index.html
151 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>XML Encryption Syntax and Processing</title>
<style type="text/css">
<!--
/*<![CDATA[*/
em {font-weight: normal; font-style: italic;}
u,ins,.ins { background: white; color: red;}
del,strike,.strike { background: white; color: silver; text-decoration: line-through;}
code {font-weight: normal; }
.def { background: #FFFFFF; font-weight: bold}
.link-sec { font-style: italic;}
.link-def { background: #FFFFFF; color: teal; font-style: italic;}
.comment { background: #FFFFF5; color: black; padding: .7em; border:
navy thin solid;}
.discuss { color: blue; background: yellow; }
.xml-example,.xml-dtd { margin-left: -1em; padding: .5em; white-space:
pre; border: none;}
.xml-dtd { background: #efeff8; color: black;}
/*]]>*/
-->
</style>
<link rel="stylesheet" type="text/css"
href="http://www.w3.org/StyleSheets/TR/W3C-REC.css" />
</head>
<body xml:lang="en" lang="en">
<div class="head">
<p><a href="http://www.w3.org/"><img height="48" width="72" alt="W3C"
src="http://www.w3.org/Icons/w3c_home" /></a></p>
<h1 class="notoc">XML Encryption Syntax and Processing</h1>
<h2 class="notoc">W3C Recommendation 10 December 2002</h2>
<dl>
<dt>This version:</dt>
<dd><a
href="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/">http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/</a></dd>
<dt>Latest version:</dt>
<dd><a
href="http://www.w3.org/TR/xmlenc-core/">http://www.w3.org/TR/xmlenc-core/</a></dd>
<dt>Previous version:</dt>
<dd><a
href="http://www.w3.org/TR/2002/PR-xmlenc-core-20021003/">http://www.w3.org/TR/2002/PR-xmlenc-core-20021003/</a></dd>
<dt><a
href="http://www.w3.org/Encryption/2001/Contributor.html#Editor">Editors</a></dt>
<dd>Donald Eastlake <dee3@torque.pothole.com></dd>
<dd>Joseph Reagle <reagle@w3.org></dd>
<dt><a
href="http://www.w3.org/Encryption/2001/Contributor.html#Author">Authors</a></dt>
<dd>Takeshi Imamura <IMAMU@jp.ibm.com></dd>
<dd>Blair Dillaway <blaird@microsoft.com></dd>
<dd>Ed Simon <edsimon@xmlsec.com></dd>
<dt><a
href="http://www.w3.org/Encryption/2001/Contributor.html#Contributor">Contributors</a></dt>
<dd>See <a
href="http://www.w3.org/Encryption/2001/Participants.html">participants</a>.</dd>
</dl>
<p>Please see the <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-errata"><strong>errata</strong></a>
for this document, which may include some normative corrections. See also <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-translations"><strong>translations</strong></a>.</p>
<p class="copyright"><a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright">Copyright</a>
© 2002 <a href="http://www.w3.org/"><abbr
title="World Wide Web Consortium">W3C</abbr></a><sup>®</sup> (<a
href="http://www.lcs.mit.edu/"><abbr
title="Massachusetts Institute of Technology">MIT</abbr></a>, <a
href="http://www.inria.fr/"><abbr xml:lang="fr" lang="fr"
title="Institut National de Recherche en Informatique et Automatique">INRIA</abbr></a>,
<a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer">liability</a>,
<a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks">trademark</a>,
<a
href="http://www.w3.org/Consortium/Legal/copyright-documents-19990405">document
use</a> and <a
href="http://www.w3.org/Consortium/Legal/copyright-software-19980720">software
licensing</a> rules apply.</p>
<hr title="Separator from Header" />
</div>
<h2 class="notoc"><a name="sec-Abstract" id="sec-Abstract">Abstract</a></h2>
<p class="notoc">This document specifies a process for encrypting data and
representing the result in XML. The data may be arbitrary data (including an
XML document), an XML element, or XML element content. The result of
encrypting data is an XML Encryption element which contains or references the
cipher data.</p>
<h2 class="notoc">Status of this document</h2>
<div class="">
<p>This document is the W3C XML Encryption <a
href="http://www.w3.org/Consortium/Process-20010719/process.html#RecsW3C">Recommendation
(REC)</a>. This document has been reviewed by W3C Members and other
interested parties and has been endorsed by the Director as a W3C
Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C's role in making
the Recommendation is to draw attention to the specification and to promote
its widespread deployment. This enhances the functionality and
interoperability of the Web.</p>
<p>This specification was produced by the W3C <a
href="http://www.w3.org/Encryption/2001/Overview.html">XML Encryption Working
Group</a> (<a
href="http://www.w3.org/Encryption/2001/Activity.html">Activity</a>) which
believes the specification is sufficient for the creation of independent
interoperable implementations as demonstrated in the <a
href="http://www.w3.org/Encryption/2002/02-xenc-interop.html">Interoperability
Report.</a></p>
<p>Patent disclosures relevant to this specification may be found on the
Working Group's <a
href="http://www.w3.org/Encryption/2001/Disclosures.html">patent disclosure
page</a> in conformance with W3C policy.</p>
<p>Please report errors in this document to <a
href="mailto:xml-encryption@w3.org">xml-encryption@w3.org</a> (<a
href="http://lists.w3.org/Archives/Public/xml-encryption/">public
archive</a>).</p>
<p>The list of known errors in this specification is available at <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-errata">http://www.w3.org/Encryption/2002/12-xmlenc-errata</a>.</p>
<p>The English version of this specification is the only normative version.
Information about translations of this document (if any) is available <a
href="http://www.w3.org/Encryption/2002/12-xmlenc-translations">http://www.w3.org/Encryption/2002/12-xmlenc-translations</a>.</p>
<p>A list of current W3C Recommendations and other technical documents can be
found at <a href="http://www.w3.org/TR/">http://www.w3.org/TR/</a>.</p>
</div>
<h2><a name="sec-ToC" id="sec-ToC">Table of Contents</a></h2>
<ol>
<li><a href="#sec-Introduction">Introduction</a>
<ol>
<li><a href="#sec-Editorial">Editorial and Conformance
Conventions</a></li>
<li><a href="#sec-Design">Design Philosophy</a></li>
<li><a href="#sec-Versions">Versions, Namespaces URIs, and
Identifiers</a></li>
<li><a href="#sec-Acknowledgements">Acknowledgements</a></li>
</ol>
</li>
<li><a href="#sec-Overview">Encryption Overview and Examples</a>
<ol>
<li><a href="#sec-eg-Granularity">Encryption Granularity</a>
<ol>
<li><a href="#sec-eg-Element">Encrypting an XML Element</a></li>
<li><a href="#sec-eg-Element-Content">Encrypting XML Element
Content (Elements)</a></li>
<li><a href="#sec-eg-Element-Content-Character">Encrypting XML
Element Content (Character Data)</a></li>
<li><a href="#sec-eg-Arbitrary-Data">Encrypting Arbitrary Data and
XML Documents</a></li>
<li><a href="#sec-eg-Super-Encryption">Super-Encryption: Encrypting
<code>EncryptedData</code></a></li>
</ol>
</li>
<li><a href="#sec-Usage"><code>EncryptedData</code> and
<code>EncryptedKey</code> Usage</a>
<ol>
<li><a href="#sec-eg-Symmetric-Key"><code>EncryptedData</code> with
Symmetric Key (<code>KeyName</code>)</a></li>
<li><a href="#sec-eg-EncryptedKey"><code>EncryptedKey</code>
(<code>ReferenceList</code>,
<code>ds:RetrievalMethod</code>,<code>CarriedKeyName</code>)</a></li>
</ol>
</li>
</ol>
</li>
<li><a href="#sec-Encryption-Syntax">Encryption Syntax</a>
<ol>
<li><a href="#sec-EncryptedType">The <code>EncryptedType</code>
Element</a></li>
<li><a href="#sec-EncryptionMethod">The <code>EncryptionMethod</code>
Element</a></li>
<li><a href="#sec-CipherData">The <code>CipherData</code> Element</a>
<ol>
<li><a href="#sec-CipherReference">The <code>CipherReference</code>
Element</a></li>
</ol>
</li>
<li><a href="#sec-EncryptedData">The <code>EncryptedData</code>
Element</a></li>
<li><a href="#sec-Extensions-to-KeyInfo">Extensions to
<code>ds:KeyInfo</code> Element</a>
<ol>
<li><a href="#sec-EncryptedKey">The <code>EncryptedKey</code>
Element</a></li>
<li><a href="#sec-ds-RetrievalMethod">The
<code>ds:RetrievalMethod</code> Element</a></li>
</ol>
</li>
<li><a href="#sec-ReferenceList">The <code>ReferenceList</code>
Element</a></li>
<li><a href="#sec-EncryptionProperties">The
<code>EncryptionProperties</code> Element</a></li>
</ol>
</li>
<li><a href="#sec-Processing">Processing Rules</a>
<ol>
<li><a href="#sec-Processing-Encryption">Encryption</a></li>
<li><a href="#sec-Processing-Decryption">Decryption</a></li>
<li><a href="#sec-Processing-XML">Encrypting XML</a>
<ol>
<li><a href="#sec-Decrypt-Imp">A Decrypt Implementation
(Non-normative)</a></li>
<li><a href="#sec-Decrypt-Replace-Imp">A Decrypt and Replace
Implementation (Non-normative)</a></li>
<li><a href="#sec-Serializing-XML">Serializing XML
(Non-normative)</a></li>
<li><a href="#sec-Text-Wrapping">Text Wrapping
(Non-normative)</a></li>
</ol>
</li>
</ol>
</li>
<li><a href="#sec-Algorithms">Algorithms</a>
<ol>
<li><a href="#sec-AlgID">Algorithm Identifiers and Implementation
Requirements</a></li>
<li><a href="#sec-Alg-Block">Block Encryption Algorithms</a></li>
<li><a href="#sec-Alg-Stream">Stream Encryption Algorithms</a></li>
<li><a href="#sec-Alg-KeyTransport">Key Transport</a></li>
<li><a href="#sec-Alg-KeyAgreement">Key Agreement</a></li>
<li><a href="#sec-Alg-SymmetricKeyWrap">Symmetric Key Wrap</a></li>
<li><a href="#sec-Alg-MessageDigest">Message Digest</a></li>
<li><a href="#sec-Alg-MessageAuthentication">Message
Authentication</a></li>
<li><a href="#sec-Alg-Canonicalition">Canonicalization</a></li>
</ol>
</li>
<li><a href="#sec-Security">Security Considerations</a>
<ol>
<li><a href="#sec-Sign-with-Encrypt">Relationship to XML Digital
Signatures</a></li>
<li><a href="#sec-InformationRevealed">Information Revealed</a></li>
<li><a href="#sec-Nonce">Nonce and IV (Initialization Value or
Vector)</a></li>
<li><a href="#sec-Denial">Denial of Service</a></li>
<li><a href="#sec-Unsafe-Content">Unsafe Content</a></li>
</ol>
</li>
<li><a href="#sec-Conformance">Conformance</a></li>
<li><a href="#sec-MediaType">XML Encryption Media Type</a>
<ol>
<li><a href="#sec-MediaType-Introduction">Introduction</a></li>
<li><a href="#sec-MediaType-Registration">application/xenc+xml
Registration</a></li>
</ol>
</li>
<li><a href="#sec-Schema">Schema and Valid Examples</a></li>
<li><a href="#sec-References">References</a></li>
</ol>
<hr />
<h2>1 <a id="sec-Introduction" name="sec-Introduction">Introduction</a></h2>
<p>This document specifies a process for encrypting data and representing the
result in XML. The data may be arbitrary data (including an XML document), an
XML element, or XML element content. The result of encrypting data is an XML
Encryption <code>EncryptedData</code> element which contains (via one of its
children's content) or identifies (via a URI reference) the cipher data.</p>
<p>When encrypting an XML element or element content the
<code>EncryptedData</code> element replaces the element or content
(respectively) in the encrypted version of the XML document.</p>
<p>When encrypting arbitrary data (including entire XML documents), the
<code>EncryptedData</code> element may become the root of a new XML document
or become a child element in an application-chosen XML document.</p>
<h3>1.1 <a id="sec-Editorial" name="sec-Editorial">Editorial</a> and
Conformance Conventions</h3>
<p>This specification uses XML schemas [<a
href="#ref-XML-Schema">XML-schema</a>] to describe the content model.</p>
<p>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
specification are to be interpreted as described in <a
href="http://www.ietf.org/rfc/rfc2119.txt">RFC2119</a> [<a
href="#ref-KEYWORDS">KEYWORDS</a>]:</p>
<blockquote>
<p>"they MUST only be used where it is actually required for interoperation
or to limit behavior which has potential for causing harm (e.g., limiting
retransmissions)"</p>
</blockquote>
<p>Consequently, we use these capitalized keywords to unambiguously specify
requirements over protocol and application features and behavior that affect
the interoperability and security of implementations. These key words are not
used (capitalized) to describe XML grammar; schema definitions unambiguously
describe such requirements and we wish to reserve the prominence of these
terms for the natural language descriptions of protocols and features. For
instance, an XML attribute might be described as being "optional." Compliance
with the XML-namespace specification [<a href="#ref-XML-NS">XML-NS</a>] is
described as "REQUIRED."</p>
<h3>1.2 <a id="sec-Design" name="sec-Design">Design</a> Philosophy</h3>
<p>The design philosophy and requirements of this specification (including
the limitations related to instance validity) are addressed in the <a
href="http://www.w3.org/TR/xml-encryption-req">XML Encryption
Requirements</a> [<a href="#ref-EncReq">EncReq</a>].</p>
<h3>1.3 <a id="sec-Versions" name="sec-Versions">Versions</a>, Namespaces,
URIs, and Identifiers</h3>
<p>No provision is made for an explicit version number in this syntax. If a
future version is needed, it will use a different namespace. The experimental
XML namespace [<a href="#ref-XML-NS">XML-NS</a>] URI that MUST be used by
implementations of this (dated) specification is:</p>
<pre class="xml-example"> xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'</pre>
<p class="">This namespace is also used as the prefix for algorithm
identifiers used by this specification. While applications MUST support XML
and XML namespaces, the use of <a
href="http://www.w3.org/TR/REC-xml#sec-internal-ent">internal entities</a>
[<a href="#ref-XML">XML</a>, section 4.2.1], the "<code>xenc</code>" XML <a
href="http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-prefix">namespace
prefix</a> [<a href="#ref-XML-NS">XML-NS</a>, section 2] and
defaulting/scoping conventions are OPTIONAL; we use these facilities to
provide compact and readable examples. Additionally, the entity
<code>&xenc;</code> is defined so as to provide short-hand identifiers
for URIs defined in this specification. For example
"<code>&xenc;Element"</code> corresponds to
"http://www.w3.org/2001/04/xmlenc#Element".</p>
<p>This specification makes use of the XML Signature [<a
href="#ref-XML-DSIG">XML-DSIG</a>] namespace and schema definitions</p>
<pre class="xml-example"> xmlns:ds='http://www.w3.org/2000/09/xmldsig#'</pre>
<p>URIs [<a href="#ref-URI">URI</a>] MUST abide by the [<a
href="#ref-XML-Schema">XML-Schema</a>] <code>anyURI</code> type definition
and the [<a href="#ref-XML-DSIG">XML-DSIG</a>, <a
href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#sec-URI">4.3.3.1
The URI Attribute</a>] specification (i.e., permitted characters, character
escaping, scheme support, etc.).</p>
<h3>1.4 <a id="sec-Acknowledgements"
name="sec-Acknowledgements">Acknowledgements</a></h3>
<p>The contributions of the following Working Group members to this
specification are gratefully acknowledged in accordance with the <a
href="http://www.w3.org/Encryption/2001/Contributor.html">contributor
policies</a> and the active <a
href="http://www.w3.org/Encryption/2001/Participants.html">WG roster</a>.</p>
<ul>
<li>Joseph Ashwood</li>
<li>Simon Blake-Wilson, Certicom</li>
<li>Frank D. Cavallito, BEA Systems</li>
<li>Eric Cohen, PricewaterhouseCoopers</li>
<li>Blair Dillaway, Microsoft (Author)</li>
<li>Blake Dournaee, RSA Security</li>
<li>Donald Eastlake, Motorola (Editor)</li>
<li>Barb Fox, Microsoft</li>
<li>Christian Geuer-Pollmann, University of Siegen</li>
<li>Tom Gindin, IBM</li>
<li>Jiandong Guo, Phaos</li>
<li>Phillip Hallam-Baker, Verisign</li>
<li>Amir Herzberg, NewGenPay</li>
<li>Merlin Hughes, Baltimore</li>
<li>Frederick Hirsch</li>
<li>Maryann Hondo, IBM</li>
<li>Takeshi Imamura, IBM (Author)</li>
<li>Mike Just, Entrust, Inc.</li>
<li>Brian LaMacchia, Microsoft</li>
<li>Hiroshi Maruyama, IBM</li>
<li>John Messing, Law-on-Line</li>
<li>Shivaram Mysore, Sun Microsystems</li>
<li>Thane Plambeck, Verisign</li>
<li>Joseph Reagle, W3C (Chair, Editor)</li>
<li>Aleksey Sanin</li>
<li>Jim Schaad, Soaring Hawk Consulting</li>
<li>Ed Simon, XMLsec (Author)</li>
<li>Daniel Toth, Ford</li>
<li>Yongge Wang, Certicom</li>
<li>Steve Wiley, myProof</li>
</ul>
<p>Additionally, we thank the following for their comments during and
subsequent to Last Call:</p>
<ul>
<li>Martin Dürst, W3C</li>
<li>Dan Lanz, Zolera</li>
<li>Susan Lesch, W3C</li>
<li>David Orchard, BEA Systems</li>
<li>Ronald Rivest, MIT</li>
</ul>
<h2>2 <a id="sec-Overview" name="sec-Overview">Encryption Overview</a> and
Examples (Non-normative)</h2>
<p>This section provides an overview and examples of XML Encryption syntax.
