index.html
220 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator" content=
"HTML Tidy for Mac OS X (vers 31 October 2006 - Apple Inc. build 13), see www.w3.org" />
<meta http-equiv="content-type" content=
"text/html; charset=us-ascii" />
<title>XML Signature Syntax and Processing (Second
Edition)</title>
<style type="text/css" xml:space="preserve">
/*<![CDATA[*/
/**/
/**/
/**/
u { background: white; color: red;}
ins,.ins { background: white; color: red;}
del,strike,.strike { background: white; color: silver; text-decoration: line-through;}
code {font-weight: normal; }
.link-def { background: #FFFFFF; color: teal; font-style: italic;}
.comment { background: #FFFFF5; color: black; padding: .7em;
border: navy thin solid;}
.discuss { color: blue; background: yellow; }
.xml-example,.xml-dtd { margin-left: -1em; padding: .5em;
white-space: pre; border: none;}
.xml-dtd { background: #efeff8; color: black;}
del a { text-decoration: line-through; color: silver; }
ins a { color: red; }
/**/
/**/
/*
*/
/*]]>*/
</style>
<link rel="stylesheet" type="text/css" href=
"http://www.w3.org/StyleSheets/TR/base.css" />
<link rel="stylesheet" type="text/css"
href="http://www.w3.org/StyleSheets/TR/W3C-REC"/>
</head>
<body xml:lang="en" lang="en">
<div class="head">
<a href="http://www.w3.org/"><img height="48" width="72"
alt="W3C" src="http://www.w3.org/Icons/w3c_home"/></a>
<h1 class="notoc">XML Signature Syntax and Processing (Second
Edition)</h1>
<h2 class="notoc">W3C Recommendation 10 June 2008</h2>
<dl>
<dt>This version:</dt>
<dd><a href="http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/">http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/</a></dd>
<dt>Latest version:</dt>
<dd><a href="http://www.w3.org/TR/xmldsig-core/" shape=
"rect">http://www.w3.org/TR/xmldsig-core/</a></dd>
<dt>Previous version:</dt>
<dd><a href="http://www.w3.org/TR/2008/PER-xmldsig-core-20080326/">http://www.w3.org/TR/2008/PER-xmldsig-core-20080326/</a></dd>
<dt>Editors</dt>
<dd>Donald Eastlake <<a href="mailto:d3e3e3@gmail.com"
shape="rect">d3e3e3@gmail.com</a>><br clear="none" />
Joseph Reagle <<a href="mailto:reagle@mit.edu" shape=
"rect">reagle@mit.edu</a>><br clear="none" />
David Solo <<a href="mailto:dsolo@alum.mit.edu" shape=
"rect">dsolo@alum.mit.edu</a>><br clear="none" />
Frederick Hirsch <<a href=
"mailto:frederick.hirsch@nokia.com" shape=
"rect">frederick.hirsch@nokia.com</a>> (2nd
edition)<br clear="none" />
Thomas Roessler <<a href="mailto:tlr@w3.org" shape=
"rect">tlr@w3.org</a>> (2nd edition)</dd>
<dt>Authors</dt>
<dd>Mark Bartel <<a href="mailto:mbartel@adobe.com" shape=
"rect">mbartel@adobe.com</a>></dd>
<dd>John Boyer <<a href="mailto:boyerj@ca.ibm.com" shape=
"rect">boyerj@ca.ibm.com</a>><br clear="none" />
Barb Fox <<a href="mailto:bfox@Exchange.Microsoft.com"
shape="rect">bfox@Exchange.Microsoft.com</a>></dd>
<dd>Brian LaMacchia <<a href="mailto:bal@microsoft.com"
shape="rect">bal@microsoft.com</a>></dd>
<dd>Ed Simon <<a href="mailto:edsimon@xmlsec.com" shape=
"rect">edsimon@xmlsec.com</a>></dd>
<dt>Contributors</dt>
<dd>See <a href="#sec-Acknowledgements" shape=
"rect">Acknowledgements</a></dd>
</dl>
<p>Please refer to the <a href="http://www.w3.org/2008/06/xmldsigcore-errata.html"><strong>errata</strong></a> for this document, which may include some normative corrections.</p>
<p>This document is also available in these non-normative
formats: <a href="review.html" shape="rect">XHTML with
color-coded revision indicators against the previous recommendation version.</a></p>
<p>See also <a href="http://www.w3.org/2003/03/Translations/byTechnology?technology=xmldsig-core-80"><strong>translations</strong></a>.</p>
<p class="copyright"><a href=
"http://www.w3.org/Consortium/Legal/ipr-notice#Copyright"
shape="rect">Copyright</a> © 2008 <a href=
"http://www.ietf.org/" shape="rect">The Internet Society</a>
& <a href="http://www.w3.org/" shape="rect"><abbr title=
"World Wide Web Consortium">W3C</abbr></a>® (<a href=
"http://www.csail.mit.edu/" shape="rect"><abbr title=
"Massachusetts Institute of Technology">MIT</abbr></a>,
<a href="http://www.inria.fr/" shape="rect"><abbr xml:lang="fr"
lang="fr" title=
"European Research Consortium for Informatics and Mathematics">ERCIM</abbr></a>,
<a href="http://www.keio.ac.jp/" shape="rect">Keio</a>), All
Rights Reserved. W3C <a href=
"http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer"
shape="rect">liability</a>, <a href=
"http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks"
shape="rect">trademark</a> and <a href=
"http://www.w3.org/Consortium/Legal/copyright-documents" shape=
"rect">document use</a> rules apply.</p>
<hr title="Separator from Header" />
</div>
<h2 class="notoc">Abstract</h2>
<p>This document specifies XML digital signature processing rules
and syntax. XML Signatures provide <a href="#def-Integrity"
class="link-def" shape="rect">integrity</a>, <a href=
"#def-AuthenticationMessage" class="link-def" shape=
"rect">message authentication</a>, and/or <a href=
"#def-AuthenticationSigner" class="link-def" shape="rect">signer
authentication</a> services for data of any type, whether located
within the XML that includes the signature or elsewhere.</p>
<h2 class="notoc"><a id="status" name="status" shape=
"rect"></a>Status of this document</h2>
<p><em>This section describes the status of this document at the
time of its publication. Other documents may supersede this
document. A list of current W3C publications and the latest
revision of this technical report can be found in the <a href=
"http://www.w3.org/TR/" shape="rect">W3C technical reports
index</a> at http://www.w3.org/TR/.</em></p>
<div>
<p class="notoc">The <a href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/">original
version</a> of this specification was produced by the IETF/W3C <a
href="http://www.w3.org/Signature/" shape="rect">XML Signature Working Group</a> which believes
the specification is sufficient for the creation of independent interoperable implementations;
the <a href= "http://www.w3.org/Signature/2001/04/05-xmldsig-interop.html"
shape="rect">Interoperability Report</a> shows at least 10 implementations with at least two
interoperable implementations over every feature.</p>
<p>This Second Edition was produced by the W3C <a href=
"http://www.w3.org/2007/xmlsec/" shape="rect">XML Security
Specifications Maintenance Working Group</a>, part of the W3C
Security Activity (<a href="http://www.w3.org/Security/" shape=
"rect">Activity Statement</a>).</p>
<p>This Second Edition of XML Signature Syntax and
Processing adds Canonical XML 1.1 as a required
canonicalization algorithm and recommends its use for inclusive
canonicalization. This version of Canonical XML enables use of
<code>xml:id</code> and <code>xml:base</code> Recommendations
with XML Signature and also enables other possible future
attributes in the XML namespace. Additional minor changes,
including the incorporation of known errata, are documented in
<a href="explain.html" title=
"Changes in XML Signature Syntax and Processing (Second Edition)"
shape="rect">Changes in XML Signature Syntax and Processing
(Second Edition)</a>.</p>
<p>The Working Group conducted an interoperability test as part
of its activity. The <a href=
"http://www.w3.org/TR/2008/NOTE-xmldsig2ed-tests-20080610/"
title="Test Cases for C14N 1.1 and XMLDSig Interoperability"
shape="rect">Test Cases for C14N 1.1 and XMLDSig Interoperability</a> [<a
href="#ref-TESTCASES">TESTCASES</a>] are available as a companion Working Group Note. The <a href=
"http://www.w3.org/2007/xmlsec/interop/xmldsig/report.html"
title="Implementation Report for XML Signature, Second Edition"
shape="rect">Implementation Report for XML Signature, Second
Edition</a> is also publicly available.</p>
<p>Please send comments about this document to <a href="mailto:public-xmlsec-comments@w3.org">public-xmlsec-comments@w3.org</a> (with <a
href="http://lists.w3.org/Archives/Public/public-xmlsec-comments/">public archive</a>).</p>
<p>This document has been reviewed by W3C Members, by software
developers, and by other W3C groups and interested parties, and
is endorsed by the Director as a W3C Recommendation. It is a
stable document and may be used as reference material or cited
from another document. W3C's role in making the Recommendation
is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and
interoperability of the Web.</p>
<p>This document is governed by the <a href=
"http://www.w3.org/TR/2002/NOTE-patent-practice-20020124"
shape="rect">24 January 2002 CPP</a> as amended by the <a href=
"http://www.w3.org/2004/02/05-pp-transition" shape="rect">W3C
Patent Policy Transition Procedure</a>. W3C maintains a <a rel=
"disclosure" href=
"http://www.w3.org/2004/01/pp-impl/40279/status" shape=
"rect">public list of any patent disclosures</a> made in
connection with the deliverables of the group; that page also
includes instructions for disclosing a patent. An individual
who has actual knowledge of a patent which the individual
believes contains <a href=
"http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential"
shape="rect">Essential Claim(s)</a> must disclose the
information in accordance with <a href=
"http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure"
shape="rect">section 6 of the W3C Patent Policy</a>. Patent
disclosures relevant to this specification may be found on the
<a href="http://www.ietf.org/ipr.html" shape="rect">IETF Page
of Intellectual Property Rights Notices</a>, in conformance
with IETF policy.</p>
<p>The English version of this specification is the only
normative version.</p>
</div>
<h2 id="contents">Table of Contents</h2>
<ol>
<li>
<a href="#sec-Introduction" shape="rect">Introduction</a>
<ol>
<li><a href="#sec-Editorial" shape="rect">Editorial
Conventions</a></li>
<li><a href="#sec-Design" shape="rect">Design
Philosophy</a></li>
<li><a href="#sec-Versions" shape="rect">Versions,
Namespaces and Identifiers</a></li>
<li><a href="#sec-Acknowledgements" shape=
"rect">Acknowledgements</a></li>
</ol>
</li>
<li>
<a href="#sec-Overview" shape="rect">Signature Overview and
Examples</a>
<ol>
<li>
<a href="#sec-o-Simple" shape="rect">Simple Example
(<code>Signature</code>, <code>SignedInfo</code>,
<code>Method</code>s, and <code>Reference</code>s)</a>
<ol>
<li><a href="#sec-o-Reference" shape="rect">More on
<code>Reference</code></a></li>
</ol>
</li>
<li><a href="#sec-o-SignatureProperty" shape=
"rect">Extended Example (<code>Object</code> and
<code>SignatureProperty</code>)</a></li>
<li><a href="#sec-o-Manifest" shape="rect">Extended Example
(<code>Object</code> and <code>Manifest</code>)</a></li>
</ol>
</li>
<li>
<a href="#sec-Processing" shape="rect">Processing Rules</a>
<ol>
<li><a href="#sec-CoreGeneration" shape="rect">Signature
Generation</a></li>
<li><a href="#sec-CoreValidation" shape="rect">Signature
Validation</a></li>
</ol>
</li>
<li>
<a href="#sec-CoreSyntax" shape="rect">Core Signature
Syntax</a>
<ol>
<li><a href="#sec-Signature" shape="rect">The
<code>Signature</code> element</a></li>
<li><a href="#sec-SignatureValue" shape="rect">The
<code>SignatureValue</code> Element</a></li>
<li>
<a href="#sec-SignedInfo" shape="rect">The
<code>SignedInfo</code> Element</a>
