre class="xml">
&lt;lexicon&gt;
  &lt;token index="1"&gt;
    word1
  &lt;/token&gt;
  &lt;token index="4"&gt;
    how many
  &lt;/token&gt;
  &lt;token index="2"&gt;
    &lt;ruleref import="cfg_places#city"/&gt;
  &lt;/token&gt;
  &lt;token index="3"&gt;
    &lt;ruleref import="ngram_places#ngram_places"/&gt;
  &lt;/token&gt;
  &lt;token index="5"&gt;
    &lt;ruleref import="ngram_class#ngram_class"/&gt;
  &lt;/token&gt;
  ...
&lt;/lexicon&gt;
</pre>

<p>or as follows:</p>

<pre class="xml">
&lt;lexicon order="sequential"&gt;
  &lt;token&gt;
    word1
  &lt;/token&gt;
  &lt;token&gt;
    how many
  &lt;/token&gt;
  &lt;token&gt;
    &lt;ruleref import="cfg_places#city"/&gt;
  &lt;/token&gt;
  &lt;token&gt;
    &lt;ruleref import="ngram_places#ngram_places"/&gt;
  &lt;/token&gt;
  &lt;token&gt;
    &lt;ruleref import="ngram_class#ngram_class"/&gt;
  &lt;/token&gt;
  ...
&lt;/lexicon&gt;
</pre>

<p>Tokens must be indexed with non-negative integers. Numbering
should be contiguous to minimize storage needed for indexing, but
this is not required and the data can be presented in any
particular order. If the <code>order="sequential"</code>
attribute is present then indexing is implicitly numbered
sequentially starting from one.</p>

<p>In the first example a simple word token is declared. This is
the most conventional lexicon entry. The second example indicates
a "super-word" or word phrase that is used when the co-occurrence
of words is so frequent that they might as well be treated as a
single word.</p>

<p>The third example shows a reference to an external CFG rule.
In practice such grammars have not been used, but in principle it
is possible to parse and count small CFG phrase sequences in a
corpus to generate event counts. The fourth and fifth examples
are references to external named N-Gram grammars, the last being
treated as a class or category grammar element (cf. <a
href="#S10">Section 10</a>).</p>

<h2><a name="S6" id="S6">6. N-Gram Event Count
Declaration</a></h2>

<p>The format of the N-Gram event count declaration deviates from
the pure XML format because of the need for the efficiency of a
compact representation. N-Gram grammars are generally quite large
and would require very large file sizes, thus putting a burden on
the communications network.</p>

<p>To clearly explain the depth-first N-Gram event count
specification format a pseudo-code example is first presented.
Suppose we have the pseudo-corpus "A B A B C".</p>

<p>Then the pseudo-coded N-Gram specification for N=3 is:</p>

<pre class="sample">
// zerogram: 3 seen unigrams; total token count is 5
"" &lt;3&gt; 5

// unigram: 1 seen bigram preconditioned on "A"; 2 instances
"A" &lt;1&gt; 2

// bigram: 2 trigrams preconditioned on "A B"; 2 instances
"A B" &lt;2&gt; 2

"A B A" &lt;0&gt; 1  // trigram: leaf of tree; 1 instance
"A B C" &lt;0&gt; 1

"B" &lt;2&gt; 2
"B A" &lt;1&gt; 1
"B A B" &lt;0&gt; 1
"B C" &lt;0&gt; 1

"C" &lt;0&gt; 1
</pre>

<p>Zerogram information represents the root node of a tree. In
this case 5 token instances of 3 distinct token types were seen
in the corpus. The leaf nodes are indicated by specifying zero
inferior branches. Since this value is always zero at the leaves,
this information can simply be deleted.</p>

<p>The token types can be super-word tokens or even grammar
instances. For example, if "A B" is a token then the
pseudo-corpus would appear to consist of 3 tokens total and there
would be 2 token types. In the event that tokens like "A A" are
chosen and the corpus contains long strings of "A" then it is the
responsibility of the N-Gram designer to determine the proper
interpretation.</p>