The formal syntax is found in <a class="link-sec"
href="#sec-Encryption-Syntax">Encryption Syntax</a> (section 3); the specific
processing is given in <a class="link-sec"
href="http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing">Processing
Rules</a> (section 4).</p>
<p>Expressed in shorthand form, the <code><a
href="#sec-EncryptedData">EncryptedData</a></code> element has the following
structure (where "?" denotes zero or one occurrence; "+" denotes one or more
occurrences; "*" denotes zero or more occurrences; and the empty element tag
means the element must be empty ):</p>
<pre class="xml-example"> <EncryptedData Id? Type? MimeType? Encoding?>
<EncryptionMethod/>?
<ds:KeyInfo>
<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds:*>?
</ds:KeyInfo>?
<CipherData>
<CipherValue>?
<CipherReference URI?>?
</CipherData>
<EncryptionProperties>?
</EncryptedData></pre>
<p>The <code>CipherData</code> element envelopes or references the raw
encrypted data. If enveloping, the raw encrypted data is the
<code>CipherValue</code> element's content; if referencing, the
<code>CipherReference</code> element's <code>URI</code> attribute points to
the location of the raw encrypted data</p>
<h3>2.1 Encryption <a name="sec-eg-Granularity"
id="sec-eg-Granularity">Granularity</a></h3>
<p>Consider the following fictitious payment information, which includes
identification information and information appropriate to a payment method
(e.g., credit card, money transfer, or electronic check):</p>
<pre class="xml-example"> <?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>
<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo></pre>
<p>This markup represents that John Smith is using his credit card with a
limit of $5,000USD.</p>
<h4>2.1.1 Encrypting an XML <a name="sec-eg-Element"
id="sec-eg-Element">Element</a></h4>
<p>Smith's credit card number is sensitive information! If the application
wishes to keep that information confidential, it can encrypt the
<code>CreditCard</code> element:</p>
<pre class="xml-example"> <?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith</Name>
<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</CipherData>
</EncryptedData>
</PaymentInfo></pre>
<p>By encrypting the entire <code>CreditCard</code> element from its start to
end tags, the identity of the element itself is hidden. (An eavesdropper
doesn't know whether he used a credit card or money transfer.) The
<code>CipherData</code> element contains the encrypted serialization of the
<code>CreditCard</code> element.</p>
<h4>2.1.2 Encrypting XML <a name="sec-eg-Element-Content"
id="sec-eg-Element-Content">Element Content</a> (Elements)</h4>
<p>As an alternative scenario, it may be useful for intermediate agents to
know that John used a credit card with a particular limit, but not the card's
number, issuer, and expiration date. In this case, the content (character
data or children elements) of the <code>CreditCard</code> element is
encrypted:</p>
<pre class="xml-example"> <?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='http://www.w3.org/2001/04/xmlenc#Content'>
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</CipherData>
</EncryptedData>
</CreditCard>
</PaymentInfo></pre>
<h4>2.1.3 Encrypting XML <a name="sec-eg-Element-Content-Character"
id="sec-eg-Element-Content-Character">Element Content</a> (Character
Data)</h4>
<p>Or, consider the scenario in which all the information <em>except</em> the
actual credit card number can be in the clear, including the fact that the
Number element exists:</p>
<pre class="xml-example"> <?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>
<Number>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='http://www.w3.org/2001/04/xmlenc#Content'>
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</<code>CipherDat</code>a>
</<code>EncryptedDat</code>a>
</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo></pre>
<p>Both <code>CreditCard</code> and <code>Number</code> are in the clear, but
the character data content of <code>Number</code> is encrypted.</p>
<h4>2.1.4 Encrypting <a name="sec-eg-Arbitrary-Data"
id="sec-eg-Arbitrary-Data">Arbitrary Data</a> and XML Documents</h4>
<p>If the application scenario requires all of the information to be
encrypted, the whole document is encrypted as an octet sequence. This applies
to arbitrary data including XML documents.</p>
<pre class="xml-example"> <?xml version='1.0'?>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
MimeType='text/xml'>
<CipherData>
<CipherValue>A23B45C56</CipherValue>
</<code>CipherDat</code>a>
</<code>EncryptedDat</code>a></pre>
<h4>2.1.5 <a name="sec-eg-Super-Encryption"
id="sec-eg-Super-Encryption">Super-Encryption</a>: Encrypting
EncryptedData</h4>
<p>An XML document may contain zero or more <code>EncryptedData</code>
elements. <code>EncryptedData</code> cannot be the parent or child of another
<code>EncryptedData</code> element. However, the actual data encrypted can be
anything, including <code>EncryptedData</code> and <code>EncryptedKey</code>
elements (i.e., super-encryption). During super-encryption of an
<code>EncryptedData</code> or <code>EncryptedKey</code> element, one must
encrypt the entire element. Encrypting only the content of these elements, or
encrypting selected child elements is an invalid instance under the provided
schema.<br />
For example, consider the following:</p>
<pre class="xml-example"> <p<code>ay:PaymentInfo</code> xmlns:pay='http://example.org/paymentv2'>
<EncryptedData Id='ED1' xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'>
<CipherData>
<CipherValue><code>original</code>EncryptedData</CipherValue>
</CipherData>
</EncryptedData>
</pay:PaymentInfo></pre>
<p>A valid super-encryption of "<code>//xenc:EncryptedData[@Id='ED1']</code>"
would be:</p>
<pre class="xml-example"> <p<code>ay:PaymentInfo</code> xmlns:pay='http://example.org/paymentv2'>
<EncryptedData Id='ED2' xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'>
<CipherData>
<CipherValue><code>new</code>EncryptedData</CipherValue>
</<code>CipherDat</code>a>
</<code>EncryptedDat</code>a>
</<code>pay:PaymentInf</code>o></pre>
<p>where the <code>CipherValue</code> content of
'<code>newEncryptedData</code>' is the base64 encoding of the encrypted octet
sequence resulting from encrypting the <code>EncryptedData</code> element
with <code>Id='ED1'</code>.</p>
<h3>2.2 <code>EncryptedData</code> and <code>EncryptedKey</code> <a
name="sec-Usage" id="sec-Usage">Usage</a></h3>
<h4>2.2.1 <code>EncryptedData</code> with <a name="sec-eg-Symmetric-Key"
id="sec-eg-Symmetric-Key">Symmetric Key</a> (<code>KeyName</code>)</h4>
<pre class="xml-example"> [s1] <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'/>
[s2] <EncryptionMethod
Algorithm='http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/>
[s3] <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
[s4] <ds:KeyName>John Smith</<code>ds:KeyNam</code>e>
[s5] </ds:KeyInfo>
[s6] <CipherData><CipherValue>DEADBEEF</CipherValue></CipherData>
[s7] </EncryptedData></pre>
<p><code>[s1]</code> The type of data encrypted may be represented as an
attribute value to aid in decryption and subsequent processing. In this case,
the data encrypted was an 'element'. Other alternatives include 'content' of
an element, or an external octet sequence which can also be identified via
the <code>MimeType</code> and <code>Encoding</code> attributes.</p>
<p><code>[s2]</code> This (3DES CBC) is a symmetric key cipher.</p>
<p><code>[s4]</code> The symmetric key has an associated name "John
Smith".</p>
<p><code>[s6]</code> <code>CipherData</code> contains a
<code>CipherValue</code>, which is a base64 encoded octet sequence.
Alternately, it could contain a <code>CipherReference</code>, which is a URI
reference along with transforms necessary to obtain the encrypted data as an
octet sequence</p>
<h4>2.2.2 <a name="sec-eg-EncryptedKey"
id="sec-eg-EncryptedKey"><code>EncryptedKey</code></a>
(<code>ReferenceList</code>, <code>ds:RetrievalMethod</code>,
<code>CarriedKeyName</code>)</h4>
<p>The following <code>EncryptedData</code> structure is very similar to the
one above, except this time the key is referenced using a
<code>ds:RetrievalMethod</code>:</p>
<pre class="xml-example"> [t01] <EncryptedData Id='ED'
xmlns='http://www.w3.org/2001/04/xmlenc#'>
[t02] <EncryptionMethod
Algorithm='http://www.w3.org/2001/04/xmlenc#aes128-cbc'/>
[t03] <d<code>s:KeyInfo</code> xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
[t04] <ds:<code>RetrievalMethod</code> URI='#EK'
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>
[t05] <ds:KeyName>Sally Doe</ds:KeyName>
[t06] </ds:KeyInfo>
[t07] <CipherData><CipherValue>DEADBEEF</CipherValue></CipherData>
[t08] </EncryptedData></pre>
<p><code>[t02]</code> This (AES-128-CBC) is a symmetric key cipher.</p>
<p><code>[t04]</code> <code>ds:RetrievalMethod</code> is used to indicate the
location of a key with type <code>&xenc;EncryptedKey</code>. The (AES)
key is located at '#EK'.</p>
<p><code>[t05]</code> <code>ds:KeyName</code> provides an alternative method
of identifying the key needed to decrypt the <code>CipherData</code>. Either
or both the <code>ds:KeyName</code> and <code>ds:KeyRetrievalMethod</code>
could be used to identify the same key.</p>
<p>Within the same XML document, there existed an <code>EncryptedKey</code>
structure that was referenced within <code>[t04]</code>:</p>
<pre class="xml-example"> [t09] <EncryptedKey Id='EK' xmlns='http://www.w3.org/2001/04/xmlenc#'>
[t10] <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
[t11] <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
[t12] <ds:KeyName>John Smith</<code>ds:KeyNam</code>e>
[t13] </ds:KeyInfo>
[t14] <CipherData><CipherValue>xyzabc</CipherValue></CipherData>
[t15] <ReferenceList>
[t16] <DataReference URI='#ED'/>
[t17] </ReferenceList>
[t18] <CarriedKeyName>Sally Doe</CarriedKeyName>
[t19] </EncryptedKey></pre>
<p><code>[t09]</code> The <code>EncryptedKey</code> element is similar to the
<code>EncryptedData</code> element except that the data encrypted is always a
key value.</p>
<p><code>[t10]</code> The <code>EncryptionMethod</code> is the RSA public key
algorithm.</p>
<p><code>[t12]</code> <code>ds:KeyName</code> of "John Smith" is a property
of the key necessary for decrypting (using RSA) the
<code>CipherData</code>.</p>
<p><code>[t14]</code> The <code>CipherData</code>'s <code>CipherValue</code>
is an octet sequence that is processed (serialized, encrypted, and encoded)
by a referring encrypted object's <code>EncryptionMethod</code>. (Note, an
EncryptedKey's <code>EncryptionMethod</code> is the algorithm used to encrypt
these octets and does not speak about what type of octets they are.)</p>
<p><code>[t15-17]</code> A <code>ReferenceList</code> identifies the
encrypted objects (<code>DataReference</code> and <code>KeyReference</code>)
encrypted with this key. The <code>ReferenceList</code> contains a list of
references to data encrypted by the symmetric key carried within this
structure.</p>
<p><code>[t18]</code> The <code>CarriedKeyName</code> element is used to
identify the encrypted key value which may be referenced by the
<code>KeyName</code> element in <code>ds:KeyInfo</code>. (Since ID attribute
values must be unique to a document,<code>CarriedKeyName</code> can indicate
that several <code>EncryptedKey</code> structures contain the same key value
encrypted for different recipients.)</p>
<h1>3 <a name="sec-Encryption-Syntax" id="sec-Encryption-Syntax">Encryption
Syntax</a></h1>
<p>This section provides a detailed description of the syntax and features
for XML Encryption. Features described in this section MUST be implemented
unless otherwise noted. The syntax is defined via [<a
href="#ref-XML-Schema">XML-Schema</a>] with the following XML preamble,
declaration, internal entity, and import:</p>
<pre class="xml-dtd"> Schema Definition:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE schema PUBLIC "-//W3C//DTD XMLSchema 200102//EN"
"http://www.w3.org/2001/XMLSchema.dtd"
[
<!ATTLIST schema
xmlns:xenc CDATA #FIXED 'http://www.w3.org/2001/04/xmlenc#'
xmlns:ds CDATA #FIXED 'http://www.w3.org/2000/09/xmldsig#'>
<!ENTITY xenc 'http://www.w3.org/2001/04/xmlenc#'>
<!ENTITY % p ''>
<!ENTITY % s ''>
]>
<schema xmlns='http://www.w3.org/2001/XMLSchema' version='1.0'
xmlns:ds='http://www.w3.org/2000/09/xmldsig#'
xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'
targetNamespace='http://www.w3.org/2001/04/xmlenc#'
element<code>FormDefault</code>='qualified'>
<import namespace='http://www.w3.org/2000/09/xmldsig#'
schemaLocation='http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-schema.xsd'/></pre>
<h2>3.1 The <a name="sec-EncryptedType"
id="sec-EncryptedType"><code>EncryptedType</code> Element</a></h2>
<p><code>EncryptedType</code> is the abstract type from which
<code>EncryptedData</code> and <code>EncryptedKey</code> are derived. While
these two latter element types are very similar with respect to their content
models, a syntactical distinction is useful to processing. Implementation
MUST generate laxly schema valid [<a href="#ref-XML-Schema">XML-schema</a>]
<code>EncryptedData</code> or <code>EncryptedKey</code> as specified by the
subsequent schema declarations. (Note the laxly schema valid generation means
that the content permitted by <code>xsd:ANY</code> need not be valid.)
Implementations SHOULD create these XML structures
(<code>EncryptedType</code> elements and their descendents/content) in
Normalization Form C [<a href="#ref-NFC">NFC</a>, <a
href="#ref-NFC-Corrigendum">NFC-Corrigendum</a>].</p>
<pre class="xml-dtd"> Schema Definition:
<complexType name='<code>EncryptedType</code>' abstract='true'>
<sequence>
<element name='<code>EncryptionMethod</code>' type='<code>xenc:EncryptionMethodType</code>'
minOccurs='0'/>
<element ref='<code>ds:KeyInfo</code>' minOccurs='0'/>
<element ref='<code>xenc:CipherData</code>'/>
<element ref='xenc:EncryptionProperties' minOccurs='0'/>
</sequence>
<attribute name='Id' type='ID' use='optional'/>
<attribute name='Type' type='anyURI' use='optional'/>
<attribute name='MimeType' type='string' use='optional'/>
<attribute name='Encoding' type='anyURI' use='optional'/>
</complexType></pre>
<p><code>EncryptionMethod</code> is an optional element that describes the
encryption algorithm applied to the cipher data. If the element is absent,
the encryption algorithm must be known by the recipient or the decryption
will fail.</p>
<p><code>ds:KeyInfo</code> is an optional element, defined by [<a
href="#ref-XML-DSIG">XML-DSIG</a>], that carries information about the key
used to encrypt the data. Subsequent sections of this specification define
new elements that may appear as children of <code>ds:KeyInfo</code>.</p>
<p><code>CipherData</code> is a mandatory element that contains the
<code>CipherValue</code> or <code>CipherReference</code> with the encrypted
data.</p>
<p><code>EncryptionProperties</code> can contain additional information
concerning the generation of the <code>EncryptedType</code> (e.g., date/time
stamp).</p>
<p><code>Id</code> is an optional attribute providing for the standard method
of assigning a string id to the element within the document context.</p>
<p><code>Type</code> is an optional attribute identifying type information
about the plaintext form of the encrypted content. While optional, this
specification takes advantage of it for mandatory processing described in <a
class="link-sec" href="#sec-Processing-Decryption">Processing Rules:
Decryption</a> (section 4.2). If the <code>EncryptedData</code> element
contains data of <code>Type</code> 'element' or element 'content', and
replaces that data in an XML document context, it is strongly recommended the
<code>Type</code> attribute be provided. Without this information, the
decryptor will be unable to automatically restore the XML document to its
original cleartext form.</p>
<p><code>MimeType</code> is an optional (advisory) attribute which describes
the media type of the data which has been encrypted. The value of this
attribute is a string with values defined by [<a href="#ref-MIME">MIME</a>].