<ol>
<li><a href="#sec-CanonicalizationMethod" shape=
"rect">The <code>CanonicalizationMethod</code>
Element</a></li>
<li><a href="#sec-SignatureMethod" shape="rect">The
<code>SignatureMethod</code> Element</a></li>
<li>
<a href="#sec-Reference" shape="rect">The
<code>Reference</code> Element</a>
<ol>
<li><a href="#sec-URI" shape="rect">The
<code>URI</code> Attribute</a></li>
<li><a href="#sec-ReferenceProcessingModel" shape=
"rect">The Reference Processing Model</a></li>
<li><a href="#sec-Same-Document" shape=
"rect">Same-Document URI-References</a></li>
<li><a href="#sec-Transforms" shape="rect">The
<code>Transforms</code> Element</a></li>
<li><a href="#sec-DigestMethod" shape="rect">The
<code>DigestMethod</code> Element</a></li>
<li><a href="#sec-DigestValue" shape="rect">The
<code>DigestValue</code> Element</a></li>
</ol>
</li>
</ol>
</li>
<li>
<a href="#sec-KeyInfo" shape="rect">The
<code>KeyInfo</code> Element</a>
<ol>
<li><a href="#sec-KeyName" shape="rect">The
<code>KeyName</code> Element</a></li>
<li>
<a href="#sec-KeyValue" shape="rect">The
<code>KeyValue</code> Element</a>
<ol>
<li><a href="#sec-DSAKeyValue" shape="rect">The
<code>DSAKeyValue</code> Element</a></li>
<li><a href="#sec-RSAKeyValue" shape="rect">The
<code>RSAKeyValue</code> Element</a></li>
</ol>
</li>
<li><a href="#sec-RetrievalMethod" shape="rect">The
<code>RetrievalMethod</code> Element</a></li>
<li>
<a href="#sec-X509Data" shape="rect">The
<code>X509Data</code> Element</a>
<ol>
<li><a href="#dname-encrules" shape=
"rect">Distinguished Name Encoding Rules</a></li>
</ol>
</li>
<li><a href="#sec-PGPData" shape="rect">The
<code>PGPData</code> Element</a></li>
<li><a href="#sec-SPKIData" shape="rect">The
<code>SPKIData</code> Element</a></li>
<li><a href="#sec-MgmtData" shape="rect">The
<code>MgmtData</code> Element</a></li>
</ol>
</li>
<li><a href="#sec-Object" shape="rect">The
<code>Object</code> Element</a></li>
</ol>
</li>
<li>
<a href="#sec-AdditionalSyntax" shape="rect">Additional
Signature Syntax</a>
<ol>
<li><a href="#sec-Manifest" shape="rect">The
<code>Manifest</code> Element</a></li>
<li><a href="#sec-SignatureProperties" shape="rect">The
<code>SignatureProperties</code> Element</a></li>
<li><a href="#sec-PI" shape="rect">Processing
Instructions</a></li>
<li><a href="#sec-comments" shape="rect">Comments in dsig
Elements</a></li>
</ol>
</li>
<li>
<a href="#sec-Algorithms" shape="rect">Algorithms</a>
<ol>
<li><a href="#sec-AlgID" shape="rect">Algorithm Identifiers
and Implementation Requirements</a></li>
<li><a href="#sec-MessageDigests" shape="rect">Message
Digests</a></li>
<li><a href="#sec-MACs" shape="rect">Message Authentication
Codes</a></li>
<li><a href="#sec-SignatureAlg" shape="rect">Signature
Algorithms</a></li>
<li>
<a href="#sec-c14nAlg" shape="rect">Canonicalization
Algorithms</a>
<ol>
<li><a href="#sec-Canonical" shape="rect">Canonical XML
1.0</a></li>
<li><a href="#sec-Canonical11" shape="rect">Canonical
XML 1.1</a></li>
</ol>
</li>
<li>
<a href="#sec-TransformAlg" shape="rect">Transform
Algorithms</a>
<ol>
<li><a href="#sec-Canonicalization" shape=
"rect">Canonicalization</a></li>
<li><a href="#sec-Base-64" shape="rect">Base64</a></li>
<li><a href="#sec-XPath" shape="rect">XPath
Filtering</a></li>
<li><a href="#sec-EnvelopedSignature" shape=
"rect">Enveloped Signature Transform</a></li>
<li><a href="#sec-XSLT" shape="rect">XSLT
Transform</a></li>
</ol>
</li>
</ol>
</li>
<li>
<a href="#sec-XML-Canonicalization" shape="rect">XML
Canonicalization and Syntax Constraint Considerations</a>
<ol>
<li><a href="#sec-XML-1" shape="rect">XML 1.0, Syntax
Constraints, and Canonicalization</a></li>
<li><a href="#sec-DOM-SAX" shape="rect">DOM/SAX Processing
and Canonicalization</a></li>
<li><a href="#sec-NamespaceContext" shape="rect">Namespace
Context and Portable Signatures</a></li>
</ol>
</li>
<li>
<a href="#sec-Security" shape="rect">Security
Considerations</a>
<ol>
<li>
<a href="#sec-Security-Transofrms" shape=
"rect">Transforms</a>
<ol>
<li><a href="#sec-Secure" shape="rect">Only What is
Signed is Secure</a></li>
<li><a href="#sec-Seen" shape="rect">Only What is
"Seen" Should be Signed</a></li>
<li><a href="#sec-See" shape="rect">"See" What is
Signed</a></li>
</ol>
</li>
<li><a href="#sec-Check" shape="rect">Check the Security
Model</a></li>
<li><a href="#sec-KeyLength" shape="rect">Algorithms, Key
Lengths, Etc.</a></li>
</ol>
</li>
<li><a href="#sec-Schema" shape="rect">Schema, DTD, Data Model,
and Valid Examples</a></li>
<li><a href="#sec-Definitions" shape=
"rect">Definitions</a></li>
<li><a href="#sec-References" shape="rect">References</a></li>
<li><a href="#sec-Authors" shape="rect">Authors'
Address</a></li>
</ol>
<hr />
<h2>1.0 <a id="sec-Introduction" name="sec-Introduction" shape=
"rect">Introduction</a></h2>
<p>This document specifies XML syntax and processing rules for
creating and representing digital signatures. XML Signatures can
be applied to any <a href="#def-DataObject" class="link-def"
shape="rect">digital content (data object)</a>, including XML. An
XML Signature may be applied to the content of one or more
resources. <a href="#def-SignatureEnveloped" class="link-def"
shape="rect">Enveloped</a> or <a href="#def-SignatureEnveloping"
class="link-def" shape="rect">enveloping</a> signatures are over
data within the same XML document as the signature; <a href=
"#def-SignatureDetached" class="link-def" shape=
"rect">detached</a> signatures are over data external to the
signature element. More specifically, this specification defines
an XML signature element type and an <a href=
"#def-SignatureApplication" class="link-def" shape="rect">XML
signature application</a>; conformance requirements for each are
specified by way of schema definitions and prose respectively.
This specification also includes other useful types that identify
methods for referencing collections of resources, algorithms, and
keying and management information.</p>
<p>The XML Signature is a method of associating a key with
referenced data (octets); it does not normatively specify how
keys are associated with persons or institutions, nor the meaning
of the data being referenced and signed. Consequently, while this
specification is an important component of secure XML
applications, it itself is not sufficient to address all
application security/trust concerns, particularly with respect to
using signed XML (or other data formats) as a basis of
human-to-human communication and agreement. Such an application
must specify additional key, algorithm, processing and rendering
requirements. For further information, please see <a href=
"#sec-Security" shape="rect">Security Considerations</a> (section
8).</p>
<h3>1.1 <a id="sec-Editorial" name="sec-Editorial" shape=
"rect">Editorial</a> and Conformance Conventions</h3>
<p>For readability, brevity, and historic reasons this document
uses the term "signature" to generally refer to digital
authentication values of all types. Obviously, the term is also
strictly used to refer to authentication values that are based on
public keys and that provide signer authentication. When
specifically discussing authentication values based on symmetric
secret key codes we use the terms authenticators or
authentication codes. (See <a href="#sec-Check" shape=
"rect">Check the Security Model</a>, section 8.3.)</p>
<p>This specification provides an XML Schema [<a href=
"#ref-XML-schema" shape="rect">XML-schema</a>] and DTD [<a href=
"#ref-XML" shape="rect">XML</a>]. The schema definition is
normative.</p>
<p>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this specification are to be interpreted as
described in <a href="http://www.ietf.org/rfc/rfc2119.txt" shape=
"rect">RFC2119</a> [<a href="#ref-KEYWORDS" shape=
"rect">KEYWORDS</a>]:</p>
<blockquote>
<p>"they MUST only be used where it is actually required for
interoperation or to limit behavior which has potential for
causing harm (e.g., limiting retransmissions)"</p>
</blockquote>
<p>Consequently, we use these capitalized key words to
unambiguously specify requirements over protocol and application
features and behavior that affect the interoperability and
security of implementations. These key words are not used
(capitalized) to describe XML grammar; schema definitions
unambiguously describe such requirements and we wish to reserve
the prominence of these terms for the natural language
descriptions of protocols and features. For instance, an XML
attribute might be described as being "optional." Compliance with
the Namespaces in XML specification [<a href="#ref-XML-ns" shape=
"rect">XML-ns</a>] is described as "REQUIRED."</p>
<h3>1.2 <a id="sec-Design" name="sec-Design" shape=
"rect">Design</a> Philosophy</h3>
<p>The design philosophy and requirements of this specification
are addressed in the XML-Signature Requirements document
[<a href="#ref-XML-Signature-RD" shape=
"rect">XML-Signature-RD</a>].</p>
<h3>1.3 <a id="sec-Versions" name="sec-Versions" shape=
"rect">Versions</a>, Namespaces and Identifiers</h3>
<p>No provision is made for an explicit version number in this
syntax. If a future version is needed, it will use a different
namespace. The XML namespace [<a href="#ref-XML-ns" shape=
"rect">XML-ns</a>] URI that MUST be used by implementations of
this (dated) specification is:</p>
<pre class="xml-example" xml:space="preserve">
xmlns="http://www.w3.org/2000/09/xmldsig#"
</pre>
<p>This namespace is also used as the prefix for algorithm
identifiers used by this specification. While applications MUST
support XML and XML namespaces, the use of <a href=
"http://www.w3.org/TR/REC-xml#sec-internal-ent" shape=
"rect">internal entities</a> [<a href="#ref-XML" shape=
"rect">XML</a>] or our "dsig" XML <a href=
"http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-prefix"
shape="rect">namespace prefix</a> and defaulting/scoping
conventions are OPTIONAL; we use these facilities to provide
compact and readable examples.</p>
<p>This specification uses Uniform Resource Identifiers
[<a href="#ref-URI" shape="rect">URI</a>] to identify resources,
algorithms, and semantics. The URI in the namespace declaration
above is also used as a prefix for URIs under the control of this
specification. For resources not under the control of this
specification, we use the designated Uniform Resource Names
[<a href="#ref-URN" shape="rect">URN</a>] or Uniform Resource
Locators [<a href="#ref-URL" shape="rect">URL</a>] defined by its
normative external specification. If an external specification
has not allocated itself a Uniform Resource Identifier we
allocate an identifier under our own namespace. For instance:</p>
<dl>
<dt><code>SignatureProperties</code> is identified and defined
by this specification's namespace</dt>
<dd>http://www.w3.org/2000/09/xmldsig#<span style=
"font-weight: normal">SignatureProperties</span></dd>
<dt><span style="font-weight: normal">XSLT is identified and
defined by an external URI</span></dt>
<dd>http://www.w3.org/TR/1999/REC-xslt-19991116</dd>
<dt>SHA1 is identified via this specification's namespace and
defined via a normative reference</dt>
<dd>http://www.w3.org/2000/09/xmldsig#sha1</dd>
<dd>FIPS PUB 180-2. <em>Secure Hash Standard.</em> U.S.