<p>A grammar token example can be treated in similar manner.
Consider a token defined by the grammar "A B (A | C)", that is
the string "A B" followed by either "A" or "C". Then the
pseudo-corpus has 2 instances of this "token". Interpretation of
string overlaps in the corpus is at the discretion of the N-Gram
designer. The N-Gram declaration is defined with the
<code>tree</code> element and requires a <code>lexicon</code>
declaration. The <code>&lt;tree&gt;</code> element can have an
additional 'gap' attribute which is used for distant N-Grams (see
<a href="#S8">Section 8</a>).</p>

<p>Following the example a complete declaration is:</p>

<pre class="xml">
&lt;lexicon&gt;
  &lt;token index="1"&gt; A &lt;/token&gt;
  &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;token index="3"&gt; C &lt;/token&gt;
&lt;/lexicon&gt;
    
&lt;tree&gt;
  3,5;
  1,1,2;
  2,2,2;
  1,1;
  3,1;
  2,2,2;
  1,1,1;
  2,1;
  3,1;
  3,1;
&lt;/tree&gt;
</pre>

<p>Intraline delimiters are commas and semi-colons are used to
indicate the end of an N-Gram rule. White space is not
significant within the &lt;tree&gt; scope. Note that if pruning
has been performed then the branching values must be recomputed
accordingly. The depth of the tree is implied by the structure of
the data. Line breaks are significant in this format since the
leaf branch counts have been elided.</p>

<h2><a name="S7" id="S7">7. Backoff Weight Declaration</a></h2>

<p>Backoff weights can be declared in the case of a simple N-Gram
declaration without importation.</p>

<p>Following the example a declaration of backoff weights is:</p>

<pre class="xml">
&lt;lexicon&gt;
  &lt;token index="1"&gt; A &lt;/token&gt;
  &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;token index="3"&gt; C &lt;/token&gt;
&lt;/lexicon&gt;
    
&lt;tree&gt;
  3,5;
  1,1,2:0.543;
  2,2,2:0.54;
  1,1;
  3,1;
  2,2,2:0.54;
  1,1,1:0.543;
  2,1;
  3,1;
  3,1;
&lt;/tree&gt;
</pre>

<p>Weight delimiters are colons. Backoff weights may only be
attached to non-leaf elements and are indicated by a leading
colon. The computation of backoff weights follows the well-known
ARPA format.</p>

<p>In addition to floating point format, a scaled integer format
is supported. The &lt;tree&gt; element is modified to include a
scale attribute as follows:</p>

<p>Following the example a scaled integer equivalent declaration
of backoff weights is:</p>

<pre class="xml">
&lt;lexicon&gt;
  &lt;token index="1"&gt; A &lt;/token&gt;
  &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;token index="3"&gt; C &lt;/token&gt;
&lt;/lexicon&gt;
    
&lt;tree backoff-scale="1000"&gt;
  3,5;
  1,1,2:543;
  2,2,2:540;
  1,1;
  3,1;
  2,2,2:540;
  1,1,1:543;
  2,1;
  3,1;
  3,1;
&lt;/tree&gt;
</pre>

<p>Weight delimiters are colons. Backoff weights may only be
attached to non-leaf elements and are indicated by a leading
colon. Backoff weights are computed by dividing the scaled
integer by the backoff-scale.</p>

<h2><a name="S8" id="S8">8. Distant N-Gram Declaration</a></h2>

<p>Distant or skip N-Grams are used to cover long-range
dependencies with N-Gram models with a small N. This is done by
introducing a gap of a certain length between a word and its
history.</p>

<p>For the corpus "A B C D E F G H", a regular trigram model
would provide counts for the events "A B C", "B C D", and so on.
From these counts, the likelihood P(C | A B), P(D | B C) and so
on can be derived. In contrast, a distant N-Gram with a gap of 1
provides counts for AB..D, BC..E, and so on to create likelihood
P<sub>gap</sub>(D | A B), P<sub>gap</sub>(E | B C).</p>