For example, if the data that is encrypted is a base64 encoded PNG, the
transfer <code>Encoding</code> may be specified as '<a
href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a>'
and the <code>MimeType</code> as 'image/png'. This attribute is purely
advisory; no validation of the <code>MimeType</code> information is required
and it does not indicate the encryption application must do any additional
processing. Note, this information may not be necessary if it is already
bound to the identifier in the <code>Type</code> attribute. For example, the
Element and Content types defined in this specification are always UTF-8
encoded text.</p>
<h2>3.2 The <a name="sec-EncryptionMethod"
id="sec-EncryptionMethod">EncryptionMethod</a> Element</h2>
<p>EncryptionMethod is an optional element that describes the encryption
algorithm applied to the cipher data. If the element is absent, the
encryption algorithm must be known by the recipient or the decryption will
fail.</p>
<pre class="xml-dtd"> Schema Definition:
<complexType name='EncryptionMethodType' mixed='true'>
<sequence>
<element name='KeySize' minOccurs='0' type='xenc:KeySizeType'/>
<element name='OAEPparams' minOccurs='0' type='base64Binary'/>
<any namespace='##other' minOccurs='0' maxOccurs='unbounded'/>
</sequence>
<attribute name='Algorithm' type='anyURI' use='required'/>
</complexType></pre>
<p>The permitted child elements of the <code>EncryptionMethod</code> are
determined by the specific value of the <code>Algorithm</code> attribute URI,
and the <code>KeySize</code> child element is always permitted. For example,
the <a href="#sec-RSA-OAEP">RSA-OAEP algorithm</a> (section 5.4.2) uses the
<code>ds:DigestMethod</code> and <code>OAEPparams</code> elements. (We rely
upon the <code>ANY</code> schema construct because it is not possible to
specify element content based on the value of an attribute.)</p>
<p>The presence of any child element under <code>EncryptionMethod</code>
which is not permitted by the algorithm or the presence of a
<code>KeySize</code> child inconsistent with the algorithm MUST be treated as
an error. (All algorithm URIs specified in this document imply a key size but
this is not true in general. Most popular stream cipher algorithms take
variable size keys.)</p>
<h2>3.3 The <a name="sec-CipherData"
id="sec-CipherData"><code>CipherData</code></a> Element</h2>
<p>The <code>CipherData</code> is a mandatory element that provides the
encrypted data. It must either contain the encrypted octet sequence as base64
encoded text of the <code>CipherValue</code> element, or provide a reference
to an external location containing the encrypted octet sequence via the
<code>CipherReference</code> element.</p>
<pre class="xml-dtd"> Schema Definition:
<element name='<code>CipherData</code>' type='<code>xenc:CipherDataType</code>'/>
<complexType name='<code>CipherDataType</code>'>
<choice>
<element name='<code>CipherValue</code>' type='base64Binary'/>
<element ref='<code>xenc:CipherReference</code>'/>
</choice>
</complexType></pre>
<h3>3.3.1 The <a name="sec-CipherReference"
id="sec-CipherReference"><code>CipherReference</code></a> Element</h3>
<p>If <code>CipherValue</code> is not supplied directly, the
<code>CipherReference</code> identifies a source which, when processed,
yields the encrypted octet sequence.</p>
<p>The actual value is obtained as follows. The <code>CipherReference</code>
<code>URI</code> contains an identifier that is dereferenced. Should the
<code>CipherReference</code> element contain an OPTIONAL sequence of
<code>Transform</code>s, the data resulting from dereferencing the URI is
transformed as specified so as to yield the intended cipher value. For
example, if the value is base64 encoded within an XML document; the
transforms could specify an XPath expression followed by a base64 decoding so
as to extract the octets.</p>
<p>The syntax of the <code>URI</code> and <code>Transforms</code> is similar
to that of [<a href="#ref-XML-DSIG">XML-DSIG</a>]. However, there is a
difference between signature and encryption processing. In [<a
href="#ref-XML-DSIG">XML-DSIG</a>] both generation and validation processing
start with the same source data and perform that transform in the same order.
In encryption, the decryptor has only the cipher data and the specified
transforms are enumerated for the decryptor, in the order necessary to obtain
the octets. Consequently, because it has different semantics
<code>Transforms</code> is in the <code>&xenc;</code> namespace.</p>
<p>For example, if the relevant cipher value is captured within a
<code>CipherValue</code> element within a different XML document, the
<code>CipherReference</code> might look as follows:</p>
<pre class="xml-example"> <CipherReference URI="http://www.example.com/CipherValues.xml">
<Transforms>
<ds:Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<ds:XPath xmlns:rep="http://www.example.org/repository">
self::text()[parent::rep:CipherValue[@Id="example1"]]
</ds:XPath>
</ds:Transform>
<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
</Transforms>
</CipherReference></pre>
<p>Implementations MUST support the <code>CipherReference</code> feature and
the same URI encoding, dereferencing, scheme, and HTTP response codes as that
of [<a href="#ref-XML-DSIG">XML-DSIG</a>]. The <code>Transform</code> feature
and particular transform algorithms are OPTIONAL.</p>
<pre class="xml-dtd"> Schema Definition:
<element name='<code>CipherReference</code>' type='<code>xenc:CipherReferenceType</code>'/>
<complexType name='<code>CipherReferenceType</code>'>
<sequence>
<element name='Transforms' type='xenc:TransformsType' minOccurs='0'/>
</sequence>
<attribute name='URI' type='anyURI' use='required'/>
</complexType>
<complexType name='TransformsType'>
<sequence>
<element ref='ds:Transform' maxOccurs='unbounded'/>
</sequence>
</complexType></pre>
<h2>3.4 The <a name="sec-EncryptedData"
id="sec-EncryptedData"><code>EncryptedData</code></a> Element</h2>
<p>The <code>EncryptedData</code> element is the core element in the syntax.
Not only does its <code>CipherData</code> child contain the encrypted data,
but it's also the element that replaces the encrypted element, or serves as
the new document root.</p>
<pre class="xml-dtd"> Schema Definition:
<element name='<code>EncryptedData</code>' type='<code>xenc:EncryptedDataType</code>'/>
<complexType name='<code>EncryptedDataType</code>'>
<complexContent>
<extension base='<code>xenc:EncryptedType</code>'>
</extension>
</complexContent>
</complexType></pre>
<h2>3.5 <a name="sec-Extensions-to-KeyInfo"
id="sec-Extensions-to-KeyInfo">Extensions to <code>ds:KeyInfo</code></a>
Element</h2>
<p>There are three ways that the keying material needed to decrypt
<code>CipherData</code> can be provided:</p>
<ol>
<li>The <code>EncryptedData</code> or <code>EncryptedKey</code> element
specify the associated keying material via a child of
<code>ds:KeyInfo</code>. All of the child elements of
ds:<code>KeyInfo</code> specified in [<a
href="#ref-XML-DSIG">XML-DSIG</a>] MAY be used as qualified:
<ol>
<li class="">Support for <code>ds:KeyValue</code> is OPTIONAL and may
be used to transport public keys, such as <a
href="#sec-DHKeyValue">Diffie-Hellman Key Values</a> (section 5.5.1).
(Including the plaintext decryption key, whether a private key or a
secret key, is obviously NOT RECOMMENDED.)</li>
<li>Support of <code>ds:KeyName</code> to refer to an
<code>EncryptedKey</code> <code>CarriedKeyName</code> is
RECOMMENDED.</li>
<li>Support for same document <code>ds:RetrievalMethod</code> is
REQUIRED.</li>
</ol>
<p>In addition, we provide two additional child elements: applications
MUST support <code><a href="#sec-EncryptedKey">EncryptedKey</a></code>
(section 3.5.1) and MAY support <code><a
href="#sec-Alg-KeyAgreement">AgreementMethod</a></code> (section 5.5).</p>
</li>
<li>A detached (not inside <code>ds:KeyInfo</code>)
<code>EncryptedKey</code> element can specify the
<code>EncryptedData</code> or <code>EncryptedKey</code> to which its
decrypted key will apply via a <code><a
href="#sec-ReferenceList">DataReference</a></code> or <a
href="#sec-ReferenceList"><code>KeyReference</code></a> (section
3.6).</li>
<li>The keying material can be determined by the recipient by application
context and thus need not be explicitly mentioned in the transmitted
XML.</li>
</ol>
<h3>3.5.1 The <a name="sec-EncryptedKey"
id="sec-EncryptedKey"><code>EncryptedKey</code></a> Element</h3>
<dl>
<dt>Identifer</dt>
<dd><code><a name="EncryptedKey"
id="EncryptedKey">Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"</a></code>
<p>(This can be used within a <code>ds:RetrievalMethod</code> element
to identify the referent's type.)</p>
</dd>
</dl>
<p>The <code>EncryptedKey</code> element is used to transport encryption keys
from the originator to a known recipient(s). It may be used as a stand-alone
XML document, be placed within an application document, or appear inside an
<code>EncryptedData</code> element as a child of a <code>ds:KeyInfo</code>
element. The key value is always encrypted to the recipient(s). When
<code>EncryptedKey</code> is decrypted the resulting octets are made
available to the <code>EncryptionMethod</code> algorithm without any
additional processing.</p>
<pre class="xml-dtd"> Schema Definition:
<element name='<code>EncryptedKey</code>' type='<code>xenc:EncryptedKeyType</code>'/>
<complexType name='<code>EncryptedKeyType</code>'>
<complexContent>
<extension base='<code>xenc:EncryptedType</code>'>
<sequence>
<element ref='<code>xenc:ReferenceList</code>' minOccurs='0'/>
<element name='<code>CarriedKeyName</code>' type='string' minOccurs='0'/>
</sequence>
<attribute name='Recipient' type='string' use='optional'/>
</extension>
</complexContent>
</complexType></pre>
<p><code>ReferenceList</code> is an optional element containing pointers to
data and keys encrypted using this key. The reference list may contain
multiple references to <code>EncryptedKey</code> and
<code>EncryptedData</code> elements. This is done using
<code>KeyReference</code> and <code>DataReference</code> elements
respectively. These are defined below.</p>
<p><code>CarriedKeyName</code> is an optional element for associating a user
readable name with the key value. This may then be used to reference the key
using the <code>ds:KeyName</code> element within <code>ds:KeyInfo</code>. The
same <code>CarriedKeyName</code> label, unlike an ID type, may occur multiple
times within a single document. The value of the key is to be the same in all
<code>EncryptedKey</code> elements identified with the same
<code>CarriedKeyName</code> label within a single XML document. Note that
because whitespace is significant in the value of the <code>ds:KeyName</code>
element, whitespace is also significant in the value of the
<code>CarriedKeyName</code> element.</p>
<p><code>Recipient</code> is an optional attribute that contains a hint as to
which recipient this encrypted key value is intended for. Its contents are
application dependent.</p>
<p>The <code>Type</code> attribute inheritted from <code>EncryptedType</code>
can be used to further specify the type of the encrypted key if the
<code>EncryptionMethod</code> <code>Algorithm</code> does not define a
unambiguous encoding/representation. (Note, all the algorithms in this
specification have an unambigous representation for their associated key
structures.)</p>
<h3>3.5.2 The <a name="sec-ds-RetrievalMethod"
id="sec-ds-RetrievalMethod"><code>ds:RetrievalMethod</code></a> Element</h3>
<p>The <code>ds:RetrievalMethod</code> <code>[<a
href="#ref-XML-DSIG">XML-DSIG</a>]</code>with a <code>Type</code> of
'<code>http://www.w3.org/2001/04/xmlenc#EncryptedKey</code>' provides a way
to express a link to an <code>EncryptedKey</code> element containing the key
needed to decrypt the <code>CipherData</code> associated with an
<code>EncryptedData</code> or <code>EncryptedKey</code> element. The
<code>ds:RetrievalMethod</code> with this type is always a child of the
<code>ds:KeyInfo</code> element and may appear multiple times. If there is
more than one instance of a <code>ds:RetrievalMethod</code> in a
<code>ds:KeyInfo</code> of this type, then the <code>EncryptedKey</code>
objects referred to must contain the same key value, possibly encrypted in
different ways or for different recipients.</p>
<pre class="xml-dtd"> Schema Definition:
<!--
<attribute name='Type' type='anyURI' use='optional'
fixed='http://www.w3.org/2001/04/xmlenc#<code>EncryptedKey</code>' />
--></pre>
<h3>3.6 The <a name="sec-ReferenceList"
id="sec-ReferenceList"><code>ReferenceList</code></a> Element</h3>
<p><code>ReferenceList</code> is an element that contains pointers from a key
value of an <code>EncryptedKey</code> to items encrypted by that key value
(<code>EncryptedData</code> or <code>EncryptedKey</code> elements).</p>
<pre class="xml-dtd"> Schema Definition:
<element name='ReferenceList'>
<complexType>
<choice minOccurs='1' maxOccurs='unbounded'>
<element name='DataReference' type='xenc:ReferenceType'/>
<element name='KeyReference' type='xenc:ReferenceType'/>
</choice>
</complexType>
</element>
<complexType name='<code>ReferenceType</code>'>
<sequence>
<any namespace='##other' minOccurs='0' maxOccurs='unbounded'/>
</sequence>
<attribute name='URI' type='anyURI' use='required'/>
</complexType></pre>
<p><code>DataReference</code> elements are used to refer to
<code>EncryptedData</code> elements that were encrypted using the key defined
in the enclosing <code>EncryptedKey</code> element. Multiple
<code>DataReference</code> elements can occur if multiple
<code>EncryptedData</code> elements exist that are encrypted by the same
key.</p>
<p><code>KeyReference</code> elements are used to refer to
<code>EncryptedKey</code> elements that were encrypted using the key defined
in the enclosing <code>EncryptedKey</code> element. Multiple
<code>KeyReference</code> elements can occur if multiple
<code>EncryptedKey</code> elements exist that are encrypted by the same
key.</p>
<p>For both types of references one may optionally specify child elements to
aid the recipient in retrieving the <code>EncryptedKey</code> and/or
<code>EncryptedData</code> elements. These could include information such as
XPath transforms, decompression transforms, or information on how to retrieve
the elements from a document storage facility. For example:</p>
<pre class="xml-example"> <ReferenceList>
<DataReference URI="#invoice34">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<ds:XPath xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
self::xenc:EncryptedData[@Id="example1"]
</ds:XPath>
</ds:Transform>
</ds:Transforms>
</DataReference>
</ReferenceList></pre>
<h3>3.7 The <a name="sec-EncryptionProperties"
id="sec-EncryptionProperties"><code>EncryptionProperties</code></a>
Element</h3>
<dl>
<dt>Identifier</dt>
<dd><code><a name="EncryptionProperties"
id="EncryptionProperties">Type="http://www.w3.org/2001/04/xmlenc#EncryptionProperties"</a></code>
<p>(This can be used within a <code>ds:Reference</code> element to
identify the referent's type.)</p>
</dd>
</dl>
<p>Additional information items concerning the generation of the
<code>EncryptedData</code> or <code>EncryptedKey</code> can be placed in an
<code>EncryptionProperty</code> element (e.g., date/time stamp or the serial
number of cryptographic hardware used during encryption). The
<code>Target</code> attribute identifies the <code>EncryptedType</code>
structure being described. <code>anyAttribute</code> permits the inclusion of
attributes from the XML namespace to be included (i.e.,
<code>xml:space</code>, <code>xml:lang</code>, and <code>xml:base</code>).</p>
<pre class="xml-dtd"> Schema Definition:
<element name='EncryptionProperties' type='xenc:EncryptionPropertiesType'/>
<complexType name='EncryptionPropertiesType'>
<sequence>
<element ref='xenc:EncryptionProperty' maxOccurs='unbounded'/>
</sequence>
<attribute name='Id' type='ID' use='optional'/>
</complexType>
<element name='EncryptionProperty' type='xenc:EncryptionPropertyType'/>
<complexType name='EncryptionPropertyType' mixed='true'>
<choice maxOccurs='unbounded'>
<any namespace='##other' processContents='lax'/>
</choice>
<attribute name='Target' type='anyURI' use='optional'/>
<attribute name='Id' type='ID' use='optional'/>
<anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/>
</complexType></pre>
<h2><a name="sec-Processing" id="sec-Processing">4 Processing Rules</a></h2>
<p>This section describes the operations to be performed as part of
encryption and decryption processing by implementations of this
specification. The conformance requirements are specified over the following
roles:</p>
<dl>
<dt><a name="def-Application" id="def-Application">Application</a></dt>
<dd>The application which makes request of an XML Encryption
implementation via the provision of data and parameters necessary for
its processing.</dd>
<dt><a name="def-Encryptor" id="def-Encryptor">Encryptor</a></dt>
<dd>An XML Encryption implementation with the role of encrypting
data.</dd>
<dt><a name="def-Decryptor" id="def-Decryptor">Decryptor</a></dt>
<dd>An XML Encryption implementation with the role of decrypting
data.</dd>
</dl>
<h3><a name="sec-Processing-Encryption" id="sec-Processing-Encryption">4.1
Encryption</a></h3>
<p>For each data item to be encrypted as an <code>EncryptedData</code> or
<code>EncryptedKey</code> (elements derived from <code>EncryptedType</code>),
the <strong>encryptor</strong> must:</p>
<ol>
<li>Select the algorithm (and parameters) to be used in encrypting this
data.</li>
<li>Obtain and (optionally) represent the key.
<ol>
<li>If the key is to be identified (via naming, URI, or included in a
child element), construct the <code>ds:KeyInfo</code> as approriate
(e.g., <code>ds:KeyName</code>, <code>ds:KeyValue</code>,
<code>ds:RetrievalMethod</code>, etc.)</li>
<li>If the key itself is to be encrypted, construct an
<code>EncryptedKey</code> element by recursively applying this
encryption process. The result may then be a child of
<code>ds:KeyInfo</code>, or it may exist elsewhere and may be
identified in the preceding step.</li>
</ol>
</li>
<li> Encrypt the data
<ol>
<li>If the data is an '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
[<a href="#ref-XML">XML</a>, section 3] or element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'
[<a href="#ref-XML">XML</a>, section 3.1], obtain the octets by
serializing the data in UTF-8 as specified in [<a
href="#ref-XML">XML</a>]. <span class="">(The application MUST
provide XML data in [<a href="#ref-NFC"></a><a
href="#ref-NFC">NFC</a>].)</span> Serialization MAY be done by the
<strong>encryptor</strong>. If the <strong>encryptor</strong> does
not serialize, then the <strong>application</strong> MUST perform the
serialization.</li>
<li>If the data is of any other type that is not already octets, the
<strong>application</strong> MUST serialize it as octets.</li>
<li>Encrypt the octets using the algorithm and key from steps 1 and
2.</li>
<li>Unless the <strong>decryptor</strong> will implicitly know the type
of the encrypted data, the <strong>encryptor</strong> SHOULD provide
the type for representation.
<p>The definition of this type as bound to an identifier specifies
how to obtain and interpret the plaintext octets after decryption.
For example, the idenifier could indicate that the data is an
instance of another application (e.g., some XML compression
application) that must be further processed. Or, if the data is a
simple octet sequence it MAY be described with the
<code>MimeType</code> and <code>Encoding</code> attributes. For
example, the data might be an XML document
(<code>MimeType="text/xml"</code>), sequence of characters
(<code>MimeType="text/plain"</code>), or binary image data
(<code>MimeType="image/png</code>").</p>
</li>
</ol>
</li>
<li>Build the <code>EncryptedType</code> (<code>EncryptedData</code> or
<code>EncryptedKey</code>) structure:
<p>An <code>EncryptedType</code> structure represents all of the
information previously discussed including the type of the encrypted
data, encryption algorithm, parameters, key, type of the encrypted data,
etc.</p>
<ol>
<li>If the encrypted octet sequence obtained in step 3 is to be stored
in the <code>CipherData</code> element within the
<code>EncryptedType</code>, then the encrypted octet sequence is
base64 encoded and inserted as the content of a
<code>CipherValue</code> element.</li>
<li>If the encrypted octet sequence is to be stored externally to the
<code>EncryptedType</code> structure, then store or return the
encrypted octet sequence, and represent the URI and transforms (if
any) required for the decryptor to retrieve the encrypted octet
sequence within a <code>CipherReference</code> element.</li>
</ol>
</li>
<li>Process EncryptedData
<ol>
<li>If the <code>Type</code> of the encrypted data is '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
or element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>',
then the <strong>encryptor</strong> MUST be able to return the
<code>EncryptedData</code> element to the
<strong>application</strong>. The <strong>application</strong> MAY
use this as the top-level element in a new XML document or insert it
into another XML document, which may require a re-encoding.