Department of Commerce/National Institute of Standards and
Technology.</dd>
</dl>
<p>Finally, in order to provide for terse namespace declarations
we sometimes use <a href=
"http://www.w3.org/TR/REC-xml#sec-internal-ent" shape="rect">XML
internal entities</a> [<a href="#ref-XML" shape="rect">XML</a>]
within URIs. For instance:</p>
<pre class="xml-example" xml:space="preserve">
<?xml version='1.0'?>
<!DOCTYPE Signature SYSTEM
"xmldsig-core-schema.dtd" [ <!ENTITY dsig
"http://www.w3.org/2000/09/xmldsig#"> ]>
<Signature xmlns="&dsig;" Id="MyFirstSignature">
<SignedInfo>
...
</pre>
<h3>1.4 <a id="sec-Acknowledgements" name="sec-Acknowledgements"
shape="rect">Acknowledgements</a></h3>
<p>The contributions of the following Working Group members to
this specification are gratefully acknowledged:</p>
<ul>
<li>Mark Bartel, Adobe, was Accelio (Author)</li>
<li>John Boyer, IBM (Author)</li>
<li>Mariano P. Consens, University of Waterloo</li>
<li>John Cowan, Reuters Health</li>
<li>Donald Eastlake 3rd, Motorola (Chair,
Author/Editor)</li>
<li>Barb Fox, Microsoft (Author)</li>
<li>Christian Geuer-Pollmann, University Siegen</li>
<li>Tom Gindin, IBM</li>
<li>Phillip Hallam-Baker, VeriSign Inc</li>
<li>Richard Himes, US Courts</li>
<li>Merlin Hughes, Baltimore</li>
<li>Gregor Karlinger, IAIK TU Graz</li>
<li>Brian LaMacchia, Microsoft (Author)</li>
<li>Peter Lipp, IAIK TU Graz</li>
<li>Joseph Reagle, NYU, was W3C (Chair, Author/Editor)</li>
<li>Ed Simon, XMLsec (Author)</li>
<li>David Solo, Citigroup (Author/Editor)</li>
<li>Petteri Stenius, Capslock</li>
<li>Raghavan Srinivas, Sun</li>
<li>Kent Tamura, IBM</li>
<li>Winchel Todd Vincent III, GSU</li>
<li>Carl Wallace, Corsec Security, Inc.</li>
<li>Greg Whitehead, Signio Inc.</li>
</ul>
<p>As are the Last Call comments from the following:</p>
<ul>
<li>Dan Connolly, W3C</li>
<li>Paul Biron, Kaiser Permanente, on behalf of the <a href=
"http://www.w3.org/XML/Schema.html" shape="rect">XML Schema
WG</a>.</li>
<li>Martin J. Duerst, W3C; and Masahiro Sekiguchi, Fujitsu; on
behalf of the <a href="http://www.w3.org/International/" shape=
"rect">Internationalization WG/IG</a>.</li>
<li>Jonathan Marsh, Microsoft, on behalf of the <a href=
"http://www.w3.org/Style/XSL/" shape="rect">Extensible
Stylesheet Language WG</a>.</li>
</ul>
<p>The following members of the XML Security Specification
Maintenance Working Group contributed to the second edition:</p>
<ul>
<li>Juan Carlos Cruellas, Universitat Politècnica de
Catalunya</li>
<li>Pratik Datta, Oracle Corporation</li>
<li>Phillip Hallam-Baker, VeriSign, Inc.</li>
<li>Frederick Hirsch, Nokia, (Chair, Editor)</li>
<li>Konrad Lanz, A-SIT</li>
<li>Hal Lockhart, BEA Systems, Inc.</li>
<li>Robert Miller, MITRE Corporation</li>
<li>Sean Mullan, Sun Microsystems, Inc.</li>
<li>Bruce Rich, IBM Corporation</li>
<li>Thomas Roessler, W3C/ERCIM, (Staff contact, Editor)</li>
<li>Ed Simon, W3C Invited Expert</li>
<li>Greg Whitehead, HP</li>
</ul>
<h2>2.0 <a id="sec-Overview" name="sec-Overview" shape=
"rect">Signature Overview</a> and Examples</h2>
<p>This section provides an overview and examples of XML digital
signature syntax. The specific processing is given in <a href=
"http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing"
shape="rect">Processing Rules</a> (section 3). The formal syntax
is found in <a href="#sec-CoreSyntax" shape="rect">Core Signature
Syntax</a> (section 4) and <a href="#sec-AdditionalSyntax" shape=
"rect">Additional Signature Syntax</a> (section 5).</p>
<p>In this section, an informal representation and examples
are used to describe the structure of the XML signature syntax.
This representation and examples may omit attributes, details and
potential features that are fully explained later.</p>
<p>XML Signatures are applied to arbitrary <a href=
"#def-DataObject" class="link-def" shape="rect">digital content
(data objects)</a> via an indirection. Data objects are digested,
the resulting value is placed in an element (with other
information) and that element is then digested and
cryptographically signed. XML digital signatures are represented
by the <code>Signature</code> element which has the following
structure (where "?" denotes zero or one occurrence; "+" denotes
one or more occurrences; and "*" denotes zero or more
occurrences):</p>
<pre class="xml-example" xml:space="preserve">
<Signature ID?>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >
(<Transforms>)?
<DigestMethod>
<DigestValue>
</Reference>)+
</SignedInfo>
<SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*
</Signature>
</pre>
<p>Signatures are related to <a href="#def-DataObject" class=
"link-def" shape="rect">data objects</a> via URIs [<a href=
"#ref-URI" shape="rect">URI</a>]. Within an XML document,
signatures are related to local data objects via fragment
identifiers. Such local data can be included within an <a href=
"#def-SignatureEnveloping" class="link-def" shape=
"rect">enveloping</a> signature or can enclose an <a href=
"#def-SignatureEnveloped" class="link-def" shape=
"rect">enveloped</a> signature. <a href="#def-SignatureDetached"
class="link-def" shape="rect">Detached signatures</a> are over
external network resources or local data objects that reside
within the same XML document as sibling elements; in this case,
the signature is neither enveloping (signature is parent) nor
enveloped (signature is child). Since a <code>Signature</code>
element (and its <code>Id</code> attribute value/name) may
co-exist or be combined with other elements (and their IDs)
within a single XML document, care should be taken in choosing
names such that there are no subsequent collisions that violate
the <a href="http://www.w3.org/TR/REC-xml#id" shape="rect">ID
uniqueness validity constraint</a> [<a href="#ref-XML" shape=
"rect">XML</a>].</p>
<h3>2.1 <a id="sec-o-Simple" name="sec-o-Simple" shape=
"rect">Simple Example</a> (<code>Signature</code>,
<code>SignedInfo</code>, <code>Methods</code>, and
<code>Reference</code>)s</h3>
<p>The following example is a detached signature of the content
of the HTML4 in XML specification.</p>
<pre class="xml-example" xml:space="preserve">
[s01] <Signature Id="MyFirstSignature" xmlns="http://www.w3.org/2000/09/xmldsig#">
[s02] <SignedInfo>
[s03] <CanonicalizationMethod Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
[s04] <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[s05] <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06] <Transforms>
[s07] <Transform Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
[s08] </Transforms>
[s09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s10] <DigestValue>dGhpcyBpcyBub3QgYSBzaWduYXR1cmUK.../DigestValue>
[s11] </Reference>
[s12] </SignedInfo>
[s13] <SignatureValue>...</SignatureValue>
[s14] <KeyInfo>
[s15a] <KeyValue>
[s15b] <DSAKeyValue>
[s15c] <P>...</P><Q>...</Q><G>...</G><Y>...</Y>
[s15d] </DSAKeyValue>
[s15e] </KeyValue>
[s16] </KeyInfo>
[s17] </Signature>
</pre>
<p><code>[s02-12]</code> The required <code>SignedInfo</code>
element is the information that is actually signed. <a href=
"#def-ValidationCore" class="link-def" shape="rect">Core
validation</a> of <code>SignedInfo</code> consists of two
mandatory processes: <a href="#def-ValidationSignature" class=
"link-def" shape="rect">validation of the signature</a> over
<code>SignedInfo</code> and <a href="#def-ValidationReference"
class="link-def" shape="rect">validation of each
<code>Reference</code></a> digest within <code>SignedInfo</code>.
Note that the algorithms used in calculating the
<code>SignatureValue</code> are also included in the signed
information while the <code>SignatureValue</code> element is
outside <code>SignedInfo</code>.</p>
<p><code>[s03]</code> The <code>CanonicalizationMethod</code> is
the algorithm that is used to canonicalize the
<code>SignedInfo</code> element before it is digested as part of
the signature operation. Note that this example, and all examples
in this specification, are not in canonical form.</p>
<p><code>[s04]</code> The <code>SignatureMethod</code> is the
algorithm that is used to convert the canonicalized
<code>SignedInfo</code> into the <code>SignatureValue</code>. It
is a combination of a digest algorithm and a key dependent
algorithm and possibly other algorithms such as padding, for
example RSA-SHA1. The algorithm names are signed to resist
attacks based on substituting a weaker algorithm. To promote
application interoperability we specify a set of signature
algorithms that MUST be implemented, though their use is at the
discretion of the signature creator. We specify additional
algorithms as RECOMMENDED or OPTIONAL for implementation; the
design also permits arbitrary user specified algorithms.</p>
<p><code>[s05-11]</code> Each <code>Reference</code> element
includes the digest method and resulting digest value calculated
over the identified data object. It also may include
transformations that produced the input to the digest operation.
A data object is signed by computing its digest value and a
signature over that value. The signature is later checked via
<a href="#def-ValidationReference" class="link-def" shape=
"rect">reference</a> and <a href="#def-ValidationSignature"
class="link-def" shape="rect">signature validation</a>.</p>
<p><code>[s14-16]</code> <code>KeyInfo</code> indicates the key
to be used to validate the signature. Possible forms for
identification include certificates, key names, and key agreement
algorithms and information -- we define only a few.
<code>KeyInfo</code> is optional for two reasons. First, the
signer may not wish to reveal key information to all document
processing parties. Second, the information may be known within
the application's context and need not be represented explicitly.
Since <code>KeyInfo</code> is outside of <code>SignedInfo</code>,
if the signer wishes to bind the keying information to the
signature, a <code>Reference</code> can easily identify and
include the <code>KeyInfo</code> as part of the signature.</p>
<h3>2.1.1 More on <a id="sec-o-Reference" name="sec-o-Reference"
shape="rect"><code>Reference</code></a></h3>
<pre class="xml-example" xml:space="preserve">
[s05] <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06] <Transforms>
[s07] <Transform Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
[s08] </Transforms>
[s09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s10] <DigestValue>dGhpcyBpcyBub3QgYSBzaWduYXR1cmUK...</DigestValue>
[s11] </Reference>
</pre>
<p><code>[s05]</code> The optional <code>URI</code> attribute of
<code>Reference</code> identifies the data object to be signed.