<p>For the corpus "A B C A B D E" we could get the following
<code>gap=1</code> declaration:</p>

<pre class="xml">
&lt;tree gap="1" depth="3"&gt;
5,7;     // "" &lt;5&gt; 7  zerogram
1,1,2;   // "A" &lt;1&gt; 2 unigram; 1 seen (regular) bigram; 2 instances
2,2,2;   // "AB" &lt;2&gt; 2 bigram; 2 distant trigrams, 2 instances
3,1;     // "AB_C &lt;0&gt; 1
4,1;     // "AB_D &lt;0&gt; 1
2,2,2;   // "B" &lt;2&gt; 2 unigram; 2 seen (regular) bigram; 2 instances
3,1,1;   // "BC" &lt;1&gt; 1 bigram; 1 distant trigram, 1 instance
1,1;     // "BC_A &lt;0&gt; 1
4,1,1;   // "BD" &lt;1&gt; 1 bigram; 1 distant trigram, 1 instance
5,1;     // "BD_E &lt;0&gt; 1
3,1,1;   // "C" &lt;1&gt; 1 unigram; 1 seen (regular) bigram; 1 instance
1,1,1;   // "CA" &lt;1&gt; 1 bigram; 1 distant trigram, 1 instance
2,1;     // "CA_B &lt;0&gt; 1
4,1,1;   // "D" &lt;1&gt; 1 unigram; 1 seen (regular) bigram; 1 instance
5,1;     // "DE" &lt;1&gt; 1 bigram; 0 distant trigram, 1 instance
&lt;/tree&gt;
</pre>

<p>Distant N-Grams are stored in the same tree structure as
regular N-Grams. Assuming that the 'gap' always occurs between
the current word and its history, only the length of the gap has
to be specified. This is done using the 'gap' attribute of the
<code>&lt;tree&gt;</code> tag. The value of this optional
parameter defaults to zero, which is identical to a regular
N-Gram model.</p>

<p>Note: In this tree format, we can only fall back from the
distant trigram to a regular bigram, not to a distant bigram.
Fallback to gap N-Grams would require a different ordering of the
tree.</p>

<h2><a name="S9" id="S9">9. Interpolation of Models</a></h2>

<h3>9.1 Linear Interpolation</h3>

<p>An N-Gram language model can be constructed from a linear
interpolation of several models. In this case, the overall
likelihood P(w|h) of a word w occurring after the history h is
computed as the arithmetic average of P(w|h) for each of the
models.</p>

<p class="fig"><img src="linearint.gif" width="307" height="73"
alt="mathematical definition of linear interpolation" /></p>

<p></p>

<p>Interpolated models are represented by the
<code>&lt;interpolation&gt;</code> element. This contains
multiple <code>&lt;component&gt;</code> elements, which represent
each model. The 'weight' attribute on the
<code>&lt;component&gt;</code> element is used to specify the
relative weight of each model. The sum of all weights for each
<code>&lt;interpolation&gt;</code> element does not have to add
up to 1.0, and the platform is responsible for normalization.</p>

<!--
<center>If <font face="Symbol">l</font><sub>i</sub> is the
normalized weight of each model, then<br /><br />

P<sub>lin_int</sub>(w|h) = <font face="Symbol"><font
size="+2">S</font>l</font><sub>i</sub> P<sub>i</sub>(w|h), where
<font size="+2" face="Symbol">S</font><font
face="Symbol">l</font><sub>i</sub> = 1</center>


<p>Interpolated models are defined by the
<code>&lt;interpolation&gt;</code> tag under the
<code>&lt;grammar&gt;</code> tag.<br /> Within the
<code>&lt;interpolation&gt;</code> tag, several models are
declared by <code>&lt;component&gt;</code> tags. For each
component i, its weight <font face="Symbol">l</font><sub>i</sub>
is specified by the 'weight' attribute. The model can be either
embedded within the <code>&lt;component&gt;</code> tag or imported
from another file. The sum of all weights in the markup does not
have to add up to 1.0. The platform is responsible for
normalization</p>
-->
<p>For interpolated models, no common lexicon is defined. Instead
each of the <code>&lt;component&gt;</code> models specifies its
own lexicon. The platform is responsible for combining these
lexica.</p>