<p>The <strong>encryptor</strong> SHOULD be able to replace the
unencrypted 'element' or 'content' with the EncryptedData element.
When an <strong>application</strong> requires an XML element or
content to be replaced, it supplies the XML document context in
addition to identifying the element or content to be replaced. The
<strong>encryptor</strong> removes the identified element or content
and inserts the <code>EncryptedData</code> element in its place.</p>
<p>(Note: If the <code>Type</code> is "content" the document
resulting from decryption will not be well-formed if (a) the original
plaintext was not well-formed (e.g., PCDATA by itself is not
well-formed) and (b) the <code>EncryptedData</code> element was
previously the root element of the document)</p>
</li>
<li>If the <code>Type</code> of the encrypted data <em>is not</em> '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
or element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>',
then the <strong>encryptor</strong> MUST always return the
<code>EncryptedData</code> element to the
<strong>application</strong>. The <strong>application</strong> MAY
use this as the top-level element in a new XML document or insert it
into another XML document, which may require a re-encoding.</li>
</ol>
</li>
</ol>
<h3><a name="sec-Processing-Decryption" id="sec-Processing-Decryption">4.2
Decryption</a></h3>
<p>For each <code>EncryptedType</code> derived element, (i.e.,
<code>EncryptedData</code> or <code>EncryptedKey</code>), to be decrypted,
the <strong>decryptor</strong> must:</p>
<ol>
<li>Process the element to determine the algorithm, parameters and
<code>ds:KeyInfo</code> element to be used. If some information is
omitted, the <strong>application</strong> MUST supply it.</li>
<li>Locate the data encryption key according to the <code>ds:KeyInfo</code>
element, which may contain one or more children elements. These children
have no implied processing order. If the data encryption key is
encrypted, locate the corresponding key to decrypt it. (This may be a
recursive step as the key-encryption key may itself be encrypted.) Or,
one might retrieve the data encryption key from a local store using the
provided attributes or implicit binding.</li>
<li>Decrypt the data contained in the <code>CipherData</code> element.
<ol>
<li>If a <code>CipherValue</code> child element is present, then the
associated text value is retrieved and base64 decoded so as to obtain
the encrypted octet sequence.</li>
<li>If a <code>CipherReference</code> child element is present, the URI
and transforms (if any) are used to retrieve the encrypted octet
sequence.</li>
<li>The encrypted octet sequence is decrypted using the
algorithm/parameters and key value already determined from steps 1
and 2.</li>
</ol>
</li>
<li>Process decrypted data of <code>Type</code> '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
or element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'.
<ol>
<li>The cleartext octet sequence obtained in step 3 is interpreted as
UTF-8 encoded character data.</li>
<li>The <strong>decryptor</strong> MUST be able to return the value of
<code>Type</code> and the UTF-8 encoded XML character data. The
<strong>decryptor</strong> is NOT REQUIRED to perform validation on
the serialized XML.</li>
<li>The <strong>decryptor</strong> SHOULD support the ability to
replace the <code>EncryptedData</code> element with the decrypted '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
or element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'
represented by the UTF-8 encoded characters. The
<strong>decryptor</strong> is NOT REQUIRED to perform validation on
the result of this replacement operation.
<p>The application supplies the XML document context and identifies
the <code>EncryptedData</code> element being replaced. If the
document into which the replacement is occurring is not UTF-8, the
<strong>decryptor</strong> MUST transcode the UTF-8 encoded
characters into the target encoding.</p>
</li>
</ol>
</li>
<li>Process decrypted data if <code>Type</code> is unspecified or is
<em>not</em> '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>'
or element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>'.
<ol>
<li>The cleartext octet sequence obtained in <strong>Step 3</strong>
MUST be returned to the <strong>application</strong> for further
processing along with the <code>Type</code>, <code>MimeType</code>,
and <code>Encoding</code> attribute values when specified.
<code>MimeType</code> and <code>Encoding</code> are advisory. The
<code>Type</code> value is normative as it may contain information
necessary for the processing or interpration of the data by the
application.</li>
<li>Note, this step includes processing data decrypted from an
<code>EncryptedKey</code>. The cleartext octet sequence represents a
key value and is used by the application in decrypting other
<code>EncryptedType</code> element(s).</li>
</ol>
</li>
</ol>
<h3>4.3 <a name="sec-Processing-XML" id="sec-Processing-XML">XML
Encryption</a></h3>
<p>Encryption and decryption operations are transforms on octets. The
<strong>application</strong> is responsible for the marshalling XML such that
it can be serialized into an octet sequence, encrypted, decrypted, and be of
use to the recipient.</p>
<p>For example, if the application wishes to canonicalize its data or
encode/compress the data in an XML packaging format, the application needs to
marshal the XML accordingly and identify the resulting type via the
<code>EncryptedData</code> <code>Type</code> attribute. The likelihood of
successful decryption and subsequent processing will be dependent on the
recipient's support for the given type. Also, if the data is intended to be
processed both before encryption and after decryption (e.g., XML Signature
[<a href="#ref-XML-DSIG">XML-DSIG</a>] validation or an XSLT transform) the
encrypting application must be careful to preserve information necessary for
that process's success.</p>
<p>For interoperability purposes, the following types MUST be implemented
such that an implementation will be able to take as input and yield as output
data matching the production rules 39 and 43 from [<a
href="#ref-XML">XML</a>]:</p>
<dl>
<dt><a id="Element" name="Element">element</a> '<a
href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'</dt>
<dd>"[39] <a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>
::= <a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-EmptyElemTag"><code>EmptyElemTag</code></a>
| <a href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-STag">STag</a>
<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>
<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-ETag">ETag</a>"</dd>
<dt><a id="Content" name="Content">content</a> '<a
href="http://www.w3.org/2001/04/xmlenc#Content">http://www.w3.org/2001/04/xmlenc#Content</a>'</dt>
<dd>"[43] <a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>
::= <a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-CharData"><code>CharData</code></a>?
((<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>
| <a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-Reference">Reference</a>
| <a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-CDSect">CDSect</a>
| <a href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-PI">PI</a> |
<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-Comment">Comment</a>)
<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-CharData"><code>CharData</code></a>?)*"</dd>
</dl>
<p>The following sections contain specifications for decrypting, replacing,
and serializing XML content (i.e., <code>Type</code> '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-element">element</a>' or
element '<a
href="http://www.w3.org/TR/2000/REC-xml-20001006#NT-content">content</a>')
using the [<a href="#ref-XPath">XPath</a>] data model. These sections are
non-normative and OPTIONAL to implementors of this specification, but they
may be normatively referenced by and MANDATORY to other specifications that
require a consistent processing for applications, such as [<a
href="#ref-XML-DSIG-Decrypt">XML-DSIG-Decrypt</a>].</p>
<h4>4.3.1 A <a name="sec-Decrypt-Imp" id="sec-Decrypt-Imp">Decrypt
Implementation</a> (Non-normative)</h4>
<p>Where <em>P</em> is the context in which the serialized XML should be
parsed (a document node or element node) and <em>O</em> is the octet sequence
representing UTF-8 encoded characters resulting from step 4.3 in the <a
class="link-sec" href="#sec-Processing-Decryption">Decryption Processing</a>
(section 4.2). <em>Y</em> is node-set representing the decrypted content
obtained by the following steps:</p>
<ol>
<li class="">Let <em>C</em> be the <a class="def"
name="def-parsing-context" id="def-parsing-context">parsing context</a>
of a child of <em>P</em>, which consists of the following items:
<ul>
<li>Prefix and namespace name of each namespace that is in scope for
<em>P</em>.</li>
<li>Name and value of each general entity that is effective for the XML
document causing <em>P</em>.</li>
</ul>
</li>
<li>Wrap the decrypted octet stream <em>O</em> in the context <em>C</em> as
specified in <a class="link-sec" href="#sec-Text-Wrapping">Text
Wrapping</a>.</li>
<li>Parse the wrapped octet stream as described in <a class="link-sec"
href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#sec-ReferenceProcessingModel">The
Reference Processing Model</a> (section 4.3.3.2) of [<a
href="#ref-XML-DSIG">XML-Signature</a>], resulting in a node-set.</li>
<li><em>Y</em> is the node-set obtained by removing the root node, the
wrapping element node, and its associated set of attribute and namespace
nodes from the node-set obtained in Step 3.</li>
</ol>
<h4>4.3.2 A <a name="sec-Decrypt-Replace-Imp"
id="sec-Decrypt-Replace-Imp">Decrypt and Replace Implementation</a>
(Non-normative)</h4>
<p>Where <em>X</em> is the [<a href="#ref-XPath">XPath</a>] node set
corresponding to an XML document and <em>e</em> is an
<code>EncryptedData</code> element node in <em>X</em>.</p>
<ol>
<li><em>Z</em> is an [<a href="#ref-XPath">XPath</a>] node-set that
identical to X except where the element node <em>e</em> is an
<code>EncryptedData</code> element type. In which case:
<ol>
<li>Decrypt <em>e</em> in the context of its parent node as specified
in the <a class="link-sec" href="#sec-Decrypt-Imp">Decryption
Implementation</a> (section 4.3.1) yielding <em>Y</em>, an [<a
href="#ref-XPath">XPath</a>] node set.</li>
<li>Include <em>Y</em> in place of <em>e</em> and its descendants in
<em>X</em>. Since [<a href="#ref-XPath">XPath</a>] does not define
methods of replacing node-sets from different documents, the result
MUST be equivalent to replacing e with the octet stream resulting
from its decryption in the serialized form of <em>X</em> and
reparsing the document. However, the actual method of performing this
operation is left to the implementor.</li>
</ol>
</li>
</ol>
<h4>4.3.3 <a name="sec-Serializing-XML" id="sec-Serializing-XML">Serializing
XML</a> (Non-normative)</h4>
<h5><a name="sec-Default-Namespace-Considerations"
id="sec-Default-Namespace-Considerations">Default Namespace
Considerations</a></h5>
<p>In <a class="link-sec" href="#sec-Processing-Encryption">Encrypting
XML</a> (section 4.1, step 3.1), when serializing an XML fragment special
care SHOULD be taken with respect to default namespaces. If the data will be
subsequently decrypted in the context of a parent XML document then
serialization can produce elements in the wrong namespace. Consider the
following fragment of XML:</p>
<pre class="xml-example"> <Document xmlns="http://example.org/">
<ToBeEncrypted xmlns="" />
</Document></pre>
<p>Serialization of the element <code>ToBeEncrypted</code> fragment via [<a
href="#ref-XML-C14N">XML-C14N</a>] would result in the characters
"<code><ToBeEncrypted></ToBeEncrypted></code>" as an octet
stream. The resulting encrypted document would be:</p>
<pre class="xml-example"> <Document xmlns="http://example.org/">
<EncryptedData xmlns="...">
<!-- Containing the encrypted
"<ToBeEncrypted></ToBeEncrypted>" -->
</EncryptedData>
</Document></pre>
<p>Decrypting and replacing the <code>EncryptedData</code> within this
document would produce the following incorrect result:</p>
<pre class="xml-example"> <Document xmlns="http://example.org/">
<ToBeEncrypted/>
</Document> </pre>
<p>This problem arises because most XML serializations assume that the
serialized data will be parsed directly in a context where there is no
default namespace declaration. Consequently, they do not redundantly declare
the empty default namespace with an <code>xmlns=""</code>. If, however, the
serialized data is parsed in a context where a default namespace declaration
is in scope (e.g., the parsing context of a <a class="link-def"
href="#sec-Decrypt-Imp">A Decrypt Implementation</a> (section 4.3.1)), then
it may affect the interpretation of the serialized data.</p>
<p>To solve this problem, a canonicalization algorithm MAY be augmented as
follows for use as an XML encryption serializer:</p>
<ul>
<li>A default namespace declaration with an empty value (i.e.,
<code>xmlns=""</code>) SHOULD be emitted where it would normally be
suppressed by the canonicalization algorithm.</li>
</ul>
<p>While the result may not be in proper canonical form, this is harmless as
the resulting octet stream will not be used directly in a [<a
href="#ref-XML-DSIG">XML-Signature</a>] signature value computation.
Returning to the preceding example with our new augmentation, the
<code>ToBeEncrypted</code> element would be serialized as follows:</p>
<pre><ToBeEncrypted xmlns=""></ToBeEncrypted></pre>
<p>When processed in the context of the parent document, this serialized
fragment will be parsed and interpreted correctly.</p>
<p>This augmentation can be retroactively applied to an existing
canonicalization implementation by canonicalizing each apex node and its
descendants from the node set, inserting <code>xmlns=""</code> at the
appropriate points, and concatenating the resulting octet streams.</p>
<h5><a name="sec-XML-Attribute-Considerations"
id="sec-XML-Attribute-Considerations">XML Attribute Considerations</a></h5>
<p>Similar attention between the relationship of a fragment and the context
into which it is being inserted should be given to the <code>xml:base</code>,
<code>xml:lang</code>, and <code>xml:space</code> attributes as mentioned in
the <a class="link-sec"
href="http://www.w3.org/TR/xml-exc-c14n/#sec-Considerations">Security
Considerations</a> of [<a href="#ref-XML-exc-C14N">XML-exc-C14N</a>]. For
example, if the element:</p>
<pre class="xml-example"> <Bongo href="example.xml"/></pre>
<p>is taken from a context and serialized with no <code>xml:base</code> [<a
href="#ref-XML-Base">XML-Base</a>] attribute and parsed in the context of the
element:</p>
<pre class="xml-example"> <Baz xml:base="http://example.org/"/></pre>
<p>the result will be:</p>
<pre class="xml-example"> <Baz xml:base="http://example.org/"><Bongo href="example.xml"/></Baz></pre>
<p><code>Bongo</code>'s <code>href</code> is subsequently interpreted as
"<code>http://example.org/example.xml</code>". If this is not the correct
URI, <code>Bongo</code> should have been serialized with its own
<code>xml:base</code> attribute.</p>
<p>Unfortunately, the recommendation that an empty value be emitted to
divorce the default namespace of the fragment from the context into which it
is being inserted can not be made for <span class="">the attributes
<code>xml:base</code>, and <code>xml:space</code>. (<a class="link-sec"
href="http://www.w3.org/XML/xml-V10-2e-errata#E41">Error 41</a> of the <a
href="http://www.w3.org/XML/xml-V10-2e-errata">XML 1.0 Second Edition
Specification Errata</a> clarifies that an empty string value of the
attribute <code>xml:lang</code> <em>is</em> considered as if, "there is no
language information available, just as if <code>xml:lang</code> had not been
specified".)</span>The interpretation of an empty value for the
<code>xml:base</code> or <code>xml:space</code> attributes is undefined or
maintains the contextual value. Consequently, applications SHOULD ensure (1)
fragments that are to be encrypted are not dependent on XML attributes, or
(2) if they are dependent and the resulting document is intended to be <a
class="link-def"
href="http://www.w3.org/TR/2000/REC-xml-20001006#dt-valid">valid</a> [<a
href="#ref-XML">XML</a>], the fragment's definition permits the presence of
the attributes and that the attributes have non-empty values.</p>
<h4>4.3.4 <a name="sec-Text-Wrapping" id="sec-Text-Wrapping">Text Wrapping
(Non-normative)</a></h4>
<p>This section specifies the process for wrapping text in a given parsing
context. The process is based on the proposal by Richard Tobin [<a
href="#ref-Tobin">Tobin</a>] for constructing the infoset [<a
href="#ref-XML-Infoset">XML-Infoset</a>] of an external entity.</p>
<p>The process consists of the following steps:</p>
<ol>
<li>If the parsing context contains any general entities, then emit a
document type declaration that provides entity declarations.</li>
<li>Emit a <code>dummy</code> element start-tag with namespace declaration
attributes declaring all the namespaces in the parsing context.</li>
<li>Emit the text.</li>
<li>Emit a <code>dummy</code> element end-tag.</li>
</ol>
<p>In the above steps, the document type declaration and <code>dummy</code>
element tags MUST be encoded in UTF-8.</p>
<p>Consider the following document containing an <code>EncryptedData</code>
element:</p>
<pre class="xml-example"><!DOCTYPE Document [
<!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">
]>
<Document xmlns="http://example.org/">
<foo:Body xmlns:foo="http://example.org/foo">
<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Type="<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>">
...