This attribute may be omitted on at most one
<code>Reference</code> in a <code>Signature</code>. (This
limitation is imposed in order to ensure that references and
objects may be matched unambiguously.)</p>
<p><code>[s05-08]</code> This identification, along with the
transforms, is a description provided by the signer on how they
obtained the signed data object in the form it was digested (i.e.
the digested content). The verifier may obtain the digested
content in another method so long as the digest verifies. In
particular, the verifier may obtain the content from a different
location such as a local store than that specified in the
<code>URI</code>.</p>
<p><code>[s06-08] Transforms</code> is an optional ordered list
of processing steps that were applied to the resource's content
before it was digested. Transforms can include operations such as
canonicalization, encoding/decoding (including
compression/inflation), XSLT, XPath, XML schema validation, or
XInclude. XPath transforms permit the signer to derive an XML
document that omits portions of the source document. Consequently
those excluded portions can change without affecting signature
validity. For example, if the resource being signed encloses the
signature itself, such a transform must be used to exclude the
signature value from its own computation. If no
<code>Transforms</code> element is present, the resource's
content is digested directly. While the Working Group has
specified mandatory (and optional) canonicalization and decoding
algorithms, user specified transforms are permitted.</p>
<p><code>[s09-10] DigestMethod</code> is the algorithm applied to
the data after <code>Transforms</code> is applied (if specified)
to yield the <code>DigestValue</code>. The signing of the
<code>DigestValue</code> is what binds a resources content to the
signer's key.</p>
<h3>2.2 Extended Example (<code>Object</code> and <a id=
"sec-o-SignatureProperty" name="sec-o-SignatureProperty" shape=
"rect"><code>SignatureProperty</code></a>)</h3>
<p>This specification does not address mechanisms for making
statements or assertions. Instead, this document defines what it
means for something to be signed by an XML Signature (<a href=
"#def-Integrity" class="link-def" shape="rect">integrity</a>,
<a href="#def-AuthenticationMessage" class="link-def" shape=
"rect">message authentication</a>, and/or <a href=
"#def-AuthenticationSigner" class="link-def" shape="rect">signer
authentication</a>). Applications that wish to represent other
semantics must rely upon other technologies, such as [<a href=
"#ref-XML" shape="rect">XML</a>, <a href="#ref-RDF" shape=
"rect">RDF</a>]. For instance, an application might use a
<code>foo:assuredby</code> attribute within its own markup to
reference a <code>Signature</code> element. Consequently, it's
the application that must understand and know how to make trust
decisions given the validity of the signature and the meaning of
<code>assuredby</code> syntax. We also define a
<code>SignatureProperties</code> element type for the inclusion
of assertions about the signature itself (e.g., signature
semantics, the time of signing or the serial number of hardware
used in cryptographic processes). Such assertions may be signed
by including a <code>Reference</code> for the
<code>SignatureProperties</code> in <code>SignedInfo</code>.
While the signing application should be very careful about what
it signs (it should understand what is in the
<code>SignatureProperty</code>) a receiving application has no
obligation to understand that semantic (though its parent trust
engine may wish to). Any content about the signature generation
may be located within the <code>SignatureProperty</code> element.
The mandatory <code>Target</code> attribute references the
<code>Signature</code> element to which the property applies.</p>
<p>Consider the preceding example with an additional reference to
a local <code>Object</code> that includes a
<code>SignatureProperty</code> element. (Such a signature would
not only be <a href="#def-SignatureDetached" class="link-def"
shape="rect">detached</a> <code>[p02]</code> but <a href=
"#def-SignatureEnveloping" class="link-def" shape=
"rect">enveloping</a> <code>[p03]</code>.)</p>
<pre class="xml-example" xml:space="preserve">
[ ] <Signature Id="MySecondSignature" ...>
[p01] <SignedInfo>
[ ] ...
[p02] <Reference URI="http://www.w3.org/TR/xml-stylesheet/">
[ ] ...
[p03] <Reference URI="#AMadeUpTimeStamp"
[p04] Type="http://www.w3.org/2000/09/xmldsig#SignatureProperties">
[p05] <Transforms>
[p06] <Transform Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
[p07] </Transforms>
[p08] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[p09] <DigestValue>dGhpcyBpcyBub3QgYSBzaWduYXR1cmUK...</DigestValue>
[p10] </Reference>
[p11] </SignedInfo>
[p12] ...
[p13] <Object>
[p14] <SignatureProperties>
[p15] <SignatureProperty Id="AMadeUpTimeStamp" Target="#MySecondSignature">
[p16] <timestamp xmlns="http://www.ietf.org/rfcXXXX.txt">
[p17] <date>19990914</date>
[p18] <time>14:34:34:34</time>
[p19] </timestamp>
[p20] </SignatureProperty>
[p21] </SignatureProperties>
[p22] </Object>
[p23]</Signature>
</pre>
<p><code>[p04]</code> The optional <code>Type</code> attribute of
<code>Reference</code> provides information about the resource
identified by the <code>URI</code>. In particular, it can
indicate that it is an <code>Object</code>,
<code>SignatureProperty</code>, or <code>Manifest</code> element.
This can be used by applications to initiate special processing
of some <code>Reference</code> elements. References to an XML
data element within an <code>Object</code> element SHOULD
identify the actual element pointed to. Where the element content
is not XML (perhaps it is binary or encoded data) the reference
should identify the <code>Object</code> and the
<code>Reference</code> <code>Type</code>, if given, SHOULD
indicate <code>Object</code>. Note that <code>Type</code> is
advisory and no action based on it or checking of its correctness
is required by core behavior.</p>
<p><code>[p13]</code> <code>Object</code> is an optional element
for including data objects within the signature element or
elsewhere. The <code>Object</code> can be optionally typed and/or
encoded.</p>
<p><code>[p14-21]</code> Signature properties, such as time of
signing, can be optionally signed by identifying them from within
a <code>Reference</code>. (These properties are traditionally
called signature "attributes" although that term has no
relationship to the XML term "attribute".)</p>
<h3>2.3 Extended Example (<code>Object</code> and <a id=
"sec-o-Manifest" name="sec-o-Manifest" shape=
"rect"><code>Manifest</code></a>)</h3>
<p>The <code>Manifest</code> element is provided to meet
additional requirements not directly addressed by the mandatory
parts of this specification. Two requirements and the way the
<code>Manifest</code> satisfies them follow.</p>
<p>First, applications frequently need to efficiently sign
multiple data objects even where the signature operation itself
is an expensive public key signature. This requirement can be met
by including multiple <code>Reference</code> elements within
<code>SignedInfo</code> since the inclusion of each digest
secures the data digested. However, some applications may not
want the <a href="#def-ValidationCore" class="link-def" shape=
"rect">core validation</a> behavior associated with this approach
because it requires every <code>Reference</code> within
<code>SignedInfo</code> to undergo <a href=
"#def-ValidationReference" class="link-def" shape=
"rect">reference validation</a> -- the <code>DigestValue</code>
elements are checked. These applications may wish to reserve
reference validation decision logic to themselves. For example,
an application might receive a <a href="#def-ValidationSignature"
class="link-def" shape="rect">signature valid</a>
<code>SignedInfo</code> element that includes three
<code>Reference</code> elements. If a single
<code>Reference</code> fails (the identified data object when
digested does not yield the specified <code>DigestValue</code>)
the signature would fail <a href="#def-ValidationCore" class=
"link-def" shape="rect">core validation</a>. However, the
application may wish to treat the signature over the two valid
<code>Reference</code> elements as valid or take different
actions depending on which fails. To accomplish this,
<code>SignedInfo</code> would reference a <code>Manifest</code>
element that contains one or more <code>Reference</code> elements
(with the same structure as those in <code>SignedInfo</code>).
Then, reference validation of the <code>Manifest</code> is under
application control.</p>
<p>Second, consider an application where many signatures (using
different keys) are applied to a large number of documents. An
inefficient solution is to have a separate signature (per key)
repeatedly applied to a large <code>SignedInfo</code> element
(with many <code>Reference</code>s); this is wasteful and
redundant. A more efficient solution is to include many
references in a single <code>Manifest</code> that is then
referenced from multiple <code>Signature</code> elements.</p>
<p>The example below includes a <code>Reference</code> that signs
a <code>Manifest</code> found within the <code>Object</code>
element.</p>
<pre class="xml-example" xml:space="preserve">
[ ] ...
[m01] <Reference URI="#MyFirstManifest"
[m02] Type="http://www.w3.org/2000/09/xmldsig#Manifest">
[m03] <Transforms>
[m04] <Transform Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
[m05] </Transforms>
[m06] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[m07] <DigestValue>dGhpcyBpcyBub3QgYSBzaWduYXR1cmUK...=</DigestValue>
[m08] </Reference>
[ ] ...
[m09] <Object>
[m10] <Manifest Id="MyFirstManifest">
[m11] <Reference>
[m12] ...
[m13] </Reference>
[m14] <Reference>
[m15] ...
[m16] </Reference>
[m17] </Manifest>
[m18] </Object>
</pre>
<h2>3.0 <a id="sec-Processing" name="sec-Processing" shape=
"rect">Processing</a> Rules</h2>
<p>The sections below describe the operations to be performed as
part of signature generation and validation.</p>
<h3>3.1 Core <a id="sec-CoreGeneration" name="sec-CoreGeneration"
shape="rect">Generation</a></h3>
<p>The REQUIRED steps include the generation of
<code>Reference</code> elements and the
<code>SignatureValue</code> over <code>SignedInfo</code>.</p>
<h4>3.1.1 <a id="sec-ReferenceGeneration" name=
"sec-ReferenceGeneration" shape="rect">Reference
Generation</a></h4>
<p>For each data object being signed:</p>
<ol>
<li>Apply the <code>Transforms</code>, as determined by the
application, to the data object.</li>
<li>Calculate the digest value over the resulting data
object.</li>
<li>Create a <code>Reference</code> element, including the
(optional) identification of the data object, any (optional)
transform elements, the digest algorithm and the
<code>DigestValue</code>. (Note, it is the canonical form of
these references that are signed in 3.1.2 and validated in
3.2.1 .)</li>
</ol>The <a href="#sec-ReferenceProcessingModel" shape=
"rect">Reference Processing Model</a> (section 4.3.3.2) requires
use of Canonical XML 1.0 [<a href="#ref-XML-C14N" shape=
"rect">XML-C14N</a>] as default processing behavior when a
transformation is expecting an octet-stream, but the data object
resulting from URI dereferencing or from the previous
transformation in the list of <code>Transform</code> elements is
a node-set. We RECOMMEND that, when generating signatures,
signature applications do not rely on this default behavior, but
explicitly identify the transformation that is applied to perform
this mapping. In cases in which inclusive canonicalization is
desired, we RECOMMEND that Canonical XML 1.1 [<a href=
"#ref-XML-C14N11" shape="rect">XML-C14N11</a>] be used.<!--
<ins>
<p class="discuss"><a name="Editors-Note-C14N11-AppendixA1" id="EdNote-C14N11-AppendixA1">
Editors Note</a>: There has been a correction to Appendix A of the C14N11 Candidate Recommendation. This
correction is available at
<a href="http://lists.w3.org/Archives/Public/public-xml-core-wg/2007Jun/att-0050/Apendix_20060625.html">
http://lists.w3.org/Archives/Public/public-xml-core-wg/2007Jun/att-0050/Apendix_20060625.html</a>.
The XML Security Specifications Maintenance WG anticipates this change will be adopted as part of
C14N11 CR review and will use this update to Appendix A for Interop testing.
</p>
</ins>
-->
<h4>3.1.2 <a id="sec-SignatureGeneration" name=
"sec-SignatureGeneration" shape="rect">Signature
Generation</a></h4>
<ol>
<li>Create <code>SignedInfo</code> element with
<code>SignatureMethod</code>,
<code>CanonicalizationMethod</code> and
<code>Reference</code>(s).</li>
<li>Canonicalize and then calculate the
<code>SignatureValue</code> over <code>SignedInfo</code> based
on algorithms specified in <code>SignedInfo</code>.</li>
<li>Construct the <code>Signature</code> element that includes
<code>SignedInfo</code>, <code>Object</code>(s) (if desired,
encoding may be different than that used for signing),
<code>KeyInfo</code> (if required), and
<code>SignatureValue</code>.