<p><u>Example:</u></p>

<pre class="sample">
&lt;n-gram&gt;
  &lt;import uri="http://www.example.com/classlms.xml"
       name="lm1" /&gt;
  &lt;import uri="http://www.example.com/trigram.xml"
       name="lm2" /&gt;
  &lt;interpolation type="linear"&gt;
    &lt;component weight=0.25&gt;
      &lt;ruleref import="lm1"/&gt;
    &lt;/component&gt;
    &lt;component weight=0.75&gt;
      &lt;ruleref import="lm2"/&gt;
    &lt;/component&gt;
  &lt;/interpolation&gt;
&lt;/n-gram&gt;
</pre>

<h3>9.2 Log-Linear Interpolation</h3>

<p>The default interpolation method is linear interpolation. In
addition, log-linear interpolation of models is possible. In this
case, the 'type' attribute on the
<code>&lt;interpolation&gt;</code> must be set to "log".</p>

<p class="fig"><img src="logint.gif" width="432" height="50"
alt="mathematical definition of log linear interpolation" /></p>

<p><!--
<center>P<sub>log_int</sub>(w|h) = <font size="+3"
face="Symbol">P</font> P<sub>i</sub>(w|h)<sup><font
face="Symbol">l</font>i</sup>/Z(h), where Z(h) is a normalization
factor</center>

<p>The specification of a log-linear interpolation is identical to
a linear interpolation, except for the (optional)
<code>type</code> attribute to be set to "<code>log</code>".</p>
-->
</p>

<h2><a name="S10" id="S10">10. Class Grammar Declaration</a></h2>

<p>Class grammars, sometimes also called category grammars, can
be declared using the N-Gram grammar format with N=1. Therefore
no additional special markup language is needed for the
declaration of class grammars. Continuing the example of <a
href="#S6">Section 6</a>, let us declare that "A" and "C" are
equally probable members of a class named "firstclass".</p>

<p>Declare the class in a separate grammar file as follows:</p>

<pre class="sample">
&lt;n-gram&gt;
  &lt;lexicon&gt;
    &lt;token index="1"&gt; A &lt;/token&gt;
    &lt;token index="2"&gt; C &lt;/token&gt;
  &lt;/lexicon&gt;

  &lt;tree&gt;
    2,2;
    1,1;
    2,1;
  &lt;/tree&gt;
&lt;/n-gram&gt;
</pre>

<p>Note that since this is a grammar of depth one it can easily
be recognized and treated as a class. If desirable, non-uniform
probability distribution can be assigned by defining the
appropriate counts.</p>

<p>Then the class based N-Gram grammar for our pseudo-corpus is
declared as follows:</p>

<pre class="sample">
&lt;n-gram&gt;
  &lt;import uri="http://www.example.com/firstclass.xml"
     name="firstclass" /&gt;

  &lt;lexicon&gt;
    &lt;token index="1"&gt;
      &lt;ruleref import="firstclass#firstclass"/&gt;
    &lt;/token&gt;
    &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;/lexicon&gt;

  &lt;tree&gt;
    2,5;
    1,1,3;
    2,1,2;
    1,2;
    2,1,2;
    1,1,2;
    2,1;
  &lt;/tree&gt;
&lt;/n-gram&gt;
</pre>

<p>Given this N-Gram declaration the input string "A B A B C" is
now interpreted to yield "X(A) B X(A) B X(C)" where "X(A)"
represents an instance of member "A" of class "firstclass".</p>