</EncryptedData>
</foo:Body>
</Document></pre>
<p class="">If the <code>EncryptedData</code> element is fed is decrypted to
the text "<code><One><foo:Two/></One></code>", then the
wrapped form is as follows:</p>
<pre><!DOCTYPE dummy [
<!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">
]>
<dummy xmlns="http://example.org/"
xmlns:foo="http://example.org/foo"><One><foo:Two/></One></dummy></pre>
<h2>5. <a id="sec-Algorithms" name="sec-Algorithms">Algorithms</a></h2>
<p>This section discusses algorithms used with the XML Encryption
specification. Entries contain the identifier to be used as the value of the
<code>Algorithm</code> attribute of the <code>EncryptionMethod</code> element
or other element representing the role of the algorithm, a reference to the
formal specification, definitions for the representation of keys and the
results of cryptographic operations where applicable, and general
applicability comments.</p>
<h3>5.1 <a id="sec-AlgID" name="sec-AlgID">Algorithm Identifiers and
Implementation Requirements</a></h3>
<p>All algorithms listed below have implicit parameters depending on their
role. For example, the data to be encrypted or decrypted, keying material,
and direction of operation (encrypting or decrypting) for encryption
algorithms. Any explicit additional parameters to an algorithm appear as
content elements within the element. Such parameter child elements have
descriptive element names, which are frequently algorithm specific, and
SHOULD be in the same namespace as this XML Encryption specification, the XML
Signature specification, or in an algorithm specific namespace. An example of
such an explicit parameter could be a nonce (unique quantity) provided to a
key agreement algorithm.</p>
<p>This specification defines a set of algorithms, their URIs, and
requirements for implementation. Levels of requirement specified, such as
"REQUIRED" or "OPTIONAL", refere to implementation, not use. Furthermore, the
mechanism is extensible, and alternative algorithms may be used.</p>
<h4><a id="sec-Table-of-Algorithms" name="sec-Table-of-Algorithms">Table of
Algorithms</a></h4>
<p>The table below lists the categories of algorithms. Within each category,
a brief name, the level of implementation requirement, and an identifying URI
are given for each algorithm.</p>
<dl>
<dt>Block Encryption</dt>
<dd><ol>
<li>REQUIRED TRIPLEDES<br />
<a
href="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">http://www.w3.org/2001/04/xmlenc#tripledes-cbc</a></li>
<li>REQUIRED AES-128<br />
<a
href="http://www.w3.org/2001/04/xmlenc#aes128-cbc">http://www.w3.org/2001/04/xmlenc#aes128-cbc</a></li>
<li>REQUIRED AES-256<br />
<a
href="http://www.w3.org/2001/04/xmlenc#aes256-cbc">http://www.w3.org/2001/04/xmlenc#aes256-cbc</a></li>
<li>OPTIONAL AES-192<br />
<a
href="http://www.w3.org/2001/04/xmlenc#aes192-cbc">http://www.w3.org/2001/04/xmlenc#aes192-cbc</a></li>
</ol>
</dd>
<dt>Stream Encryption</dt>
<dd><ol>
<li>none<br />
Syntax and recommendations are given below to support user
specified algorithms.</li>
</ol>
</dd>
<dt>Key Transport</dt>
<dd><ol>
<li>REQUIRED RSA-v1.5<br />
<a
href="http://www.w3.org/2001/04/xmlenc#rsa-1_5">http://www.w3.org/2001/04/xmlenc#rsa-1_5</a></li>
<li>REQUIRED RSA-OAEP<br />
<a
href="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p</a></li>
</ol>
</dd>
<dt>Key Agreement</dt>
<dd><ol>
<li>OPTIONAL Diffie-Hellman<br />
<a
href="http://www.w3.org/2001/04/xmlenc#dh">http://www.w3.org/2001/04/xmlenc#dh</a></li>
</ol>
</dd>
<dt>Symmetric Key Wrap</dt>
<dd><ol>
<li>REQUIRED TRIPLEDES KeyWrap<br />
<a
href="http://www.w3.org/2001/04/xmlenc#kw-tripledes">http://www.w3.org/2001/04/xmlenc#kw-tripledes</a></li>
<li>REQUIRED AES-128 KeyWrap<br />
<a
href="http://www.w3.org/2001/04/xmlenc#kw-aes128">http://www.w3.org/2001/04/xmlenc#kw-aes128</a></li>
<li>REQUIRED AES-256 KeyWrap<br />
<a
href="http://www.w3.org/2001/04/xmlenc#kw-aes256">http://www.w3.org/2001/04/xmlenc#kw-aes256</a></li>
<li>OPTIONAL AES-192 KeyWrap<br />
<a
href="http://www.w3.org/2001/04/xmlenc#kw-aes192">http://www.w3.org/2001/04/xmlenc#kw-aes192</a></li>
</ol>
</dd>
<dt>Message Digest</dt>
<dd><ol>
<li>REQUIRED SHA1<br />
<a
href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a></li>
<li>RECOMMENDED SHA256<br />
<a
href="http://www.w3.org/2001/04/xmlenc#sha256">http://www.w3.org/2001/04/xmlenc#sha256</a></li>
<li>OPTIONAL SHA512<br />
<a>http://www.w3.org/2001/04/xmlenc#sha512</a></li>
<li>OPTIONAL RIPEMD-160<br />
<a
href="http://www.w3.org/2001/04/xmlenc#ripemd160">http://www.w3.org/2001/04/xmlenc#ripemd160</a></li>
</ol>
</dd>
<dt>Message Authentication</dt>
<dd><ol>
<li>RECOMMENDED XML Digital Signature<br />
<a
href="http://www.w3.org/2000/09/xmldsig#">http://www.w3.org/2000/09/xmldsig#</a></li>
</ol>
</dd>
<dt>Canonicalization</dt>
<dd><ol>
<li>OPTIONAL Canonical XML (omits comments)<br />
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></li>
<li>OPTIONAL Canonical XML with Comments<br />
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a></li>
<li>OPTIONAL Exclusive XML Canonicalization (omits comments)<br />
<a
href="http://www.w3.org/2001/10/xml-exc-c14n#">http://www.w3.org/2001/10/xml-exc-c14n#</a></li>
<li>OPTIONAL Exclusive XML Canonicalization with Comments<br />
<a
href="http://www.w3.org/2001/10/xml-exc-c14n#WithComments">http://www.w3.org/2001/10/xml-exc-c14n#WithComments</a></li>
</ol>
</dd>
<dt>Encoding</dt>
<dd><ol>
<li>REQUIRED base64<br />
<a
href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a></li>
</ol>
</dd>
</dl>
<h3>5.2 <a name="sec-Alg-Block" id="sec-Alg-Block">Block Encryption
Algorithms</a></h3>
<p>Block encryption algorithms are designed for encrypting and decrypting
data in fixed size, multiple octet blocks. Their identifiers appear as the
value of the <code>Algorithm</code> attributes of
<code>EncryptionMethod</code> elements that are children of
<code>EncryptedData</code>.</p>
<p>Block encryption algorithms take, as implicit arguments, the data to be
encrypted or decrypted, the keying material, and their direction of
operation. For all of these algorithms specified below, an initialization
vector (IV) is required that is encoded with the cipher text. For user
specified block encryption algorithms, the IV, if any, could be specified as
being with the cipher data, as an algorithm content element, or elsewhere.</p>
<p>The IV is encoded with and before the cipher text for the algorithms below
for ease of availability to the decryption code and to emphasize its
association with the cipher text. Good cryptographic practice requires that a
different IV be used for every encryption.</p>
<h4><a id="sec-Padding" name="sec-Padding">Padding</a></h4>
<p>Since the data being encrypted is an arbitrary number of octets, it may
not be a multiple of the block size. This is solved by padding the plain text
up to the block size before encryption and unpadding after decryption. The
padding algorithm is to calculate the smallest non-zero number of octets, say
<code>N</code>, that must be suffixed to the plain text to bring it up to a
multiple of the block size. We will assume the block size is <code>B</code>
octets so <code>N</code> is in the range of 1 to <code>B</code>. Pad by
suffixing the plain text with <code>N-1</code> arbitrary pad bytes and a
final byte whose value is <code>N</code>. On decryption, just take the last
byte and, after sanity checking it, strip that many bytes from the end of the
decrypted cipher text.</p>
<p>For example, assume an 8 byte block size and plain text of
<code>0x616263</code>. The padded plain text would then be
<code>0x616263????????05</code> where the "??" bytes can be any value.
Similarly, plain text of <code>0x2122232425262728</code> would be padded to
<code>0x2122232425262728??????????????08</code>.</p>
<h4>5.2.1 <a name="sec-tripledes-cbc" id="sec-tripledes-cbc">Triple
DES</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="tripledes-cbc" name="tripledes-cbc"
href="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">http://www.w3.org/2001/04/xmlenc#tripledes-cbc</a>
(REQUIRED)</dd>
</dl>
<p>ANSI X9.52 [<a href="#ref-TRIPLEDES">TRIPLEDES</a>] specifies three
sequential FIPS 46-3 [<a href="#ref-DES">DES</a>] operations. The XML
Encryption TRIPLEDES consists of a DES encrypt, a DES decrypt, and a DES
encrypt used in the Cipher Block Chaining (CBC) mode with 192 bits of key and
a 64 bit Initialization Vector (IV). Of the key bits, the first 64 are used
in the first DES operation, the second 64 bits in the middle DES operation,
and the third 64 bits in the last DES operation.</p>
<p>Note: Each of these 64 bits of key contain 56 effective bits and 8 parity
bits. Thus there are only 168 operational bits out of the 192 being
transported for a TRIPLEDES key. (Depending on the criterion used for
analysis, the effective strength of the key may be thought to be 112 bits
(due to meet in the middle attacks) or even less.)</p>
<p>The resulting cipher text is prefixed by the IV. If included in XML
output, it is then base64 encoded. An example TRIPLEDES EncryptionMethod is
as follows:</p>
<pre class="xml-example"> <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/></pre>
<h4>5.2.2 <a name="sec-AES" id="sec-AES">AES</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="aes128-cbc" href="http://www.w3.org/2001/04/xmlenc#aes128-cbc"
name="aes128-cbc">http://www.w3.org/2001/04/xmlenc#aes128-cbc</a>
(REQUIRED)</dd>
<dd><a id="aes192-cbc" href="http://www.w3.org/2001/04/xmlenc#aes192-cbc"
name="aes192-cbc">http://www.w3.org/2001/04/xmlenc#aes192-cbc</a>
(OPTIONAL)</dd>
<dd><a id="aes256-cbc" href="http://www.w3.org/2001/04/xmlenc#aes256-cbc"
name="aes256-cbc">http://www.w3.org/2001/04/xmlenc#aes256-cbc</a>
(REQUIRED)</dd>
</dl>
<p>[<a href="#ref-AES">AES</a>] is used in the Cipher Block Chaining (CBC)
mode with a 128 bit initialization vector (IV). The resulting cipher text is
prefixed by the IV. If included in XML output, it is then base64 encoded. An
example AES EncryptionMethod is as follows:</p>
<pre class="xml-example"> <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/></pre>
<h3>5.3 <a name="sec-Alg-Stream" id="sec-Alg-Stream">Stream Encryption
Algorithms</a></h3>
<p>Simple stream encryption algorithms generate, based on the key, a stream
of bytes which are XORed with the plain text data bytes to produce the cipher
text on encryption and with the cipher text bytes to produce plain text on
decryption. They are normally used for the encryption of data and are
specified by the value of the <code>Algorithm</code> attribute of the
<code>EncryptionMethod</code> child of an <code>EncryptedData</code>
element.</p>
<p>NOTE: It is critical that each simple stream encryption key (or key and
initialization vector (IV) if an IV is also used) be used once only. If the
same key (or key and IV) is ever used on two messages then, by XORing the two
cipher texts, you can obtain the XOR of the two plain texts. This is usually
very compromising.</p>
<p>No specific stream encryption algorithms are specified herein but this
section is included to provide general guidelines.</p>
<p>Stream algorithms typically use the optional <code>KeySize</code> explicit
parameter. In cases where the key size is not apparent from the algorithm URI
or key source, as in the use of key agreement methods, this parameter sets
the key size. If the size of the key to be used is apparent and disagrees
with the <code>KeySize</code> parameter, an error MUST be returned.
Implementation of any stream algorithms is optional. The schema for the
KeySize parameter is as follows:</p>
<pre class="xml-dtd"> Schema Definition:
<simpleType name='KeySizeType'>
<restriction base="integer"/>
</simpleType></pre>
<h3>5.4 <a name="sec-Alg-KeyTransport" id="sec-Alg-KeyTransport">Key
Transport</a></h3>
<p>Key Transport algorithms are public key encryption algorithms especially
specified for encrypting and decrypting keys. Their identifiers appear as
<code>Algorithm</code> attributes to <code>EncryptionMethod</code> elements
that are children of <code>EncryptedKey</code>. <code>EncryptedKey</code> is
in turn the child of a <code>ds:KeyInfo</code> element. The type of key being
transported, that is to say the algorithm in which it is planned to use the
transported key, is given by the <code>Algorithm</code> attribute of the
<code>EncryptionMethod</code> child of the <code>EncryptedData</code> or
<code>EncryptedKey</code> parent of this <code>ds:KeyInfo</code> element.</p>
<p>(Key Transport algorithms may optionally be used to encrypt data in which
case they appear directly as the <code>Algorithm</code> attribute of an
<code>EncryptionMethod</code> child of an <code>EncryptedData</code> element.
Because they use public key algorithms directly, Key Transport algorithms are
not efficient for the transport of any amounts of data significantly larger
than symmetric keys.)</p>
<p class="">The RSA v1.5 Key Transport algorithm given below are those used
in conjunction with TRIPLEDES and the Cryptographic Message Syntax (CMS) of
S/MIME [<a href="#ref-CMS-Algorithms">CMS-Algorithms</a>]. The RSA v2 Key
Transport algorithm given below is that used in conjunction with AES and CMS
[<a href="#ref-AES-WRAP">AES-WRAP</a>].</p>
<h4>5.4.1 <a name="sec-RSA-1_5" id="sec-RSA-1_5">RSA Version 1.5</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="rsa-1_5" href="http://www.w3.org/2001/04/xmlenc#rsa-1_5"
name="rsa-1_5">http://www.w3.org/2001/04/xmlenc#rsa-1_5</a>
(REQUIRED)</dd>
</dl>
<p>The RSAES-PKCS1-v1_5 algorithm, specified in RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>], takes no explicit parameters. An example of an
RSA Version 1.5 <code>EncryptionMethod</code> element is:</p>
<pre class="xml-example"> <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/></pre>
<p>The <code>CipherValue</code> for such an encrypted key is the base64 [<a
href="#ref-MIME">MIME</a>] encoding of the octet string computed as per RFC
2437 [<a href="#ref-PKCS1">PKCS1</a>, section 7.2.1: Encryption operation].