<p>Note, if the <code>Signature</code> includes same-document
references, [<a href="#ref-XML" shape="rect">XML</a>] or
[<a href="#ref-XML-schema" shape="rect">XML-schema</a>]
validation of the document might introduce changes that break
the signature. Consequently, applications should be careful
to consistently process the document or refrain from using
external contributions (e.g., defaults and entities).</p>
</li>
</ol>
<h3>3.2 Core <a id="sec-CoreValidation" name="sec-CoreValidation"
shape="rect">Validation</a></h3>
<p>The REQUIRED steps of <a href="#def-ValidationCore" class=
"link-def" shape="rect">core validation</a> include (1) <a href=
"#def-ValidationReference" class="link-def" shape=
"rect">reference validation</a>, the verification of the digest
contained in each <code>Reference</code> in
<code>SignedInfo</code>, and (2) the cryptographic <a href=
"#def-ValidationSignature" class="link-def" shape=
"rect">signature validation</a> of the signature calculated over
<code>SignedInfo</code>.</p>
<p>Note, there may be valid signatures that some signature
applications are unable to validate. Reasons for this include
failure to implement optional parts of this specification,
inability or unwillingness to execute specified algorithms, or
inability or unwillingness to dereference specified URIs (some
URI schemes may cause undesirable side effects), etc.</p>
<p>Comparison of values in reference and signature validation are
over the numeric (e.g., integer) or decoded octet sequence of the
value. Different implementations may produce different encoded
digest and signature values when processing the same resources
because of variances in their encoding, such as accidental white
space. But if one uses numeric or octet comparison (choose one)
on both the stated and computed values these problems are
eliminated.</p>
<h4>3.2.1 <a id="sec-ReferenceValidation" name=
"sec-ReferenceValidation" shape="rect">Reference
Validation</a></h4>
<ol>
<li>Canonicalize the <code>SignedInfo</code> element based on
the <code>CanonicalizationMethod</code> in
<code>SignedInfo</code>.</li>
<li>For each <code>Reference</code> in <code>SignedInfo</code>:
<ol>
<li>Obtain the data object to be digested. (For example,
the signature application may dereference the
<code>URI</code> and execute <code>Transforms</code>
provided by the signer in the <code>Reference</code>
element, or it may obtain the content through other means
such as a local cache.)</li>
<li>Digest the resulting data object using the
<code>DigestMethod</code> specified in its
<code>Reference</code> specification.</li>
<li>Compare the generated digest value against
<code>DigestValue</code> in the <code>SignedInfo</code>
<code>Reference</code>; if there is any mismatch,
validation fails.</li>
</ol>
</li>
</ol>
<p>Note, <code>SignedInfo</code> is canonicalized in step 1. The
application must ensure that the CanonicalizationMethod has no
dangerous side affects, such as rewriting URIs, (see
<code><a href="#sec-CanonicalizationMethod-NOTE" shape=
"rect">CanonicalizationMethod</a></code> (section 4.3)) and that
it <a href="#sec-See" shape="rect">Sees What is Signed</a>, which
is the canonical form.</p>
<h4>3.2.2 <a id="sec-SignatureValidation" name=
"sec-SignatureValidation" shape="rect">Signature
Validation</a></h4>
<ol>
<li>Obtain the keying information from <code><a href=
"#sec-KeyInfo" shape="rect">KeyInfo</a></code> or from an
external source.</li>
<li>Obtain the canonical form of the
<code>SignatureMethod</code> using the
<code>CanonicalizationMethod</code> and use the result
(and previously obtained <code>KeyInfo</code>) to confirm the
<code>SignatureValue</code> over the <code>SignedInfo</code>
element.</li>
</ol>
<p>Note, <code><a href="#sec-KeyInfo" shape=
"rect">KeyInfo</a></code> (or some transformed version thereof)
may be signed via a <code>Reference</code> element.
Transformation and validation of this reference (3.2.1) is
orthogonal to Signature Validation which uses the
<code>KeyInfo</code> as parsed.</p>
<p>Additionally, the <code>SignatureMethod</code> URI may have
been altered by the canonicalization of <code>SignedInfo</code>
(e.g., absolutization of relative URIs) and it is the canonical
form that MUST be used. However, the required canonicalization
[<a href="#ref-XML-C14N" shape="rect">XML-C14N</a>] of this
specification does not change URIs.</p>
<h2>4.0 <a id="sec-CoreSyntax" name="sec-CoreSyntax" shape=
"rect">Core Signature Syntax</a></h2>
<p>The general structure of an XML signature is described in
<a href="#sec-Overview" shape="rect">Signature Overview</a>
(section 2). This section provides detailed syntax of the core
signature features. Features described in this section are
mandatory to implement unless otherwise indicated. The syntax is
defined via DTDs and [<a href="#ref-XML-schema" shape=
"rect">XML-Schema</a>] with the following XML preamble,
declaration, and internal entity.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE schema
PUBLIC "-//W3C//DTD XMLSchema 200102//EN" "http://www.w3.org/2001/XMLSchema.dtd"
[
<!ATTLIST schema
xmlns:ds CDATA #FIXED "http://www.w3.org/2000/09/xmldsig#">
<!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>
<!ENTITY % p ''>
<!ENTITY % s ''>
]>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
targetNamespace="http://www.w3.org/2000/09/xmldsig#"
version="0.1" elementFormDefault="qualified">
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!--
The following entity declarations enable external/flexible content in
the Signature content model.
#PCDATA emulates schema:string; when combined with element types it
emulates schema mixed="true".
%foo.ANY permits the user to include their own element types from
other namespaces, for example:
<!ENTITY % KeyValue.ANY '| ecds:ECDSAKeyValue'>
...
<!ELEMENT ecds:ECDSAKeyValue (#PCDATA) >
-->
<!ENTITY % Object.ANY ''>
<!ENTITY % Method.ANY ''>
<!ENTITY % Transform.ANY ''>
<!ENTITY % SignatureProperty.ANY ''>
<!ENTITY % KeyInfo.ANY ''>
<!ENTITY % KeyValue.ANY ''>
<!ENTITY % PGPData.ANY ''>
<!ENTITY % X509Data.ANY ''>
<!ENTITY % SPKIData.ANY ''>
</pre>
<h4>4.0.1 The ds:<a name="sec-CryptoBinary" id="sec-CryptoBinary"
shape="rect">CryptoBinary</a> Simple Type</h4>
<p>This specification defines the <code>ds:CryptoBinary</code>
simple type for representing arbitrary-length integers (e.g.
"bignums") in XML as octet strings. The integer value is first
converted to a "big endian" bitstring. The bitstring is then
padded with leading zero bits so that the total number of bits ==
0 mod 8 (so that there are an integral number of octets). If the
bitstring contains entire leading octets that are zero, these are
removed (so the high-order octet is always non-zero). This octet
string is then base64 [<a href="#ref-MIME" shape="rect">MIME</a>]
encoded. (The conversion from integer to octet string is
equivalent to IEEE 1363's I2OSP [<a href="#ref-1363" shape=
"rect">1363</a>] with minimal length).</p>
<p>This type is used by "bignum" values such as
<code>RSAKeyValue</code> and <code>DSAKeyValue</code>. If a value
can be of type <code>base64Binary</code> or
<code>ds:CryptoBinary</code> they are defined as <a href=
"http://www.w3.org/TR/xmlschema-2/#base64Binary" shape=
"rect"><code>base64Binary</code></a>. For example, if the
signature algorithm is RSA or DSA then
<code>SignatureValue</code> represents a bignum and could be
<code>ds:CryptoBinary</code>. However, if HMAC-SHA1 is the
signature algorithm then <code>SignatureValue</code> could have
leading zero octets that must be preserved. Thus
<code>SignatureValue</code> is generically defined as of type
<code>base64Binary</code>.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<simpleType name="CryptoBinary">
<restriction base="base64Binary">
</restriction>
</simpleType>
</pre>
<h3>4.1 The <a id="sec-Signature" name="sec-Signature" shape=
"rect"><code>Signature</code></a> element</h3>
<p>The <code>Signature</code> element is the root element of an
XML Signature. Implementation MUST generate <a href=
"http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/#cvc-elt-lax"
shape="rect">laxly schema valid</a> [<a href="#ref-XML-schema"
shape="rect">XML-schema</a>] <code>Signature</code> elements as
specified by the following schema:</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="Signature" type="ds:SignatureType"/>
<complexType name="SignatureType">
<sequence>
<element ref="ds:SignedInfo"/>
<element ref="ds:SignatureValue"/>
<element ref="ds:KeyInfo" minOccurs="0"/>
<element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT Signature (SignedInfo, SignatureValue, KeyInfo?, Object*) >
<!ATTLIST Signature
xmlns CDATA #FIXED 'http://www.w3.org/2000/09/xmldsig#'
Id ID #IMPLIED >
</pre>
<h3>4.2 The <a id="sec-SignatureValue" name="sec-SignatureValue"
shape="rect"><code>SignatureValue</code></a> Element</h3>
<p>The <code>SignatureValue</code> element contains the actual
value of the digital signature; it is always encoded using base64
[<a href="#ref-MIME" shape="rect">MIME</a>]. While we identify
two <code>SignatureMethod</code> algorithms, one mandatory and
one optional to implement, user specified algorithms may be used
as well.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="SignatureValue" type="ds:SignatureValueType"/>
<complexType name="SignatureValueType">
<simpleContent>
<extension base="base64Binary">
<attribute name="Id" type="ID" use="optional"/>
</extension>
</simpleContent>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT SignatureValue (#PCDATA) >
<!ATTLIST SignatureValue
Id ID #IMPLIED>
</pre>
<h3>4.3 The <a id="sec-SignedInfo" name="sec-SignedInfo" shape=
"rect"><code>SignedInfo</code></a> Element</h3>
<p>The structure of <code>SignedInfo</code> includes the
canonicalization algorithm, a signature algorithm, and one or
more references. The <code>SignedInfo</code> element may contain
an optional ID attribute that will allow it to be referenced by
other signatures and objects.</p>
<p><code>SignedInfo</code> does not include explicit signature or
digest properties (such as calculation time, cryptographic device
serial number, etc.). If an application needs to associate
properties with the signature or digest, it may include such
information in a <code>SignatureProperties</code> element within
an <code>Object</code> element.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="SignedInfo" type="ds:SignedInfoType"/>
<complexType name="SignedInfoType">
<sequence>
<element ref="ds:CanonicalizationMethod"/>
<element ref="ds:SignatureMethod"/>
<element ref="ds:Reference" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT SignedInfo (CanonicalizationMethod,
SignatureMethod, Reference+) >
<!ATTLIST SignedInfo
Id ID #IMPLIED
</pre>
<h4>4.3.1 The <a id="sec-CanonicalizationMethod" name=
"sec-CanonicalizationMethod" shape=
"rect"><code>CanonicalizationMethod</code></a> Element</h4>
<p><code>CanonicalizationMethod</code> is a required element that
specifies the canonicalization algorithm applied to the
<code>SignedInfo</code> element prior to performing signature
calculations. This element uses the general structure for
algorithms described in <a href="#sec-AlgID" shape=
"rect">Algorithm Identifiers and Implementation Requirements</a>
(section 6.1). Implementations MUST support the REQUIRED <a href=
"#sec-c14nAlg" shape="rect">canonicalization algorithms</a>.</p>
<p>Alternatives to the REQUIRED <a href="#sec-c14nAlg" shape=
"rect">canonicalization algorithms</a> (section 6.5), such as
<a href="#sec-Canonical" shape="rect">Canonical XML with
Comments</a> (section 6.5.1) or a minimal canonicalization (such
as CRLF and charset normalization), may be explicitly specified
but are NOT REQUIRED. Consequently, their use may not
interoperate with other applications that do not support the
specified algorithm (see <a href="#sec-XML-Canonicalization"
shape="rect">XML Canonicalization and Syntax Constraint
Considerations</a>, section 7). Security issues may also arise in
the treatment of entity processing and comments if non-XML aware
canonicalization algorithms are not properly constrained (see
section 8.2: <a href="#sec-Seen" shape="rect">Only What is "Seen"
Should be Signed</a>).</p>
<p>The way in which the <code>SignedInfo</code> element is
presented to the canonicalization method is dependent on that
method. The following applies to algorithms which process XML as
nodes or characters:</p>
<ul>
<li>XML based canonicalization implementations MUST be provided
with a [<a href="#ref-XPath" shape="rect">XPath</a>] node-set
originally formed from the document containing the
<code>SignedInfo</code> and currently indicating the
<code>SignedInfo</code>, its descendants, and the attribute and
namespace nodes of <code>SignedInfo</code> and its descendant
elements.</li>