<h2><a name="DTD" id="DTD">11. Document Type Definition</a></h2>

<p>This is the XML document type definition for the N-Gram
specification:</p>

<pre class="dtd">
&lt;!-- W3C Stochastic Language Model (N-Gram) Specification --&gt;

&lt;!-- this is the root element --&gt;
&lt;!ELEMENT N-Gram (import*, ((lexicon, tree) | interpolation)?)&gt;
&lt;!ATTLIST N-Gram
     xml:lang NMTOKEN #IMPLIED&gt;

&lt;!ELEMENT import&gt;
&lt;!ATTLIST import
     uri CDATA #REQUIRED
     name NMTOKEN #IMPLIED&gt;

&lt;!ELEMENT lexicon (token+)&gt;
&lt;!ATTLIST lexicon
     order (default | sequential) "default"&gt;

&lt;!ELEMENT token (#PCDATA | ruleref | gramref)&gt;
&lt;!ATTLIST token
     index NMTOKEN #IMPLIED&gt;

&lt;!ELEMENT ruleref&gt;
&lt;!ATTLIST ruleref
     import CDATA #REQUIRED&gt;

&lt;!ELEMENT gramref&gt;
&lt;!ATTLIST gramref
     import CDATA #REQUIRED&gt;

&lt;!ELEMENT tree (#PCDATA)&gt;
&lt;!ATTLIST tree
     backoff-scale NMTOKEN #IMPLIED
     gap NMTOKEN "1"
     depth NMTOKEN #IMPLIED&gt;

&lt;!ELEMENT interpolation (component+)&gt;
&lt;!ATTLIST interpolation
     type (linear | log) "linear"&gt;

&lt;!ELEMENT component (ruleref | gramref)&gt;
&lt;!ATTLIST component
     weight NMTOKEN #IMPLIED&gt;
</pre>

<h2><a name="A1" id="A1">12. Appendix I - Alternative
Formats</a></h2>

<p>The following pure XML format is not required for compliance,
but is suggested for those who prefer use a pure XML reader.</p>

<p>The N-Gram declaration is defined with the <code>tree</code>
element and requires a <code>lexicon</code> declaration.
Following the example a complete declaration is:</p>

<pre class="xml">
&lt;lexicon&gt;
  &lt;token index="1"&gt; A &lt;/token&gt;
  &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;token index="3"&gt; C &lt;/token&gt;
&lt;/lexicon&gt;

&lt;tree&gt;
  &lt;node branches="3" count="5" /&gt;
  &lt;node index="1" branches="1" count="2" /&gt;
  &lt;node index="2" branches="2" count="2" /&gt;
  &lt;node index="1" count="1" /&gt;
  &lt;node index="3" count="1" /&gt;
  &lt;node index="2" branches="2" count="2" /&gt;
  &lt;node index="1" branches="1" count="1" /&gt;
  &lt;node index="2" count="1" /&gt;
  &lt;node index="3" count="1" /&gt;
  &lt;node index="3" count="1" /&gt;
&lt;/tree&gt;
</pre>

<p>Note that if pruning has been performed then the branching
values must be recomputed accordingly. The depth of the tree is
implied by the structure of the data.</p>

<p>Yet another suggested XML format is somewhat more compact and
less readable, but is not dependent upon line breaks for proper
reading.</p>

<p>The N-Gram declaration is defined with the <code>tree</code>
element and requires a <code>lexicon</code> declaration.
Following the example a complete declaration is:</p>

<pre class="xml">
&lt;lexicon&gt;
  &lt;token index="1"&gt; A &lt;/token&gt;
  &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;token index="3"&gt; C &lt;/token&gt;
&lt;/lexicon&gt;

&lt;tree&gt;
  &lt;node&gt; 3 5 &lt;/node&gt;
  &lt;node&gt; 1 1 2 &lt;/node&gt;
  &lt;node&gt; 2 2 2 &lt;/node&gt;
  &lt;node&gt; 1 1 &lt;/node&gt;
  &lt;node&gt; 3 1 &lt;/node&gt;
  &lt;node&gt; 2 2 2 &lt;/node&gt;
  &lt;node&gt; 1 1 1 &lt;/node&gt;
  &lt;node&gt; 2 1 &lt;/node&gt;
  &lt;node&gt; 3 1 &lt;/node&gt;
  &lt;node&gt; 3 1 &lt;/node&gt;
&lt;/tree&gt;
</pre>