As specified in the EME-PKCS1-v1_5 function RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>, section 9.1.2.1], the value input to the key
transport function is as follows:</p>
<pre class="xml-example"> CRYPT ( PAD ( KEY ))</pre>
<p>where the padding is of the following special form:</p>
<pre class="xml-example"> 02 | PS* | 00 | key</pre>
<p>where "|" is concatenation, "02" and "00" are fixed octets of the
corresponding hexadecimal value, PS is a string of strong pseudo-random
octets [<a href="#ref-RANDOM">RANDOM</a>] at least eight octets long,
containing no zero octets, and long enough that the value of the quantity
being CRYPTed is one octet shorter than the RSA modulus, and "key" is the key
being transported. The key is 192 bits for TRIPLEDES and 128, 192, or 256
bits for AES. Support of this key transport algorithm for transporting 192
bit keys is MANDATORY to implement. Support of this algorithm for
transporting other keys is OPTIONAL. RSA-OAEP is RECOMMENDED for the
transport of AES keys.</p>
<p>The resulting base64 [<a href="#ref-MIME">MIME</a>] string is the value of
the child text node of the <code>CipherData</code> element, e.g.</p>
<pre class="xml-example"> <CipherData> IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4
t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
</CipherData></pre>
<h4>5.4.2 <a name="sec-RSA-OAEP" id="sec-RSA-OAEP">RSA-OAEP</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="rsa-oaep-mgf1p"
href="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"
name="rsa-oaep-mgf1p">http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p</a>
(REQUIRED)</dd>
</dl>
<p class="">The RSAES-OAEP-ENCRYPT algorithm, as specified in RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>], takes three parameters. The two user specified
parameters are a MANDATORY message digest function and an OPTIONAL encoding
octet string <code>OAEPparams</code>. The message digest function is
indicated by the <code>Algorithm</code> attribute of a child
<code>ds:DigestMethod</code> element and the mask generation function, the
third parameter, is always MGF1 with SHA1 (mgf1SHA1Identifier). Both the
message digest and mask generation functions are used in the EME-OAEP-ENCODE
operation as part of RSAES-OAEP-ENCRYPT. The encoding octet string is the
base64 decoding of the content of an optional <code>OAEPparams</code> child
element . If no <code>OAEPparams</code> child is provided, a null string is
used.</p>
<pre class="xml-dtd">Schema Definition:
<!-- use these element types as children of EncryptionMethod
when used with RSA-OAEP -->
<element name='OAEPparams' minOccurs='0' type='base64Binary'/>
<element ref='ds:DigestMethod' minOccurs='0'/></pre>
<p>An example of an RSA-OAEP element is:</p>
<pre class="xml-example"> <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
<OAEPparams> 9lWu3Q== </OAEPparams>
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<EncryptionMethod></pre>
<p>The <code>CipherValue</code> for an RSA-OAEP encrypted key is the base64
[<a href="#ref-MIME">MIME</a>] encoding of the octet string computed as per
RFC 2437 [<a href="#ref-PKCS1">PKCS1</a>, section 7.1.1: Encryption
operation]. As described in the EME-OAEP-ENCODE function RFC 2437 [<a
href="#ref-PKCS1">PKCS1</a>, section 9.1.1.1], the value input to the key
transport function is calculated using the message digest function and string
specified in the <code>DigestMethod</code> and <code>OAEPparams</code>
elements and using the mask generator function MGF1 (with SHA1) specified in
RFC 2437. The desired output length for EME-OAEP-ENCODE is one byte shorter
than the RSA modulus.</p>
<p>The transported key size is 192 bits for TRIPLEDES and 128, 192, or 256
bits for AES. Implementations MUST implement RSA-OAEP for the transport of
128 and 256 bit keys. They MAY implement RSA-OAEP for the transport of other
keys.</p>
<h3>5.5 <a name="sec-Alg-KeyAgreement" id="sec-Alg-KeyAgreement">Key
Agreement</a></h3>
<p>A Key Agreement algorithm provides for the derivation of a shared secret
key based on a shared secret computed from certain types of compatible public
keys from both the sender and the recipient. Information from the originator
to determine the secret is indicated by an optional
<code>OriginatorKeyInfo</code> parameter child of an
<code>AgreementMethod</code> element while that associated with the recipient
is indicated by an optional <code>RecipientKeyInfo</code>. A shared key is
derived from this shared secret by a method determined by the Key Agreement
algorithm.</p>
<p>Note: XML Encryption does not provide an on-line key agreement negotiation
protocol. The <code>AgreementMethod</code> element can be used by the
originator to identify the keys and computational procedure that were used to
obtain a shared encryption key. The method used to obtain or select the keys
or algorithm used for the agreement computation is beyond the scope of this
specification.</p>
<p>The <code>AgreementMethod</code> element appears as the content of a
<code>ds:KeyInfo</code> since, like other <code>ds:KeyInfo</code> children,
it yields a key. This <code>ds:KeyInfo</code> is in turn a child of an
<code>EncryptedData</code> or <code>EncryptedKey</code> element. The
<code>Algorithm</code> attribute and <code>KeySize</code> child of the
<code>EncryptionMethod</code> element under this <code>EncryptedData</code>
or <code>EncryptedKey</code> element are implicit parameters to the key
agreement computation. In cases where this <code>EncryptionMethod</code>
algorithm URI is insufficient to determine the key length, a
<code>KeySize</code> MUST have been included. In addition, the sender may
place a <code>KA-Nonce</code> element under <code>AgreementMethod</code> to
assure that different keying material is generated even for repeated
agreements using the same sender and recipient public keys. For example:</p>
<pre class="xml-example"> <EncryptedData>
<EncryptionMethod Algorithm="Example:Block/Alg"
<KeySize>80</KeySize>
</EncryptionMethod>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<AgreementMethod Algorithm="example:Agreement/Algorithm">
<KA-Nonce>Zm9v</KA-Nonce>
<ds:DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#sha1"/>
<OriginatorKeyInfo>
<ds:KeyValue>....</ds:KeyValue>
</OriginatorKeyInfo>
<RecipientKeyInfo>
<ds:KeyValue>....</ds:KeyValue>
</RecipientKeyInfo>
</AgreementMethod>
</ds:KeyInfo>
<CipherData>...</CipherData>
</EncryptedData></pre>
<p>If the agreed key is being used to wrap a key, rather than data as above,
then <code>AgreementMethod</code> would appear inside a
<code>ds:KeyInfo</code> inside an <code>EncryptedKey</code> element.</p>
<p>The Schema for <code>AgreementMethod</code> is as follows:</p>
<pre class="xml-dtd"> Schema Definition:
<element name="AgreementMethod" type="xenc:AgreementMethodType"/>
<complexType name="AgreementMethodType" mixed="true">
<sequence>
<element name="KA-Nonce" minOccurs="0" type="base64Binary"/>
<!-- <element ref="ds:DigestMethod" minOccurs="0"/> -->
<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
<element name="OriginatorKeyInfo" minOccurs="0"
type="ds:KeyInfoType"/>
<element name="RecipientKeyInfo" minOccurs="0"
type="ds:KeyInfoType"/>
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType></pre>
<h4>5.5.1 <a name="sec-DHKeyValue" id="sec-DHKeyValue">Diffie-Hellman Key
Values</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="DHKeyValue" href="http://www.w3.org/2001/04/xmlenc#DHKeyValue"
name="DHKeyValue">http://www.w3.org/2001/04/xmlenc#DHKeyValue</a>
(OPTIONAL)</dd>
</dl>
<p>Diffie-Hellman keys can appear directly within <code>KeyValue</code>
elements or be obtained by <code>ds:RetrievalMethod</code> fetches as well as
appearing in certificates and the like. The above identifier can be used as
the value of the <code>Type</code> attribute of <code>Reference</code> or
<code>ds:RetrievalMethod</code> elements.</p>
<p>As specified in [<a href="#ref-ESDH">ESDH</a>], a DH public key consists
of up to six quantities, two large primes p and q, a "generator" g, the
public key, and validation parameters "seed" and "pgenCounter". These relate
as follows: The public key = ( g**x mod p ) where x is the corresponding
private key; p = j*q + 1 where j >= 2. "seed" and "pgenCounter" are
optional and can be used to determine if the Diffie-Hellman key has been
generated in conformance with the algorithm specified in [<a
href="#ref-ESDH">ESDH</a>]. Because the primes and generator can be safely
shared over many DH keys, they may be known from the application environment
and are optional. The schema for a <code>DHKeyValue</code> is as follows:</p>
<pre class="xml-dtd"> <code>Schema:
<element name="DHKeyValue" type="xenc:DHKeyValueType"/>
<complexType name="DHKeyValueType">
<sequence>
<sequence minOccurs="0">
<element name="P" type="ds:CryptoBinary"/>
<element name="Q" type="ds:CryptoBinary"/>
<element name="Generator"type="ds:CryptoBinary"/>
</sequence>
<element name="Public" type="ds:CryptoBinary"/>
<sequence minOccurs="0">
<element name="seed" type="ds:CryptoBinary"/>
<element name="pgenCounter" type="ds:CryptoBinary"/>
</sequence>
</sequence>
</complexType></code></pre>
<h4>5.5.2 <a name="sec-DHKeyAgreement" id="sec-DHKeyAgreement">Diffie-Hellman
Key Agreement</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a name="dh" id="dh"
href="http://www.w3.org/2001/04/xmlenc#dh">http://www.w3.org/2001/04/xmlenc#dh</a>
(OPTIONAL)</dd>
</dl>
<p>The Diffie-Hellman (DH) key agreement protocol [<a
href="#ref-ESDH">ESDH</a>] involves the derivation of shared secret
information based on compatible DH keys from the sender and recipient. Two DH
public keys are compatible if they have the same prime and generator. If, for
the second one, <code>Y = g**y mod p</code>, then the two parties can
calculate the shared secret <code>ZZ = ( g**(x*y) mod p )</code> even though
each knows only their own private key and the other party's public key.
Leading zero bytes MUST be maintained in <code>ZZ</code> so it will be the
same length, in bytes, as <code>p</code>. The size of <code>p</code> MUST be
at least 512 bits and <code>g</code> at least 160 bits. There are numerous
other complex security considerations in the selection of <code>g</code>,
<code>p</code>, and a random <code>x</code> as described in [<a
href="#ref-ESDH">ESDH</a>].</p>
<p>Diffie-Hellman key agreement is optional to implement. An example of a DH
<code>AgreementMethod</code> element is as follows:</p>
<pre class="xml-example"> <AgreementMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#dh"
ds:xmlns="http://www.w3.org/2000/09/xmldsig#">
<KA-Nonce>Zm9v</KA-Nonce>
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<OriginatorKeyInfo>
<ds:X509Data><ds:X509Certificate>
...
</ds:X509Certificate></ds:X509Data>
</OriginatorKeyInfo>
<RecipientKeyInfo><ds:KeyValue>
...
</ds:KeyValue></RecipientKeyInfo>
</AgreementMethod></pre>
<p>Assume the Diffie-Hellman shared secret is the octet sequence
<code>ZZ</code>. The shared keying material needed will then be calculated as
follows:</p>
<pre class="xml-example"> Keying Material = KM(1) | KM(2) | ...</pre>
<p>where "|" is byte stream concatenation and</p>
<pre class="xml-example"> KM(counter) = DigestAlg ( ZZ | counter | EncryptionAlg |
KA-Nonce | KeySize )</pre>
<dl>
<dt><code>DigestAlg</code></dt>
<dd>The message digest algorithm specified by the
<code>DigestMethod</code> child of <code>AgreementMethod</code>.</dd>
<dt><code>EncryptionAlg</code></dt>
<dd>The URI of the encryption algorithm, including possible key wrap
algorithms, in which the derived keying material is to be used
("Example:Block/Alg" in the example above), not the URI of the
agreement algorithm. This is the value of the <code>Algorithm</code>
attribute of the <code>EncryptionMethod</code> child of the
<code>EncryptedData</code> or <code>EncryptedKey</code> grandparent of
<code>AgreementMethod</code>.</dd>
<dt><code>KA-Nonce</code></dt>
<dd>The base64 decoding the content of the <code>KA-Nonce</code> child of
<code>AgreementMethod</code>, if present. If the <code>KA-Nonce</code>
element is absent, it is null.</dd>
<dt><code>Counter</code></dt>
<dd>A one byte counter starting at one and incrementing by one. It is
expressed as two hex digits where letters A through F are in upper
case.</dd>
<dt><code>KeySize</code></dt>
<dd>The size in bits of the key to be derived from the shared secret as
the UTF-8 string for the corresponding decimal integer with only digits
in the string and no leading zeros. For some algorithms the key size is
inherent in the URI. For others, such as most stream ciphers, it must
be explicitly provided.</dd>
</dl>
<p>For example, the initial <code>(KM(1))</code> calculation for the
<code>EncryptionMethod</code> of the <a href="#sec-Alg-KeyAgreement">Key
Agreement</a> example (section 5.5) would be as follows, where the binary one
byte counter value of 1 is represented by the two character UTF-8 sequence
<code>01</code>, <code>ZZ</code> is the shared secret, and "<code>foo</code>"
is the base64 decoding of "<code>Zm9v</code>".</p>
<pre class="xml-example"> SHA-1 ( ZZ01Example:Block/Algfoo80 )</pre>
<p>Assuming that <code>ZZ</code> is <code>0xDEADBEEF</code>, that would be</p>
<pre class="xml-example"> SHA-1( 0xDEADBEEF30314578616D706C653A426C6F636B2F416C67666F6F3830 )</pre>
<p>whose value is</p>
<pre class="xml-example"> 0x534C9B8C4ABDCB50038B42015A181711068B08C1</pre>
<p>Each application of <code>DigestAlg</code> for successive values of
<code>Counter</code> will produce some additional number of bytes of keying
material. From the concatenated string of one or more <code>KM</code>'s,
enough leading bytes are taken to meet the need for an actual key and the
remainder discarded. For example, if <code>DigestAlg</code> is SHA-1 which
produces 20 octets of hash, then for 128 bit AES the first 16 bytes from
<code>KM(1)</code> would be taken and the remaining 4 bytes discarded. For
256 bit AES, all of <code>KM(1)</code> suffixed with the first 12 bytes of
KM(2) would be taken and the remaining 8 bytes of <code>KM(2)</code>
discarded.</p>
<h3>5.6 <a name="sec-Alg-SymmetricKeyWrap"
id="sec-Alg-SymmetricKeyWrap">Symmetric Key Wrap</a></h3>
<p>Symmetric Key Wrap algorithms are shared secret key encryption algorithms
especially specified for encrypting and decrypting symmetric keys. Their
identifiers appear as <code>Algorithm</code> attribute values to
<code>EncryptionMethod</code> elements that are children of
<code>EncryptedKey</code> which is in turn a child of <code>ds:KeyInfo</code>
which is in turn a child of <code>EncryptedData</code> or another
<code>EncryptedKey</code>. The type of the key being wrapped is indicated by
the <code>Algorithm</code> attribute of <code>EncryptionMethod</code> child
of the parent of the <code>ds:KeyInfo</code> grandparent of the
<code>EncryptionMethod</code> specifying the symmetric key wrap algorithm.</p>
<h4>5.6.1 <a name="sec-CMSKeyChecksum" id="sec-CMSKeyChecksum">CMS Key
Checksum</a></h4>
<p>Some key wrap algorithms make use of a key checksum as defined in CMS [<a
href="#ref-CMS-Wrap">CMS-Wrap</a>]. The algorithm that provides an integrity
check value for the key being wrapped is:</p>
<ol>
<li>Compute the 20 octet SHA-1 hash on the key being wrapped.</li>
<li>Use the first 8 octets of this hash as the checksum value.</li>
</ol>
<h4>5.6.2 <a name="sec-kw-tripledes" id="sec-kw-tripledes">CMS Triple DES Key
Wrap</a></h4>
<dl>
<dt>Identifiers and Requirements:</dt>
<dd><a id="kw-tripledes" name="kw-tripledes"
href="http://www.w3.org/2001/04/xmlenc#kw-tripledes">http://www.w3.org/2001/04/xmlenc#kw-tripledes</a>
(REQUIRED)</dd>
</dl>
<p>XML Encryption implementations MUST support TRIPLEDES wrapping of 168 bit
keys and may optionally support TRIPLEDES wrapping of other keys.</p>
<p>An example of a TRIPLEDES Key Wrap <code>EncryptionMethod</code> element
is as follows:</p>
<pre class="xml-example"> <code><EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#kw-tripledes"/></code></pre>
<p>The following algorithm wraps (encrypts) a key (the wrapped key, WK) under
a TRIPLEDES key-encryption-key (KEK) as adopted from [<a
href="#ref-CMS-Algorithms">CMS-Algorithms</a>]:</p>
<ol>
<li>Represent the key being wrapped as an octet sequence. If it is a
TRIPLEDES key, this is 24 octets (192 bits) with odd parity bit as the
bottom bit of each octet.</li>
<li>Compute the <a href="#sec-CMSKeyChecksum">CMS key checksum</a> (section
5.6.1) call this CKS.</li>
<li>Let <code>WKCKS = WK || CKS</code>, where || is concatenation.</li>
<li>Generate 8 random octets [<a href="#ref-RANDOM">RANDOM</a>] and call
this IV.</li>
<li>Encrypt WKCKS in CBC mode using KEK as the key and IV as the
initialization vector. Call the results TEMP1.</li>
<li>Let <code>TEMP2 = IV || TEMP1</code>.</li>
<li>Reverse the order of the octets in <code>TEMP2</code> and call the
result <code>TEMP3</code>.</li>
<li>Encrypt <code>TEMP3</code> in CBC mode using the <code>KEK</code> and
an initialization vector of <code>0x4adda22c79e82105</code>. The
resulting cipher text is the desired result. It is 40 octets long if a
168 bit key is being wrapped.</li>
</ol>
<p>The following algorithm unwraps (decrypts) a key as adopted from [<a
href="#ref-CMS-Algorithms">CMS-Algorithms</a>]:</p>
<ol>
<li>Check if the length of the cipher text is reasonable given the key
type. It must be 40 bytes for a 168 bit key and either 32, 40, or 48
bytes for a 128, 192, or 256 bit key. If the length is not supported or
inconsistent with the algorithm for which the key is intended, return
error.</li>
<li>Decrypt the cipher text with TRIPLEDES in CBC mode using the
<code>KEK</code> and an initialization vector (IV) of
<code>0x4adda22c79e82105</code>. Call the output <code>TEMP3</code>.</li>
<li>Reverse the order of the octets in TEMP3 and call the result
<code>TEMP2</code>.</li>
<li>Decompose TEMP2 into IV, the first 8 octets, and <code>TEMP1</code>,
the remaining octets.</li>
<li>Decrypt TEMP1 using TRIPLEDES in CBC mode using the <code>KEK</code>
and the IV found in the previous step. Call the result
<code>WKCKS</code>.</li>
<li>Decompose <code>WKCKS</code>. <code>CKS</code> is the last 8 octets and
<code>WK</code>, the wrapped key, are those octets before the
<code>CKS</code>.</li>
<li>Calculate a <a href="#sec-CMSKeyChecksum">CMS key checksum</a> (section
5.6.1) over the <code>WK</code> and compare with the <code>CKS</code>
extracted in the above step. If they are not equal, return error.</li>
<li><code>WK</code> is the wrapped key, now extracted for use in data
decryption.</li>
</ol>
<h4>5.6.3 <a name="sec-kw-aes" id="sec-kw-aes">AES KeyWrap</a></h4>
<dl>
<dt>Identifiers and Requirements:</dt>
<dd><a id="kw-aes128" href="http://www.w3.org/2001/04/xmlenc#kw-aes128"
name="kw-aes128">http://www.w3.org/2001/04/xmlenc#kw-aes128</a>
(REQUIRED)</dd>
<dd><a id="kw-aes192" href="http://www.w3.org/2001/04/xmlenc#kw-aes192"
name="kw-aes192">http://www.w3.org/2001/04/xmlenc#kw-aes192</a>
(OPTIONAL)</dd>
<dd><a id="kw-aes256" href="http://www.w3.org/2001/04/xmlenc#kw-aes256"
name="kw-aes256">http://www.w3.org/2001/04/xmlenc#kw-aes256</a>
(REQUIRED)</dd>
</dl>
<p>Implementation of AES key wrap is described below, as suggested by NIST.
It provides for confidentiality and integrity. This algorithm is defined only
for inputs which are a multiple of 64 bits. The information wrapped need not
actually be a key. The algorithm is the same whatever the size of the AES key
used in wrapping, called the key encrypting key or <code>KEK</code>. The
implementation requirements are indicated below.</p>
<dl>
<dt>128 bit AES Key Encrypting Key</dt>
<dd>Implementation of wrapping 128 bit keys REQUIRED.<br />
Wrapping of other key sizes OPTIONAL.</dd>
<dt>192 bit AES Key Encrypting Key</dt>
<dd>All support OPTIONAL.</dd>
<dt>256 bit AES Key Encrypting Key</dt>
<dd>Implementation of wrapping 256 bit keys REQUIRED.<br />
Wrapping of other key sizes OPTIONAL.</dd>
</dl>
<p>Assume that the data to be wrapped consists of <code>N</code> 64-bit data
blocks denoted <code>P(1)</code>, <code>P(2)</code>, <code>P(3)</code> ...
<code>P(N)</code>. The result of wrapping will be <code>N+1</code> 64-bit
blocks denoted <code>C(0)</code>, <code>C(1)</code>, <code>C(2)</code>, ...
<code>C(N)</code>. The key encrypting key is represented by <code>K</code>.