<li>Text based canonicalization algorithms (such as CRLF and
charset normalization) should be provided with the UTF-8 octets
that represent the well-formed SignedInfo element, from the
first character to the last character of the XML
representation, inclusive. This includes the entire text of the
start and end tags of the SignedInfo element as well as all
descendant <a href=
"http://www.w3.org/TR/1998/REC-xml-19980210#syntax" shape=
"rect">markup and character data</a> (i.e., the <a href=
"http://www.w3.org/TR/1998/REC-xml-19980210#dt-text" shape=
"rect">text</a>) between those tags. Use of text based
canonicalization of SignedInfo is NOT RECOMMENDED.</li>
</ul>
<p>We recommend applications that implement a text-based instead
of XML-based canonicalization -- such as resource constrained
apps -- generate canonicalized XML as their output serialization
so as to mitigate interoperability and security concerns. For
instance, such an implementation SHOULD (at least) generate
<a href="http://www.w3.org/TR/REC-xml#sec-rmd" shape=
"rect">standalone</a> XML instances [<a href="#ref-XML" shape=
"rect">XML</a>].</p>
<p><a name="sec-CanonicalizationMethod-NOTE" id=
"sec-CanonicalizationMethod-NOTE" shape="rect">NOTE</a>: The
signature application must exercise great care in accepting and
executing an arbitrary <code>CanonicalizationMethod</code>. For
example, the canonicalization method could rewrite the URIs of
the <code>Reference</code>s being validated. Or, the method could
massively transform <code>SignedInfo</code> so that validation
would always succeed (i.e., converting it to a trivial signature
with a known key over trivial data). Since
<code>CanonicalizationMethod</code> is inside
<code>SignedInfo</code>, in the resulting canonical form it could
erase itself from <code>SignedInfo</code> or modify the
<code>SignedInfo</code> element so that it appears that a
different canonicalization function was used! Thus a
<code>Signature</code> which appears to authenticate the desired
data with the desired key, <code>DigestMethod</code>, and
<code>SignatureMethod</code>, can be meaningless if a capricious
<code>CanonicalizationMethod</code> is used.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="CanonicalizationMethod" type="ds:CanonicalizationMethodType"/>
<complexType name="CanonicalizationMethodType" mixed="true">
<sequence>
<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
<!-- (0,unbounded) elements from (1,1) namespace -->
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT CanonicalizationMethod (#PCDATA %Method.ANY;)* >
<!ATTLIST CanonicalizationMethod
Algorithm CDATA #REQUIRED >
</pre>
<h4>4.3.2 The <a id="sec-SignatureMethod" name=
"sec-SignatureMethod" shape=
"rect"><code>SignatureMethod</code></a> Element</h4>
<p><code>SignatureMethod</code> is a required element that
specifies the algorithm used for signature generation and
validation. This algorithm identifies all cryptographic functions
involved in the signature operation (e.g. hashing, public key
algorithms, MACs, padding, etc.). This element uses the general
structure here for algorithms described in section 6.1: <a href=
"#sec-AlgID" shape="rect">Algorithm Identifiers and
Implementation Requirements</a>. While there is a single
identifier, that identifier may specify a format containing
multiple distinct signature values.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="SignatureMethod" type="ds:SignatureMethodType"/>
<complexType name="SignatureMethodType" mixed="true">
<sequence>
<element name="HMACOutputLength" minOccurs="0" type="ds:HMACOutputLengthType"/>
<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
<!-- (0,unbounded) elements from (1,1) external namespace -->
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT SignatureMethod (#PCDATA|HMACOutputLength %Method.ANY;)* >
<!ATTLIST SignatureMethod
Algorithm CDATA #REQUIRED >
</pre>
<h4>4.3.3 The <a id="sec-Reference" name="sec-Reference" shape=
"rect"><code>Reference</code></a> Element</h4>
<p><code>Reference</code> is an element that may occur one or
more times. It specifies a digest algorithm and digest value, and
optionally an identifier of the object being signed, the type of
the object, and/or a list of transforms to be applied prior to
digesting. The identification (URI) and transforms describe how
the digested content (i.e., the input to the digest method) was
created. The <code>Type</code> attribute facilitates the
processing of referenced data. For example, while this
specification makes no requirements over external data, an
application may wish to signal that the referent is a
<code>Manifest</code>. An optional ID attribute permits a
<code>Reference</code> to be referenced from elsewhere.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="Reference" type="ds:ReferenceType"/>
<complexType name="ReferenceType">
<sequence>
<element ref="ds:Transforms" minOccurs="0"/>
<element ref="ds:DigestMethod"/>
<element ref="ds:DigestValue"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
<attribute name="URI" type="anyURI" use="optional"/>
<attribute name="Type" type="anyURI" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT Reference (Transforms?, DigestMethod, DigestValue) >
<!ATTLIST Reference
Id ID #IMPLIED
URI CDATA #IMPLIED
Type CDATA #IMPLIED>
</pre>
<h4>4.3.3.1 The <a name="sec-URI" id="sec-URI" shape=
"rect"><code>URI</code></a> Attribute</h4>
<p>The <code>URI</code> attribute identifies a data object using
a URI-Reference [<a href="#ref-URI" shape="rect">URI</a>].</p>
<p>The mapping from this attribute's value to a URI reference
MUST be performed as specified in section 3.2.17 of [<a href=
"#ref-XML-schema" shape="rect">XMLSCHEMA Datatypes, 2nd
Edition</a>]. Additionally: Some existing implementations are
known to verify the value of the URI attribute against the
grammar in [<a href="#ref-URI" shape="rect">URI</a>]. It is
therefore safest to perform any necessary escaping while
generating the URI attribute.</p>
<p>We RECOMMEND XML signature applications be able to dereference
URIs in the HTTP scheme. Dereferencing a URI in the HTTP scheme
MUST comply with the <a href=
"http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4"
shape="rect">Status Code Definitions</a> of [<a href="#ref-HTTP"
shape="rect">HTTP</a>] (e.g., 302, 305 and 307 redirects are
followed to obtain the entity-body of a 200 status code
response). Applications should also be cognizant of the fact that
protocol parameter and state information, (such as HTTP cookies,
HTML device profiles or content negotiation), may affect the
content yielded by dereferencing a URI.</p>
<p>If a resource is identified by more than one URI, the most
specific should be used (e.g.
http://www.w3.org/2000/06/interop-pressrelease.html.en instead of
http://www.w3.org/2000/06/interop-pressrelease). (See the
<a href="#sec-CoreValidation" shape="rect">Reference
Validation</a> (section 3.2.1) for a further information on
reference processing.)</p>
<p>If the <code>URI</code> attribute is omitted altogether, the
receiving application is expected to know the identity of the
object. For example, a lightweight data protocol might omit this
attribute given the identity of the object is part of the
application context. This attribute may be omitted from at most
one <code>Reference</code> in any particular
<code>SignedInfo</code>, or <code>Manifest</code>.</p>
<p>The optional Type attribute contains information about the
type of object being signed after all <code>ds:Reference</code>
transforms have been applied. This is represented as a URI. For
example:</p>
<p><code>Type=<a href="http://www.w3.org/2000/09/xmldsig#Object"
shape=
"rect">"http://www.w3.org/2000/09/xmldsig#Object"</a><br clear=
"none" />
Type=<a href="http://www.w3.org/2000/09/xmldsig#Manifest" shape=
"rect">"http://www.w3.org/2000/09/xmldsig#Manifest"</a></code></p>
<p>The Type attribute applies to the item being pointed at, not
its contents. For example, a reference that results in the
digesting of an <code>Object</code> element containing a
<code>SignatureProperties</code> element is still of type
<code>#Object</code>. The type attribute is advisory. No
validation of the type information is required by this
specification.</p>
<h4>4.3.3.2 The <a name="sec-ReferenceProcessingModel" id=
"sec-ReferenceProcessingModel" shape="rect">Reference Processing
Model</a></h4>
<p class="comment"><a name="Note-Xpath" id="Note-Xpath" shape=
"rect">Note</a>: XPath is RECOMMENDED. Signature applications
need not conform to [<a href="#ref-XPath" shape="rect">XPath</a>]
specification in order to conform to this specification. However,
the XPath data model, definitions (e.g., <a href=
"http://www.w3.org/TR/xpath#node-sets" shape=
"rect">node-sets</a>) and syntax is used within this document in
order to describe functionality for those that want to process
XML-as-XML (instead of octets) as part of signature generation.
For those that want to use these features, a conformant [<a href=
"#ref-XPath" shape="rect">XPath</a>] implementation is one way to
implement these features, but it is not required. Such
applications could use a sufficiently functional replacement to a
node-set and implement only those XPath expression behaviors
REQUIRED by this specification. However, for simplicity we
generally will use XPath terminology without including this
qualification on every point. Requirements over "XPath node-sets"
can include a node-set functional equivalent. Requirements over
XPath processing can include application behaviors that are
equivalent to the corresponding XPath behavior.</p>
<p>The data-type of the result of URI dereferencing or subsequent
Transforms is either an octet stream or an XPath node-set.</p>
<p>The <code>Transforms</code> specified in this document are
defined with respect to the input they require. The following is
the default signature application behavior:</p>
<ul>
<li>If the data object is an octet stream and the next
transform requires a node-set, the signature application MUST
attempt to parse the octets yielding the required node-set via
[<a href="#ref-XML" shape="rect">XML</a>] well-formed
processing.</li>
<li>If the data object is a node-set and the next transform
requires octets, the signature application MUST attempt to
convert the node-set to an octet stream using Canonical XML
[<a href="#ref-XML-C14N" shape="rect">XML-C14N</a>].</li>
</ul>
<p>Users may specify alternative transforms that override these
defaults in transitions between transforms that expect different
inputs. The final octet stream contains the data octets being
secured. The digest algorithm specified by
<code>DigestMethod</code> is then applied to these data octets,
resulting in the <code>DigestValue</code>.</p>
<p><strong>Note:</strong> The <a href="#sec-ReferenceGeneration"
shape="rect">Reference Generation Model</a> (section 3.1.1)
includes further restrictions on the reliance upon defined
default transformations when applications generate
signatures.</p>
<p>In this specification, a 'same-document' reference is defined
as a URI-Reference that consists of a hash sign ('#') followed by
a fragment or alternatively consists of an empty URI [<a href=
"#ref-URI" shape="rect">URI</a>].</p>
<p>Unless the URI-Reference is such a 'same-document' reference ,
the result of dereferencing the URI-Reference MUST be an octet
stream. In particular, an XML document identified by URI is not
parsed by the signature application unless the URI is a
same-document reference or unless a transform that requires XML
parsing is applied. (See <a href="#sec-Transforms" shape=
"rect">Transforms</a> (section 4.3.3.1).)</p>
<p>When a fragment is preceded by an absolute or relative URI in
the URI-Reference, the meaning of the fragment is defined by the
resource's MIME type. Even for XML documents, URI dereferencing
(including the fragment processing) might be done for the
signature application by a proxy. Therefore, reference validation
might fail if fragment processing is not performed in a standard
way (as defined in the following section for same-document
references). Consequently, we RECOMMEND in this case that the
<code>URI</code> attribute not include fragment identifiers
and that such processing be specified as an additional <a href=
"#sec-XPath" shape="rect">XPath Transform</a>.</p>
<p>When a fragment is not preceded by a URI in the URI-Reference,
XML Signature applications MUST support the null URI and
shortname XPointer [<a href="#ref-XPointer-Framework" shape=
"rect">XPointer-Framework</a>]. We RECOMMEND support for the
same-document XPointers '<code>#xpointer(/)</code>' and
'<code>#xpointer(id('ID'))</code>' if the application also
intends to support any <a href="#sec-Canonical" shape=
"rect">canonicalization</a> that preserves comments. (Otherwise