<h2><a name="A2" id="A2">13. Appendix II - Semantic Tags</a></h2>

<p>Semantic tags can be attached to N-Gram events. This may be
particularly useful for class grammars where several alternative
expressions with the same semantics should yield the same output,
i.e. the semantic tag. If defined, semantic tags take precedence
over other interpretations.</p>

<p>Continuing our example, we declare the occurrence of "B X" and
"X B" to be identical semantic events of type "BX", where "X"
represents an instance of class "firstclass".</p>

<p>Then the class based N-Gram grammar for our pseudo-corpus is
declared as follows:</p>

<pre class="xml">
&lt;n-gram&gt;
  &lt;import uri="http://www.example.com/firstclass.xml"
      name="firstclass" /&gt;

  &lt;lexicon&gt;
    &lt;token index="1"&gt;
      &lt;ruleref import="firstclass#firstclass"/&gt;
    &lt;/token&gt;
    &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;/lexicon&gt;

  &lt;tree&gt;
    2,5;
    1,1,3;
    2,1,2;&lt;tag name="BX"/&gt;;
    1,2;
    2,1,2;
    1,1,2;&lt;tag name="BX"/&gt;;
    2,1;
  &lt;/tree&gt;
&lt;/n-gram&gt;
</pre>

<p>Semantic tags are written in XML format and appended to the
appropriate N-Gram count declaration. Please note that further
study is planned for semantic markup for N-Grams.</p>

<p>The following pure XML format is not required for compliance,
but is suggested for those who prefer to use a pure XML reader.</p>

<p>Following the example a complete declaration is:</p>

<pre class="xml">
&lt;n-gram&gt;
  &lt;import uri="http://www.example.com/firstclass.xml"
     name="firstclass" /&gt;

  &lt;lexicon&gt;
    &lt;token index="1"&gt;
      &lt;ruleref import="firstclass#firstclass"/&gt;
    &lt;/token&gt;
    &lt;token index="2"&gt; B &lt;/token&gt;
  &lt;/lexicon&gt;

  &lt;tree&gt;
    &lt;node branches="2" count="5" /&gt;
    &lt;node index="1" branches="1" count="3" /&gt;
    &lt;node index="2" branches="1" count="2" name="BX" /&gt;
    &lt;node index="1" count="2" /&gt;
    &lt;node index="2" branches="1" count="2" /&gt;
    &lt;node index="1" branches="1" count="2" name="BX" /&gt;
    &lt;node index="2" count="1" /&gt;
  &lt;/tree&gt;
&lt;/n-gram&gt;
</pre>

<p>Naming a node replaces the normal syntactic output with the
semantic tag name. Hence, input string "A B A B C" will now yield
the interpretation "BX BX X(C)" indicating the occurrence of two
semantic events "BX" followed by an instance of member "C" of
class "X". This can be treated as the only interpretation if
precedence of semantic tags is imposed. Without precedence other
possible interpretations include: "BX X(A) BX"; "BX X(A) B X(C)";
"X(A) BX BX"; "X(A) BX B X(C)"; "X(A) B BX X(C)"; "X(A) B X(A)
BX"; "X(A) B X(A) B X(C)".</p>

<h2><a id="refs" name="refs">14. Further Reading</a></h2>

<p>For further information on stochastic language models, you
are recommended to look at:</p>

<blockquote>
"Speech and Language Processing: An introduction to Natural
Language Processing, Computational Linguistics, and
Speech Processing", Daniel Jurafsky &amp; James H. Martin,
published 2000 by Prentice-Hall. ISBN 0-13-095069-6.
</blockquote>
</body>
</html>