Assume integers <code>i</code>, <code>j</code>, and <code>t</code> and
intermediate 64-bit register <code>A</code>, 128-bit register <code>B</code>,
and array of 64-bit quantities <code>R(1)</code> through
<code>R(N)</code>.</p>
<p>"|" represents concatentation so <code>x|y</code>, where <code>x</code>
and <code>y</code> and 64-bit quantities, is the 128-bit quantity with
<code>x</code> in the most significant bits and <code>y</code> in the least
significant bits. <code>AES(K)enc(x)</code> is the operation of AES
encrypting the 128-bit quantity <code>x</code> under the key <code>K</code>.
<code>AES(K)dec(x)</code> is the corresponding decryption opteration.
<code>XOR(x,y)</code> is the bitwise exclusive or of <code>x</code> and
<code>y</code>. <code>MSB(x)</code> and <code>LSB(y)</code> are the most
significant 64 bits and least significant 64 bits of x and y respectively.</p>
<p>If <code>N</code> is 1, a single AES operation is performed for wrap or
unwrap. If <code>N>1</code>, then <code>6*N</code> AES operations are
performed for wrap or unwrap.</p>
<p>The key wrap algorithm is as follows:</p>
<ol>
<li>If <code>N</code> is <code>1</code>:
<ul>
<li><code>B=AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1)</code>)</li>
<li><code>C(0)=MSB(B)</code></li>
<li><code>C(1)=LSB(B)</code></li>
</ul>
If <code>N>1</code>, perform the following steps:</li>
<li>Initialize variables:
<ul>
<li>Set <code>A</code> to <code>0xA6A6A6A6A6A6A6A6</code></li>
<li>For<code>i=1</code> to <code>N</code>,<br />
<code>R(i)=P(i)</code></li>
</ul>
</li>
<li>Calculate intermediate values:
<ul>
<li>For<code>j=0</code> to <code>5</code>,
<ul>
<li>For <code>i=1</code> to <code>N</code>,<br />
<code>t= i + j*N</code><br />
<code>B=AES(K)enc(A|R(i))</code><br />
<code>A=XOR(t,MSB(B))</code><br />
<code>R(i)=LSB(B)</code></li>
</ul>
</li>
</ul>
</li>
<li>Output the results:
<ul>
<li>Set <code>C(0)=A</code></li>
<li>For <code>i=1</code> to <code>N</code>,<br />
<code>C(i)=R(i)</code></li>
</ul>
</li>
</ol>
<p>The key unwrap algorithm is as follows:</p>
<ol>
<li>If <code>N</code> is <code>1</code>:
<ul>
<li><code>B=AES(K)dec(C(0)|C(1))</code></li>
<li><code>P(1)=LSB(B)</code></li>
<li>If <code>MSB(B)</code> is <code>0xA6A6A6A6A6A6A6A6</code>, return
success. Otherwise, return an integrity check failure error.</li>
</ul>
If <code>N</code>>1, perform the following steps:</li>
<li>Initialize the variables:
<ul>
<li><code>A=C(0)</code></li>
<li>For <code>i=1</code> to <code>N</code>,<br />
<code>R(i)=C(i)</code></li>
</ul>
</li>
<li>Calculate intermediate values:
<ul>
<li>For <code>j=5</code> to <code>0</code>,
<ul>
<li>For <code>i=N</code> to <code>1</code>,<br />
<code>t= i + j*N</code><br />
<code>B=AES(K)dec(XOR(t,A)|R(i))</code><br />
<code>A=MSB(B)</code><br />
<code>R(i)=LSB(B)</code></li>
</ul>
</li>
</ul>
</li>
<li>Output the results:
<ul>
<li>For <code>i=1</code> to <code>N</code>,<br />
<code>P(i)=R(i)</code></li>
<li>If <code>A</code> is <code>0xA6A6A6A6A6A6A6A6</code>, return
success. Otherwise, return an integrity check failure error.</li>
</ul>
</li>
</ol>
<p>For example, wrapping the data
<code>0x00112233445566778899AABBCCDDEEFF</code> with the <code>KEK
0x000102030405060708090A0B0C0D0E0F</code> produces the ciphertext of
<code>0x1FA68B0A8112B447</code>, <code>0xAEF34BD8FB5A7B82</code>,
<code>0x9D3E862371D2CFE5</code>.</p>
<h3>5.7 <a name="sec-Alg-MessageDigest" id="sec-Alg-MessageDigest">Message
Digest</a></h3>
<p>Message digest algorithms can be used in <code>AgreementMethod</code> as
part of the key derivation, within RSA-OAEP encryption as a hash function,
and in connection with the HMAC message authentication code method as
described in [<a href="#ref-XML-DSIG">XML-DSIG</a>].)</p>
<h4>5.7.1 <a name="sec-SHA1" id="sec-SHA1">SHA1</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a
href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a>
(REQUIRED)</dd>
</dl>
<p>The SHA-1 algorithm [<a href="#ref-SHA">SHA</a>] takes no explicit
parameters. An example of an SHA-1 <code>DigestMethod</code> element is:</p>
<pre class="xml-example"> <DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/></pre>
<p>A SHA-1 digest is a 160-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 20-octet octet stream. For example, the
<code>DigestValue</code> element for the message digest:</p>
<pre class="xml-example"> <code>A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D</code></pre>
<p>from Appendix A of the SHA-1 standard would be:</p>
<pre class="xml-example"> <code><DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue></code></pre>
<h4>5.7.2 <a name="sec-SHA256" id="sec-SHA256">SHA256</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="sha256" href="http://www.w3.org/2001/04/xmlenc#sha256"
name="sha256">http://www.w3.org/2001/04/xmlenc#sha256</a>
(RECOMMENDED)</dd>
</dl>
<p>The SHA-256 algorithm [<a href="#ref-SHA">SHA</a>] takes no explicit
parameters. An example of an SHA-256 <code>DigestMethod</code> element is:</p>
<pre class="xml-example"> <code><DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/></code></pre>
<p>A SHA-256 digest is a 256-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 32-octet octet stream.</p>
<h4>5.7.3 <a name="sec-SHA512" id="sec-SHA512">SHA512</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="sha512" href="http://www.w3.org/2001/04/xmlenc#sha512"
name="sha512">http://www.w3.org/2001/04/xmlenc#sha512</a>
(OPTIONAL)</dd>
</dl>
<p>The SHA-512 algorithm [<a href="#ref-SHA">SHA</a>] takes no explicit
parameters. An example of an SHA-512 <code>DigestMethod</code> element is:</p>
<pre class="xml-example"> <DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/></pre>
<p>A SHA-512 digest is a 512-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 64-octet octet stream.</p>
<h4>5.7.4 <a name="sec-RIPEMD-160" id="sec-RIPEMD-160">RIPEMD-160</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="ripemd160" href="http://www.w3.org/2001/04/xmlenc#ripemd160"
name="ripemd160">http://www.w3.org/2001/04/xmlenc#ripemd160</a>
(OPTIONAL)</dd>
</dl>
<p>The RIPEMD-160 algorithm [<a href="#ref-RIPEMD-160">RIPEMD-160</a>] takes
no explicit parameters. An example of an RIPEMD-160 <code>DigestMethod</code>
element is:</p>
<pre class="xml-example"> <DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#ripemd160"/></pre>
<p>A RIPEMD-160 digest is a 160-bit string. The content of the
<code>DigestValue</code> element shall be the base64 encoding of this bit
string viewed as a 20-octet octet stream.</p>
<h3>5.8 <a name="sec-Alg-MessageAuthentication"
id="sec-Alg-MessageAuthentication">Message Authentication</a></h3>
<dl>
<dt>Identifier:</dt>
<dd><a
href="http://www.w3.org/2000/09/xmldsig#">http://www.w3.org/2000/09/xmldsig#</a>
(RECOMMENDED)</dd>
</dl>
<p>XML Signature [<a href="#ref-XML-DSIG">XML-DSIG</a>] is OPTIONAL to
implement for XML encryption applications. It is the recommended way to
provide key based authentication.</p>
<h3>5.9 <a name="sec-Alg-Canonicalition"
id="sec-Alg-Canonicalition">Canonicalization</a></h3>
<p>A Canonicalization of XML is a method of consistently serializing XML into
an octet stream as is necessary prior to encrypting XML.</p>
<h4><a id="sec-Inclusive-Canonicalization"
name="sec-Inclusive-Canonicalization">5.9.1 Inclusive
Canonicalization</a></h4>
<dl>
<dt>Identifiers:</dt>
<dd><a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a>
(OPTIONAL)</dd>
<dd><a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a>
(OPTIONAL)</dd>
</dl>
<p>Canonical XML [<a href="#ref-XML-C14N">Canon</a>] is a method of
serializing XML which includes the in scope namespace and xml namespace
attribute context from ancestors of the XML being serialized.</p>
<p>If XML is to be encrypted and then later decrypted into a different
environment and it is desired to preserve namespace prefix bindings and the
value of attributes in the "xml" namespace of its original environment, then
the canonical XML with comments version of the XML should be the
serialization that is encrypted.</p>
<h4><a id="sec-Exclusive-Canonicalization"
name="sec-Exclusive-Canonicalization">5.9.2 Exclusive
Canonicalization</a></h4>
<dl>
<dt>Identifiers:</dt>
<dd><a
href="http://www.w3.org/2001/10/xml-exc-c14n#">http://www.w3.org/2001/10/xml-exc-c14n#</a>
(OPTIONAL)</dd>
<dd><a
href="http://www.w3.org/2001/10/xml-exc-c14n#WithComments">http://www.w3.org/2001/10/xml-exc-c14n#WithComments</a>
(OPTIONAL)</dd>
</dl>
<p>Exclusive XML Canonicalization [<a href="#ref-XML-exc-C14N">Exclusive</a>]
serializes XML in such a way as to include to the minimum extent practical
the namespace prefix binding and xml namespace attribute context inherited
from ancestor elements.</p>
<p>It is the recommended method where the outer context of a fragment which
was signed and then encrypted may be changed. Otherwise the validation of the
signature over the fragment may fail because the canonicalization by
signature validation may include unnecessary namespaces into the fragment.</p>
<h2>6 <a name="sec-Security" id="sec-Security">Security
Considerations</a></h2>
<h3>6.1 <a name="sec-Sign-with-Encrypt"
id="sec-Sign-with-Encrypt">Relationship to XML Digital Signatures</a></h3>
<p>The application of both encryption and digital signatures over portions of
an XML document can make subsequent decryption and signature verification
difficult. In particular, when verifying a signature one must know whether
the signature was computed over the encrypted or unencrypted form of
elements.</p>
<p>A separate, but important, issue is introducing cryptographic
vulnerabilities when combining digital signatures and encryption over a
common XML element. Hal Finney has suggested that encrypting digitally signed
data, while leaving the digital signature in the clear, may allow plaintext
guessing attacks. This vulnerability can be mitigated by using secure hashes
and the nonces in the text being processed.</p>
<p>In accordance with the requirements document [<a
href="#ref-EncReq">EncReq</a>] the interaction of encryption and signing is
an application issue and out of scope of the specification. However, we make
the following recommendations:</p>
<ol type="1">
<li>When data is encrypted, any digest or signature over that data should
be encrypted. This satisfies the first issue in that only those
signatures that can be seen can be validated. It also addresses the
possibility of a plaintext guessing vulnerability, though it may not be
possible to identify (or even know of) all the signatures over a given
piece of data.</li>
<li>Employ the "decrypt-except" signature transform [<a
href="#ref-XML-DSIG-Decrypt">XML-DSIG-Decrypt]</a>. It works as follows:
during signature transform processing, if you encounter a decrypt
transform, decrypt all encrypted content in the document except for those
excepted by an enumerated set of references.</li>
</ol>
<p>Additionally, while the following warnings pertain to incorrect inferences
by the user about the authenticity of information encrypted, applications
should discourage user misapprehension by communicating clearly which
information has integrity, or is authenticated, confidential, or
non-repudiable when multiple processes (e.g., signature and encryption) and
algorithms (e.g., symmetric and asymmetric) are used:</p>
<ol>
<li>When an encrypted envelope contains a signature, the signature does not
necessarily protect the authenticity or integrity of the ciphertext [<a
href="#ref-Davis">Davis</a>] .</li>
<li>While the signature secures plaintext it only covers that which is
signed, recipients of encrypted messages must not infer integrity or
authenticity of other unsigned information (e.g., headers) within the
encrypted envelope, see [<a href="#ref-XML-DSIG">XML-DSIG</a>, <a
href="http://www.w3.org/TR/xmldsig-core/#sec-Secure">8.1.1 Only What is
Signed is Secure</a>].</li>
</ol>
<h3>6.2 <a name="sec-InformationRevealed"
id="sec-InformationRevealed">Information Revealed</a></h3>
<p>Where a symmetric key is shared amongst multiple recipients, that
symmetric key should <em>only</em> be used for the data intended for
<em>all</em> recipients; even if one recipient is not directed to information
intended (exclusively) for another in the same symmetric key, the information
might be discovered and decrypted.</p>
<p>Additionally, application designers should be careful not to reveal any
information in parameters or algorithm identifiers (e.g., information in a
URI) that weakens the encryption.</p>
<h3>6.3 <a name="sec-Nonce" id="sec-Nonce">Nonce</a> and IV (Initialization
Value or Vector)</h3>
<p>An undesirable characteristic of many encryption algorithms and/or their
modes is that the same plaintext when encrypted with the same key has the
same resulting ciphertext. While this is unsurprising, it invites various
attacks which are mitigated by including an arbitrary and non-repeating
(under a given key) data with the plaintext prior to encryption. In
encryption chaining modes this data is the first to be encrypted and is
consequently called the IV (initalization value or vector).</p>
<p>Different algorithms and modes have further requirements on the
characteristic of this information (e.g., randomness and secrecy) that affect
the features (e.g., confidentiality and integrity) and their resistence to
attack.</p>
<p>Given that XML data is redundant (e.g., Unicode encodings and repeated
tags ) and that attackers may know the data's structure (e.g., DTDs and
schemas) encryption algorithms must be carefully implemented and used in this
regard.</p>
<p>For the Cipher Block Chaining (CBC) mode used by this specification, the
IV must not be reused for any key and should be random, but it need not be
secret. Additionally, under this mode an adversary modifying the IV can make
a known change in the plain text after decryption. This attack can be avoided
by securing the integrity of the plain text data, for example by signing
it.</p>
<h3>6.4 <a name="sec-Denial" id="sec-Denial">Denial of Service</a></h3>
<p>This specification permits recursive processing. For example, the
following scenario is possible: <code>EncryptedKey</code> <strong>A</strong>
requires <code>EncryptedKey</code> <strong>B</strong> to be decrypted, which
itself requires <code>EncryptedKey</code> <strong>A</strong>! Or, an attacker
might submit an <code>EncryptedData</code> for decryption that references
network resources that are very large or continually redirected.
Consequently, implementations should be able to restrict arbitrary recursion
and the total amount of processing and networking resources a request can
consume.</p>
<h3 class="">6.5 <a name="sec-Unsafe-Content" id="sec-Unsafe-Content">Unsafe
Content</a></h3>
<p class="">XML Encryption can be used to obscure, via encryption, content
that applications (e.g., firewalls, virus detectors, etc.) consider unsafe
(e.g., executable code, viruses, etc.). Consequently, such applications must
consider encrypted content to be as unsafe as the unsafest content
transported in its application context. Consequently, such applications may
choose to (1) disallow such content, (2) require access to the decrypted form
for inspection, or (3) ensure that arbitrary content can be safely processed
by receiving applications.</p>
<h2>7 <a name="sec-Conformance" id="sec-Conformance">Conformance</a></h2>
<p>An implementation is conformant to this specification if it successfully
generates syntax according to the schema definitions and satisfies all
MUST/REQUIRED/SHALL requirements, including <a
href="#sec-AlgID">algorithm</a> support and <a
href="#sec-Processing">processing</a>. Processing requirements are specified
over the roles of <a class="link-def"
href="#def-Decryptor"><strong>decryptor</strong>,</a> <a class="link-def"
href="#def-Encryptor"><strong>encryptor</strong>,</a> and their calling <a
class="link-def" href="#def-Application"><strong>application</strong></a>.</p>
<h2>8 <a name="sec-MediaType" id="sec-MediaType">XML Encryption Media
Type</a></h2>
<h3>8.1 <a name="sec-MediaType-Introduction"
id="sec-MediaType-Introduction">Introduction</a></h3>
<p>XML Encryption Syntax and Processing [<a
href="#XML-Encryption">XML-Encryption</a>] specifies a process for encrypting
data and representing the result in XML. The data may be arbitrary data
(including an XML document), an XML element, or XML element content. The
result of encrypting data is an XML Encryption element which contains or
references the cipher data.</p>
<p>The <code>application/xenc+xml</code> media type allows XML Encryption
applications to identify encrypted documents. Additionally it allows
applications cognizant of this media-type (even if they are not XML
Encryption implementations) to note that the media type of the decrypted
(original) object might be a type other than XML.</p>
<h3>8.2 <a name="sec-MediaType-Registration"
id="sec-MediaType-Registration">application/xenc+xml Registration</a></h3>
<p>This is a media type registration as defined in Multipurpose Internet Mail
Extensions (MIME) Part Four: Registration Procedures [<a
href="#ref-MIME-REG">MIME-REG</a>]</p>
<p>MIME media type name: application</p>
<p>MIME subtype name: xenc+xml</p>
<p>Required parameters: none</p>
<p>Optional parameters: charset</p>
<blockquote class="">
<p>The allowable and recommended values for, and interpretation of the
charset parameter are identical to those given for 'application/xml' in
section 3.2 of RFC 3023 [<a href="#ref-XML-MT">XML-MT</a>].</p>
</blockquote>
<p>Encoding considerations:</p>
<blockquote class="">
<p>The encoding considerations are identical to those given for
'application/xml' in section 3.2 of RFC 3023 [<a
href="#ref-XML-MT">XML-MT</a>].</p>
</blockquote>
<p>Security considerations:</p>
<blockquote>
See the [<a href="#XML-Encryption">XML-Encryption</a>] <a
href="#sec-Security">Security Considerations</a> section.</blockquote>
<p>Interoperability considerations: none</p>
<p class="">Published specification: [<a
href="#XML-Encryption">XML-Encryption</a>]</p>
<p>Applications which use this media type:</p>
<blockquote>
XML Encryption is device-, platform-, and vendor-neutral and is supported
by a range of Web applications.</blockquote>
<p>Additional Information:</p>
<blockquote>
<p>Magic number(s): none</p>
<blockquote>
Although no byte sequences can be counted on to consistently identify XML
Encryption documents, they will be XML documents in which the root
element's <code>QName</code>'s <code>LocalPart</code> is
<code>'EncryptedData'</code> or '<code>EncryptedKey</code>' with an
associated namespace name of '<a
href="http://www.w3.org/2001/04/xmlenc#">http://www.w3.org/2001/04/xmlenc#</a>'.