<code>URI="#foo"</code> will automatically remove comments before
the canonicalization can even be invoked due to the processing
defined in <a href="#sec-Same-Document" shape=
"rect">Same-Document URI-References</a> (section 4.3.3.3).) All
other support for XPointers is OPTIONAL, especially all support
for shortname and other XPointers in external resources since the
application may not have control over how the fragment is
generated (leading to interoperability problems and validation
failures).</p>
<p>'<code>#xpointer(/)</code>' MUST be interpreted to identify
the root node [<a href="#ref-XPath" shape="rect">XPath</a>] of
the document that contains the <code>URI</code> attribute.</p>
<p>'<code>#xpointer(id('<em>ID</em>'))</code>' MUST be
interpreted to identify the element node identified by
'<code>#element(<em>ID</em>)</code>' [<a href=
"#ref-XPointer-Element" shape="rect">XPointer-Element</a>] when
evaluated with respect to the document that contains the
<code>URI</code> attribute.</p>
<p>The original edition of this specification [<a href=
"#ref-XMLDSIG-2002" shape="rect">XMLDSIG-2002</a>] referenced the
XPointer Candidate Recommendation [<a href="#ref-XPTR-2001"
shape="rect">XPTR-2001</a>] and some implementations support it
optionally. That Candidate Recommendation has been superseded by
the [<a href="#ref-XPointer-Framework" shape=
"rect">XPointer-Framework</a>], [<a href="#ref-XPointer-xmlns"
shape="rect">XPointer-xmlns</a>] and [<a href=
"#ref-XPointer-Element" shape="rect">XPointer-Element</a>]
Recommendations, and -- at the time of this edition -- the
[<a href="#ref-XPointer-xpointer" shape=
"rect">XPointer-xpointer</a>] Working Draft. Therefore, the use
of the <code>xpointer()</code> scheme [<a href=
"#ref-XPointer-xpointer" shape="rect">XPointer-xpointer</a>]
beyond the usage discussed in this section is discouraged.</p>
<p>The following examples demonstrate what the URI attribute
identifies and how it is dereferenced:</p>
<dl>
<dt><code>URI="http://example.com/bar.xml"</code></dt>
<dd>Identifies the octets that represent the external resource
'http://example.com/bar.xml', that is probably an XML document
given its file extension.</dd>
<dt><code>URI="http://example.com/bar.xml#chapter1"</code></dt>
<dd>Identifies the element with ID attribute value 'chapter1'
of the external XML resource 'http://example.com/bar.xml',
provided as an octet stream. Again, for the sake of
interoperability, the element identified as 'chapter1' should
be obtained using an XPath transform rather than a URI fragment
(shortname XPointer resolution in external resources is not
REQUIRED in this specification).</dd>
<dt><code>URI=""</code></dt>
<dd>Identifies the node-set (minus any comment nodes) of the
XML resource containing the signature</dd>
<dt><code>URI="#chapter1"</code></dt>
<dd>Identifies a node-set containing the element with ID
attribute value 'chapter1' of the XML resource containing the
signature. XML Signature (and its applications) modify this
node-set to include the element plus all descendants including
namespaces and attributes -- but not comments.</dd>
</dl>
<h4>4.3.3.3 <a name="sec-Same-Document" id="sec-Same-Document"
shape="rect">Same-Document</a> URI-References</h4>
<p>Dereferencing a same-document reference MUST result in an
XPath node-set suitable for use by Canonical XML [<a href=
"#ref-XML-C14N" shape="rect">XML-C14N</a>]. Specifically,
dereferencing a null URI (<code>URI=""</code>) MUST result in an
XPath node-set that includes every non-comment node of the XML
document containing the <code>URI</code> attribute. In a fragment
URI, the characters after the number sign ('#') character conform
to the XPointer syntax [<a href="#ref-XPointer-Framework" shape=
"rect">XPointer-Framework</a>]. When processing an XPointer, the
application MUST behave as if the XPointer was evaluated with
respect to the XML document containing the <code>URI</code>
attribute . The application MUST behave as if the result of
XPointer processing [<a href="#ref-XPointer-Framework" shape=
"rect">XPointer-Framework</a>] were a node-set derived from the
resultant subresource as follows:</p>
<ol>
<li>include XPath nodes having full or partial content within
the subresource</li>
<li>replace the root node with its children (if it is in the
node-set)</li>
<li>replace any element node <strong>E</strong> with
<strong>E</strong> plus all descendants of <strong>E</strong>
(text, comment, PI, element) and all namespace and attribute
nodes of <strong>E</strong> and its descendant elements.</li>
<li>if the URI has no fragment identifier or the fragment
identifier is a shortname XPointer, then delete all comment
nodes</li>
</ol>
<p>The second to last replacement is necessary because XPointer
typically indicates a subtree of an XML document's parse tree
using just the element node at the root of the subtree, whereas
Canonical XML treats a node-set as a set of nodes in which
absence of descendant nodes results in absence of their
representative text from the canonical form.</p>
<p>The last step is performed for null URIs and shortname
XPointers . It is necessary because when [<a href="#ref-XML-C14N"
shape="rect">XML-C14N</a>] or [<a href="#ref-XML-C14N11" shape=
"rect">XML-C14N11</a>] is passed a node-set, it processes the
node-set as is: with or without comments. Only when it is called
with an octet stream does it invoke its own XPath expressions
(default or without comments). Therefore to retain the default
behavior of stripping comments when passed a node-set, they are
removed in the last step if the URI is not a scheme-based
XPointer. To retain comments while selecting an element by an
identifier <em>ID</em>, use the following scheme-based XPointer:
<code>URI='#xpointer(id('<em>ID</em>'))'</code>. To retain
comments while selecting the entire document, use the following
scheme-based XPointer: <code>URI='#xpointer(/)'</code>.</p>
<p>The interpretation of these XPointers is defined in <a href=
"#sec-ReferenceProcessingModel" shape="rect">The Reference
Processing Model</a> (section 4.3.3.2).</p>
<h4>4.3.3.4 The <a id="sec-Transforms" name="sec-Transforms"
shape="rect"><code>Transforms</code></a> Element</h4>
<p>The optional <code>Transforms</code> element contains an
ordered list of <code>Transform</code> elements; these describe
how the signer obtained the data object that was digested. The
output of each <code>Transform</code> serves as input to the next
<code>Transform</code>. The input to the first
<code>Transform</code> is the result of dereferencing the
<code>URI</code> attribute of the <code>Reference</code> element.
The output from the last <code>Transform</code> is the input for
the <code>DigestMethod</code> algorithm. When transforms are
applied the signer is not signing the native (original) document
but the resulting (transformed) document. (See <a href=
"#sec-Secure" shape="rect">Only What is Signed is Secure</a>
(section 8.1).)</p>
<p>Each <code>Transform</code> consists of an
<code>Algorithm</code> attribute and content parameters, if any,
appropriate for the given algorithm. The <code>Algorithm</code>
attribute value specifies the name of the algorithm to be
performed, and the <code>Transform</code> content provides
additional data to govern the algorithm's processing of the
transform input. (See <a href="#sec-AlgID" shape="rect">Algorithm
Identifiers and Implementation Requirements</a> (section 6).)</p>
<p>As described in <a href="#sec-ReferenceProcessingModel" shape=
"rect">The Reference Processing Model</a> (section
4.3.3.2), some transforms take an XPath node-set as input, while
others require an octet stream. If the actual input matches the
input needs of the transform, then the transform operates on the
unaltered input. If the transform input requirement differs from
the format of the actual input, then the input must be
converted.</p>
<p>Some <code>Transform</code>s may require explicit MIME type,
charset (IANA registered "character set"), or other such
information concerning the data they are receiving from an
earlier <code>Transform</code> or the source data, although no
<code>Transform</code> algorithm specified in this document needs
such explicit information. Such data characteristics are provided
as parameters to the <code>Transform</code> algorithm and should
be described in the specification for the algorithm.</p>
<p>Examples of transforms include but are not limited to base64
decoding [<a href="#ref-MIME" shape="rect">MIME</a>],
canonicalization [<a href="#ref-XML-C14N" shape=
"rect">XML-C14N</a>], XPath filtering [<a href="#ref-XPath"
shape="rect">XPath</a>], and XSLT [<a href="#ref-XSLT" shape=
"rect">XSLT</a>]. The generic definition of the
<code>Transform</code> element also allows application-specific
transform algorithms. For example, the transform could be a
decompression routine given by a Java class appearing as a base64
encoded parameter to a Java <code>Transform</code> algorithm.
However, applications should refrain from using
application-specific transforms if they wish their signatures to
be verifiable outside of their application domain. <a href=
"#sec-TransformAlg" shape="rect">Transform Algorithms</a>
(section 6.6) defines the list of standard transformations.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="Transforms" type="ds:TransformsType"/>
<complexType name="TransformsType">
<sequence>
<element ref="ds:Transform" maxOccurs="unbounded"/>
</sequence>
</complexType>
<element name="Transform" type="ds:TransformType"/>
<complexType name="TransformType" mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>
<!-- (1,1) elements from (0,unbounded) namespaces -->
<element name="XPath" type="string"/>
</choice>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT Transforms (Transform+)>
<!ELEMENT Transform (#PCDATA|XPath %Transform.ANY;)* >
<!ATTLIST Transform
Algorithm CDATA #REQUIRED >
<!ELEMENT XPath (#PCDATA) >
</pre>
<h4>4.3.3.5 The <a id="sec-DigestMethod" name="sec-DigestMethod"
shape="rect"><code>DigestMethod</code></a> Element</h4>
<p><code>DigestMethod</code> is a required element that
identifies the digest algorithm to be applied to the signed
object. This element uses the general structure here for
algorithms specified in <a href="#sec-AlgID" shape=
"rect">Algorithm Identifiers and Implementation Requirements</a>
(section 6.1).</p>
<p>If the result of the URI dereference and application of
Transforms is an XPath node-set (or sufficiently functional
replacement implemented by the application) then it must be
converted as described in <a href="#sec-ReferenceProcessingModel"
shape="rect">the Reference Processing Model</a> (section
4.3.3.2). If the result of URI dereference and application of
transforms is an octet stream, then no conversion occurs
(comments might be present if the Canonical XML with Comments was
specified in the Transforms). The digest algorithm is applied to
the data octets of the resulting octet stream.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="DigestMethod" type="ds:DigestMethodType"/>
<complexType name="DigestMethodType" mixed="true">
<sequence>
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT DigestMethod (#PCDATA %Method.ANY;)* >
<!ATTLIST DigestMethod
Algorithm CDATA #REQUIRED >
</pre>
<h4>4.3.3.6 The <a id="sec-DigestValue" name="sec-DigestValue"
shape="rect"><code>DigestValue</code></a> Element</h4>
<p>DigestValue is an element that contains the encoded value of
the digest. The digest is always encoded using base64 [<a href=
"#ref-MIME" shape="rect">MIME</a>].</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="DigestValue" type="ds:DigestValueType"/>
<simpleType name="DigestValueType">
<restriction base="base64Binary"/>
</simpleType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT DigestValue (#PCDATA) >
<code><!-- base64 encoded digest value --></code>
</pre>
<h3>4.4 The <a id="sec-KeyInfo" name="sec-KeyInfo" shape=
"rect"><code>KeyInfo</code></a> Element</h3>
<p><code>KeyInfo</code> is an optional element that enables the
recipient(s) to obtain the key needed to validate the
signature. <code>KeyInfo</code> may contain keys, names,
certificates and other public key management information, such as
in-band key distribution or key agreement data. This
specification defines a few simple types but applications may
extend those types or all together replace them with their own
key identification and exchange semantics using the XML namespace
facility. [<a href="#ref-XML-ns" shape="rect">XML-ns</a>]
However, questions of trust of such key information (e.g., its
authenticity or strength) are out of scope of this
specification and left to the application.</p>
<p>If <code>KeyInfo</code> is omitted, the recipient is expected
to be able to identify the key based on application context.