The <code>application/xenc+xml</code> type name MUST only be used for
data objects in which the root element is from the XML Encryption
namespace. XML documents which contain these element types in places
other than the root element can be described using facilities such as [<a
href="#ref-XML-Schema">XML-schema</a>].</blockquote>
<p>File extension(s): .xml</p>
<p>Macintosh File Type Code(s): "TEXT"</p>
</blockquote>
<p>Person & email address to contact for further information:</p>
<blockquote>
<p>Joseph Reagle <reagle@w3.org></p>
<p>XENC Working Group <xml-encryption@w3.org></p>
</blockquote>
<p>Intended usage: COMMON</p>
<p>Author/Change controller:</p>
<p>The XML Encryption specification is a work product of the World Wide Web
Consortium (W3C) which has change control over the specification.</p>
<h2>9 <a name="sec-Schema" id="sec-Schema">Schema</a> and Valid Examples</h2>
<dl>
<dt>Schema</dt>
<dd><a href="xenc-schema.xsd">xenc-schema.xsd</a></dd>
<dt>Example</dt>
<dd><a href="enc-example.xml">enc-example.xml</a> (not cryptographically
valid but excercises much of the schema)</dd>
</dl>
<h2>10 <a id="sec-References" name="sec-References">References</a></h2>
<dl>
<dt><a name="ref-TRIPLEDES" id="ref-TRIPLEDES">TRIPLEDES</a></dt>
<dd>ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation.
1998.</dd>
<dt><a name="ref-AES" id="ref-AES">AES</a></dt>
<dd><a
href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">NIST
FIPS 197: Advanced Encryption Standard (AES)</a>. November 2001.</dd>
<dd><a
href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf</a></dd>
<dt class=""><a name="ref-AES-WRAP" id="ref-AES-WRAP">AES-WRAP</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc3394.txt">RFC3394: Advanced
Encryption Standard (AES) Key Wrap Algorithm</a>. J. Schaad and R.
Housley. Informational, September 2002.</dd>
<dt><a name="ref-CMS-Algorithms"
id="ref-CMS-Algorithms">CMS-Algorithms</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc3370.txt">RFC3370: Cryptographic
Message Syntax (CMS) Algorithms</a>. R. Housley. Informational,
February 2002.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc3370.txt">http://www.ietf.org/rfc/rfc3370.txt</a></dd>
<dt><a name="ref-CMS-Wrap" id="ref-CMS-Wrap">CMS-Wrap</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc3217.txt">RFC3217: Triple-DES and
RC2 Key Wrapping</a>. R. Housley. Informational, December 2001.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc3217.txt">http://www.ietf.org/rfc/rfc3217.txt</a></dd>
<dt><a name="ref-Davis" id="ref-Davis">Davis</a></dt>
<dd><a
href="http://www.usenix.org/publications/library/proceedings/usenix01/davis.html">Defective
Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP, and XML.</a> D.
Davis. USENIX Annual Technical Conference. 2001.</dd>
<dd><a
href="http://www.usenix.org/publications/library/proceedings/usenix01/davis.html">http://www.usenix.org/publications/library/proceedings/usenix01/davis.html</a></dd>
<dt><a name="ref-DES" id="ref-DES">DES</a></dt>
<dd><a
href="http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf">NIST
FIPS 46-3: Data Encryption Standard</a> (DES). October 1999.</dd>
<dd><a
href="http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf">http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf</a></dd>
<dt><a name="ref-EncReq" id="ref-EncReq">EncReq</a></dt>
<dd><a
href="http://www.w3.org/TR/2001/WD-xml-encryption-req-20010420">XML
Encryption Requirements</a>. J. Reagle. W3C Note, March 2002.</dd>
<dd><a
href="http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304">http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304</a></dd>
<dt><a name="ref-ESDH" id="ref-ESDH">ESDH</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2631.txt">RFC 2631:
Diffie-Hellman Key Agreement Method.</a> E. Rescorla. Standards Track,
1999.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2631.txt">http://www.ietf.org/rfc/rfc2631.txt</a></dd>
<dd><a
href="http://www.w3.org/TR/2002/CR-xml-exc-c14n-20020212">http://www.w3.org/TR/2002/CR-xml-exc-c14n-20020212</a></dd>
<dt><a name="ref-Glossary" id="ref-Glossary">Glossary</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2828.txt">RFC 2828: Internet
Security Glossary</a>. R Shirey. Informational, May 2000.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2828.txt">http://www.ietf.org/rfc/rfc2828.txt</a></dd>
<dt><a id="ref-HMAC" name="ref-HMAC">HMAC</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2104.txt">RFC 2104: HMAC:
Keyed-Hashing for Message Authentication</a>. H. Krawczyk, M. Bellare,
and R. Canetti. Informational, February 1997.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2104.txt">http://www.ietf.org/rfc/rfc2104.txt</a></dd>
<dt><a id="ref-HTTP" name="ref-HTTP">HTTP</a></dt>
<dd><a href="http://www.w3.org/Protocols/rfc2616/rfc2616.html">RFC 2616:
Hypertext Transfer Protocol -- HTTP/1.1.</a> J. Gettys, J. Mogul, H.
Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Standards Track,
June 1999.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2616.txt">http://www.ietf.org/rfc/rfc2616.txt</a></dd>
<dt><a id="ref-KEYWORDS" name="ref-KEYWORDS">KEYWORDS</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2119.txt">RFC 2119: Key words for
use in RFCs to Indicate Requirement Levels.</a> S. Bradner. Best
Current Practice, March 1997.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2119.txt">http://www.ietf.org/rfc/rfc2119.txt</a></dd>
<dt><a id="ref-MD5" name="ref-MD5">MD5</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc1321.txt">RFC 1321: The MD5
Message-Digest Algorithm.</a> R. Rivest. Informational, April 1992.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc1321.txt">http://www.ietf.org/rfc/rfc1321.txt</a></dd>
<dt><a id="ref-MIME" name="ref-MIME">MIME</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045: Multipurpose
Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies</a>. N. Freed and N. Borenstein. Standards Track, November
1996.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2045.txt">http://www.ietf.org/rfc/rfc2045.txt</a></dd>
<dt><a name="ref-MIME-REG" id="ref-MIME-REG">MIME-REG</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2048.txt">RFC 2048: Multipurpose
Internet Mail Extensions (MIME) Part Four: Registration Procedures</a>.
N. Freed, J. Klensin, and J. Postel. Best Current Practice, November
1996.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2048.txt">http://www.ietf.org/rfc/rfc2048.txt</a></dd>
<dt><a id="ref-NFC" name="ref-NFC">NFC</a></dt>
<dd>TR15, Unicode Normalization Forms<em>.</em> M. Davis and M. Dürst.
Revision 18: November 1999.</dd>
<dd><a
href="http://www.unicode.org/unicode/reports/tr15/tr15-18.html">http://www.unicode.org/unicode/reports/tr15/tr15-18.html</a>.</dd>
<dt><a id="ref-NFC-Corrigendum"
name="ref-NFC-Corrigendum">NFC-Corrigendum</a></dt>
<dd><a
href="http://www.unicode.org/versions/corrigendum2.html">Corrigendum
#2: Yod with Hiriq Normalization</a>.</dd>
<dd><a
href="http://www.unicode.org/versions/corrigendum2.html">http://www.unicode.org/versions/corrigendum2.html</a>.</dd>
<dt><a name="ref-prop1" id="ref-prop1">prop1</a></dt>
<dd><a
href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html">XML
Encryption strawman proposal</a>. E. Simon and B. LaMacchia. Aug
2000.</dd>
<dd><a
href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html">http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html</a></dd>
<dt><a name="ref-prop2" id="ref-prop2">prop2</a></dt>
<dd><a
href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html">Another
proposal of XML Encryption</a>. T. Imamura. Aug 2000.</dd>
<dd><a
href="http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html">http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html</a></dd>
<dt><a name="ref-prop3" id="ref-prop3">prop3</a></dt>
<dd><a
href="http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html">XML
Encryption Syntax and Processing</a>. B. Dillaway, B. Fox, T. Imamura,
B. LaMacchia, H. Maruyama, J. Schaad, and E. Simon. December 2000.</dd>
<dd><a
href="http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html">http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html</a></dd>
<dt><a id="ref-PKCS1" name="ref-PKCS1">PKCS1</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437: PKCS #1: RSA
Cryptography Specifications Version 2.0.</a> B. Kaliski and J. Staddon.
Informational, October 1998.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2437.txt">http://www.ietf.org/rfc/rfc2437.txt</a></dd>
<dt><a name="ref-RANDOM" id="ref-RANDOM">RANDOM</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc1750.txt">RFC 1750: Randomness
Recommendations for Security</a>. D. Eastlake, S. Crocker, and J.
Schiller. Informational, December 1994.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc1750.txt">http://www.ietf.org/rfc/rfc1750.txt</a></dd>
<dt><a name="ref-RIPEMD-160" id="ref-RIPEMD-160">RIPEMD-160</a></dt>
<dd>CryptoBytes, Volume 3, Number 2. <a
href="ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf">The
Cryptographic Hash Function RIPEMD-160</a>. RSA Laboratories. Autumn
1997.</dd>
<dd><a
href="ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf">ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf</a></dd>
<dd><a
href="http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf">http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf</a></dd>
<dt><a name="ref-SHA" id="ref-SHA">SHA</a></dt>
<dd>Secure Hash Standard<a
href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">.</a> NIST <a
href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">FIPS 180-1.</a>
(<a href="http://www.ietf.org/rfc/rfc3174.txt">RFC 3174</a>). April
1995.</dd>
<dd><a
href="http://www.itl.nist.gov/fipspubs/fip180-1.htm">http://www.itl.nist.gov/fipspubs/fip180-1.htm</a></dd>
<dd>Secure Hash Standard. NIST <a
href="http://csrc.nist.gov/encryption/shs/dfips-180-2.pdf">Draft FIPS
180-2</a>. 2001. (Extended to include SHA-384, SHA-256, and
SHA-512)</dd>
<dd><a
href="http://csrc.nist.gov/encryption/shs/dfips-180-2.pdf">http://csrc.nist.gov/encryption/shs/dfips-180-2.pdf</a></dd>
<dt class=""><a id="ref-Tobin" name="ref-Tobin">Tobin</a></dt>
<dd>R. Tobin. <a
href="http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054">Infoset
for external entities</a>, XML Core mailing list, 2000 [<a
href="http://cgi.w3.org/MemberAccess/AccessRequest">W3C Member
Only</a>].</dd>
<dd><a
href="http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054">http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054</a></dd>
<dt><a name="ref-UTF-16" id="ref-UTF-16">UTF-16</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2781.txt">RFC 2781: UTF-16, an
encoding of ISO 10646.</a> P. Hoffman and F. Yergeau. Informational,
February 2000.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2781.txt">http://www.ietf.org/rfc/rfc2781.txt</a></dd>
<dt><a id="ref-UTF-8" name="ref-UTF-8">UTF-8</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2279.txt">RFC 2279: UTF-8, a
transformation format of ISO 10646F.</a> F. Yergeau. Standards Track,
January 1998.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2279.txt">http://www.ietf.org/rfc/rfc2279.txt</a></dd>
<dt><a id="ref-URI" name="ref-URI">URI</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396: Uniform
Resource Identifiers (URI): Generic Syntax</a>. T. Berners-Lee, R.
Fielding, and L. Masinter. Standards Track, August 1998.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2396.txt">http://www.ietf.org/rfc/rfc2396.txt</a></dd>
<dd><a
href="http://www.ietf.org/rfc/rfc1738.txt">http://www.ietf.org/rfc/rfc1738.txt</a></dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2141.txt">http://www.ietf.org/rfc/rfc2141.txt</a></dd>
<dd><a href="http://www.ietf.org/rfc/rfc2611.txt">RFC 2611: URN Namespace
Definition Mechanisms.</a> Best Current Practices. Daigle, D. van
Gulik, R. Iannella, P. Falstrom. June 1999.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2611.txt">http://www.ietf.org/rfc/rfc2611.txt</a></dd>
<dt><a name="ref-X509v3" id="ref-X509v3">X509v3</a></dt>
<dd>ITU-T Recommendation X.509 version 3 (1997). "Information Technology
- Open Systems Interconnection - The Directory Authentication
Framework" ISO/IEC 9594-8:1997.</dd>
<dt><a id="ref-XML" name="ref-XML">XML</a></dt>
<dd><a href="http://www.w3.org/TR/2000/REC-xml-20001006">Extensible
Markup Language (XML) 1.0 (Second Edition)</a>. T. Bray, J. Paoli, C.
M. Sperberg-McQueen, and E. Maler. W3C Recommendation, October
2000.</dd>
<dt class=""><a name="ref-XML-Base" id="ref-XML-Base">XML-Base</a></dt>
<dd><a href="http://www.w3.org/TR/xmlbase/">XML Base</a>. J. Marsh. W3C
Recommendation, June 2001.</dd>
<dd><a
href="http://www.w3.org/TR/2001/REC-xmlbase-20010627/">http://www.w3.org/TR/2001/REC-xmlbase-20010627/</a></dd>
<dt><a id="ref-XML-C14N" name="ref-XML-C14N">XML-C14N</a></dt>
<dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">Canonical
XML.</a> J. Boyer. W3C Recommendation, March 2001.</dd>
<dd><a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></dd>
<dd><a
href="http://www.ietf.org/rfc/rfc3076.txt">http://www.ietf.org/rfc/rfc3076.txt</a></dd>
<dt><a name="ref-XML-exc-C14N" id="ref-XML-exc-C14N">XML-exc-C14N</a></dt>
<dd><a
href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/">Exclusive
XML Canonicalization</a>. J. Boyer, D. Eastlake, and J. Reagle. W3C
Recommendation, July 2002.</dd>
<dd><a
href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/">http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/</a></dd>
<dt><a name="ref-XML-DSIG" id="ref-XML-DSIG">XML-DSIG</a></dt>
<dd><a
href="http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/">XML-Signature
Syntax and Processing</a>. D. Eastlake, J. Reagle, and D. Solo. W3C
Recommendation, February 2002.</dd>
<dd><a
href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/">http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/</a></dd>
<dt><a name="ref-XML-DSIG-Decrypt"
id="ref-XML-DSIG-Decrypt">XML-DSIG-Decrypt</a></dt>
<dd><a
href="http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210">Decryption
Transform for XML Signature</a>. M. Hughes, T. Imamura and H. Maruyama.
W3C Recommendation, December 2002.</dd>
<dd><a
href="http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210">http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210</a></dd>
<dt><a name="XML-Encryption" id="XML-Encryption"></a>XML-Encryption</dt>
<dd><a href="http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/">XML
Encryption Syntax and Processing</a>. D. Eastlake and J. Reagle. W3C
Candidate Recommendation, December 2002.</dd>
<dd><a>http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/</a></dd>
<dt class=""><a id="ref-XML-Infoset"
name="ref-XML-Infoset">XML-Infoset</a></dt>
<dd><a href="http://www.w3.org/TR/2001/REC-xml-infoset-20011024/">XML
Information Set</a>. J. Cowan and R. Tobin. W3C Recommendation, October
2001</dd>
<dd><a
href="http://www.w3.org/TR/2001/REC-xml-infoset-20011024/">http://www.w3.org/TR/2001/REC-xml-infoset-20011024/</a></dd>
<dt><a id="ref-XML-MT">XML-MT</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc3023.txt">RFC 3023: XML Media
Types.</a> M. Murata, S. St. Laurent, and D. Kohn. Informational,
January 2001.</dd>
<dd><a
href="http://www.ietf.org/rfc/rfc2376.txt">http://www.ietf.org/rfc/rfc2376.txt</a></dd>
<dt><a id="ref-XML-NS" name="ref-XML-NS">XML-NS</a></dt>
<dd><a
href="http://www.w3.org/TR/1999/REC-xml-names-19990114/">Namespaces in
XML</a>. T. Bray, D. Hollander, and A. Layman. W3C Recommendation,
January 1999.</dd>
<dd><a
href="http://www.w3.org/TR/1999/REC-xml-names-19990114/">http://www.w3.org/TR/1999/REC-xml-names-19990114</a></dd>
<dt><a id="ref-XML-Schema" name="ref-XML-Schema">XML-schema</a></dt>
<dd><a href="http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/">XML
Schema Part 1: Structures</a> D. Beech, M. Maloney, and N. Mendelsohn.
W3C Recommendation, May 2001.</dd>
<dd><a
href="http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/">http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/</a></dd>
<dd><a href="http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/">XML
Schema Part 2: Datatypes</a>. P. Biron and A. Malhotra. W3C
Recommendation, May 2001.</dd>
<dd><a
href="http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/">http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/</a></dd>
<dt><a id="ref-XPath" name="ref-XPath">XPath</a></dt>
<dd><a href="http://www.w3.org/TR/1999/REC-xpath-19991116">XML Path
Language (XPath) Version 1.0</a>. J. Clark and S. DeRose. W3C
Recommendation, October 1999.<br />
<a
href="http://www.w3.org/TR/1999/REC-xpath-19991116">http://www.w3.org/TR/1999/REC-xpath-19991116</a></dd>
</dl>
</body>
</html>