Multiple declarations within <code>KeyInfo</code> refer to the
same key. While applications may define and use any mechanism
they choose through inclusion of elements from a different
namespace, compliant versions MUST implement <a href=
"#sec-KeyValue" shape="rect"><code>KeyValue</code></a> (section
4.4.2) and SHOULD implement <code><a href="#sec-RetrievalMethod"
shape="rect">RetrievalMethod</a></code> (section 4.4.3).</p>
<p>The schema/DTD specifications of many of
<code>KeyInfo</code>'s children (e.g., <code>PGPData</code>,
<code>SPKIData</code>, <code>X509Data</code>) permit their
content to be extended/complemented with elements from another
namespace. This may be done only if it is safe to ignore these
extension elements while claiming support for the types defined
in this specification. Otherwise, external elements, including
<em>alternative</em> structures to those defined by this
specification, MUST be a child of <code>KeyInfo</code>. For
example, should a complete XML-PGP standard be defined, its root
element MUST be a child of <code>KeyInfo</code>. (Of course, new
structures from external namespaces can incorporate elements from
the <code>&dsig;</code> namespace via features of the type
definition language. For instance, they can create a DTD that
mixes their own and dsig qualified elements, or a schema that
permits, includes, imports, or derives new types based on
<code>&dsig;</code> elements.)</p>
<p>The following list summarizes the <code>KeyInfo</code> types
that are allocated an identifier in the <code>&dsig;</code>
namespace; these can be used within the
<code>RetrievalMethod</code> <code>Type</code> attribute to
describe a remote <code>KeyInfo</code> structure.</p>
<ul>
<li><a href="http://www.w3.org/2000/09/xmldsig#DSAKeyValue"
shape=
"rect">http://www.w3.org/2000/09/xmldsig#DSAKeyValue</a></li>
<li><a href="http://www.w3.org/2000/09/xmldsig#RSAKeyValue"
shape=
"rect">http://www.w3.org/2000/09/xmldsig#RSAKeyValue</a></li>
<li><a href="http://www.w3.org/2000/09/xmldsig#X509Data" shape=
"rect">http://www.w3.org/2000/09/xmldsig#X509Data</a></li>
<li><a href="http://www.w3.org/2000/09/xmldsig#PGPData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#PGPData</a></li>
<li><a href="http://www.w3.org/2000/09/xmldsig#SPKIData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#SPKIData</a></li>
<li><a href="http://www.w3.org/2000/09/xmldsig#MgmtData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#MgmtData</a></li>
</ul>
<p>In addition to the types above for which we define an XML
structure, we specify one additional type to indicate a <a name=
"rawX509Certificate" id="rawX509Certificate" shape="rect">binary
(ASN.1 DER) X.509 Certificate</a>.</p>
<ul>
<li><a href=
"http://www.w3.org/2000/09/xmldsig#rawX509Certificate" shape=
"rect">http://www.w3.org/2000/09/xmldsig#rawX509Certificate</a></li>
</ul>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="KeyInfo" type="ds:KeyInfoType"/>
<complexType name="KeyInfoType" mixed="true">
<choice maxOccurs="unbounded">
<element ref="ds:KeyName"/>
<element ref="ds:KeyValue"/>
<element ref="ds:RetrievalMethod"/>
<element ref="ds:X509Data"/>
<element ref="ds:PGPData"/>
<element ref="ds:SPKIData"/>
<element ref="ds:MgmtData"/>
<any processContents="lax" namespace="##other"/>
<!-- (1,1) elements from (0,unbounded) namespaces -->
</choice>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT KeyInfo (#PCDATA|KeyName|KeyValue|RetrievalMethod|
X509Data|PGPData|SPKIData|MgmtData %KeyInfo.ANY;)* >
<!ATTLIST KeyInfo
Id ID #IMPLIED >
</pre>
<h4>4.4.1 The <a id="sec-KeyName" name="sec-KeyName" shape=
"rect"><code>KeyName</code></a> Element</h4>
<p>The <code>KeyName</code> element contains a string value (in
which white space is significant) which may be used by the signer
to communicate a key identifier to the recipient. Typically,
<code>KeyName</code> contains an identifier related to the key
pair used to sign the message, but it may contain other
protocol-related information that indirectly identifies a key
pair. (Common uses of <code>KeyName</code> include simple string
names for keys, a key index, a distinguished name (DN), an email
address, etc.)</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="KeyName" type="string"/>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT KeyName (#PCDATA) >
</pre>
<h4>4.4.2 The <a id="sec-KeyValue" name="sec-KeyValue" shape=
"rect"><code>KeyValue</code></a> Element</h4>
<p>The <code>KeyValue</code> element contains a single public key
that may be useful in validating the signature. Structured
formats for defining DSA (REQUIRED) and RSA (RECOMMENDED) public
keys are defined in <a href="#sec-SignatureAlg" shape=
"rect">Signature Algorithms</a> (section 6.4). The
<code>KeyValue</code> element may include externally defined
public keys values represented as PCDATA or element types from an
external namespace.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="KeyValue" type="ds:KeyValueType"/>
<complexType name="KeyValueType" mixed="true">
<choice>
<element ref="ds:DSAKeyValue"/>
<element ref="ds:RSAKeyValue"/>
<any namespace="##other" processContents="lax"/>
</choice>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT KeyValue (#PCDATA|DSAKeyValue|RSAKeyValue %KeyValue.ANY;)* >
</pre>
<h4>4.4.2.1 The <a id="sec-DSAKeyValue" name="sec-DSAKeyValue"
shape="rect"><code>DSAKeyValue</code></a> Element</h4>
<dl>
<dt>Identifier</dt>
<dd><code>Type="<a name="DSAKeyValue" id="DSAKeyValue" href=
"http://www.w3.org/2000/09/xmldsig#DSAKeyValue" shape=
"rect">http://www.w3.org/2000/09/xmldsig#DSAKeyValue</a>"<br clear="none" />
</code> (this can be used within a <code>RetrievalMethod</code>
or <code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p>DSA keys and the DSA signature algorithm are specified in
[DSS]. DSA public key values can have the following fields:</p>
<dl>
<dt><code>P</code></dt>
<dd>a prime modulus meeting the [DSS] requirements</dd>
<dt><code>Q</code></dt>
<dd>an integer in the range 2**159 < Q < 2**160 which is
a prime divisor of P-1</dd>
<dt><code>G</code></dt>
<dd>an integer with certain properties with respect to P and
Q</dd>
<dt><code>Y</code></dt>
<dd>G**X mod P (where X is part of the private key and not made
public)</dd>
<dt><code>J</code></dt>
<dd>(P - 1) / Q</dd>
<dt><code>seed</code></dt>
<dd>a DSA prime generation seed</dd>
<dt><code>pgenCounter</code></dt>
<dd>a DSA prime generation counter</dd>
</dl>
<p>Parameter J is available for inclusion solely for efficiency
as it is calculatable from P and Q. Parameters seed and
pgenCounter are used in the DSA prime number generation algorithm
specified in [DSS]. As such, they are optional but must either
both be present or both be absent. This prime generation
algorithm is designed to provide assurance that a weak prime is
not being used and it yields a P and Q value. Parameters P, Q,
and G can be public and common to a group of users. They might be
known from application context. As such, they are optional but P
and Q must either both appear or both be absent. If all of
<code>P</code>, <code>Q</code>, <code>seed</code>, and
<code>pgenCounter</code> are present, implementations are not
required to check if they are consistent and are free to use
either <code>P</code> and <code>Q</code> or <code>seed</code> and
<code>pgenCounter</code>. All parameters are encoded as base64
[<a href="#ref-MIME" shape="rect">MIME</a>] values.</p>
<p>Arbitrary-length integers (e.g. "bignums" such as RSA moduli)
are represented in XML as octet strings as defined by the
<a href="#sec-CryptoBinary" shape=
"rect"><code>ds:CryptoBinary</code> type</a>.</p>
<pre class="xml-dtd" xml:space="preserve">
<code>Schema Definition:</code>
<element name="DSAKeyValue" type="ds:DSAKeyValueType"/>
<complexType name="DSAKeyValueType">
<sequence>
<sequence minOccurs="0">
<element name="P" type="ds:CryptoBinary"/>
<element name="Q" type="ds:CryptoBinary"/>
</sequence>
<element name="G" type="ds:CryptoBinary" minOccurs="0"/>
<element name="Y" type="ds:CryptoBinary"/>
<element name="J" type="ds:CryptoBinary" minOccurs="0"/>
<sequence minOccurs="0">
<element name="Seed" type="ds:CryptoBinary"/>
<element name="PgenCounter" type="ds:CryptoBinary"/>
</sequence>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
<code>DTD Definition:</code>
<!ELEMENT DSAKeyValue ((P, Q)?, G?, Y, J?, (Seed, PgenCounter)?) >
<!ELEMENT P (#PCDATA) >
<!ELEMENT Q (#PCDATA) >
<!ELEMENT G (#PCDATA) >
<!ELEMENT Y (#PCDATA) >
<!ELEMENT J (#PCDATA) >
<!ELEMENT Seed (#PCDATA) >
<!ELEMENT PgenCounter (#PCDATA) >
</pre>
<h4>4.4.2.2 The <a id="sec-RSAKeyValue" name="sec-RSAKeyValue"
shape="rect"><code>RSAKeyValue</code></a> Element</h4>
<dl>
<dt>Identifier</dt>
<dd><code>Type="<a name="RSAKeyValue" id="RSAKeyValue" href=
"http://www.w3.org/2000/09/xmldsig#RSAKeyValue" shape=
"rect">http://www.w3.org/2000/09/xmldsig#RSAKeyValue</a>"<br clear="none" />
</code> (this can be used within a <code>RetrievalMethod</code>
or <code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p>RSA key values have two fields: Modulus and Exponent.</p>
<pre class="xml-example" xml:space="preserve">
<RSAKeyValue>
<Modulus>xA7SEU+e0yQH5rm9kbCDN9o3aPIo7HbP7tX6WOocLZAtNfyxSZDU16ksL6W
jubafOqNEpcwR3RdFsT7bCqnXPBe5ELh5u4VEy19MzxkXRgrMvavzyBpVRgBUwUlV
5foK5hhmbktQhyNdy/6LpQRhDUDsTvK+g9Ucj47es9AQJ3U=
</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>
</pre>
<p>Arbitrary-length integers (e.g. "bignums" such as RSA moduli)
are represented in XML as octet strings as defined by the
<a href="#sec-CryptoBinary" shape=
"rect"><code>ds:CryptoBinary</code> type</a>.</p>
<pre class="xml-dtd" xml:space="preserve">
<code>Schema Definition:</code>
<element name="RSAKeyValue" type="ds:RSAKeyValueType"/>
<complexType name="RSAKeyValueType">
<sequence>
<element name="Modulus" type="ds:CryptoBinary"/>
<element name="Exponent" type="ds:CryptoBinary"/>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
<code>DTD Definition:</code>
<!ELEMENT RSAKeyValue (Modulus, Exponent) >
<!ELEMENT Modulus (#PCDATA) >
<!ELEMENT Exponent (#PCDATA) >
</pre>
<h4>4.4.3 The <a id="sec-RetrievalMethod" name=
"sec-RetrievalMethod" shape=
"rect"><code>RetrievalMethod</code></a> Element</h4>
<p>A <code>RetrievalMethod</code> element within
<code>KeyInfo</code> is used to convey a reference to
<code>KeyInfo</code> information that is stored at another
location. For example, several signatures in a document might use
a key verified by an X.509v3 certificate chain appearing once in
the document or remotely outside the document; each signature's
<code>KeyInfo</code> can reference this chain using a single
<code>RetrievalMethod</code> element instead of including the
entire chain with a sequence of <code>X509Certificate</code>
elements.</p>
<p><code>RetrievalMethod</code> uses the same syntax and
dereferencing behavior as <a href="#sec-URI" shape=
"rect"><code>Reference</code>'s URI</a> (section 4.3.3.1) and
<a href="#sec-ReferenceProcessingModel" shape="rect">The
Reference Processing Model</a> (section 4.3.3.2) except that
there is no <code>DigestMethod</code> or <code>DigestValue</code>
child elements and presence of the URI is mandatory.</p>
<p><code>Type</code> is an optional identifier for the type of
data retrieved after all transforms have been applied. The result
of dereferencing a <code>RetrievalMethod</code> <code><a href=
"#sec-URI" shape="rect">Reference</a></code> for all <a href=
"#sec-KeyInfo" shape="rect"><code>KeyInfo</code> types defined by
this specification</a> (section 4.4) with a corresponding XML
structure is an XML element or document with that element as the
root. The <code>rawX509Certificate</code> <code>KeyInfo</code>
(for which there is no XML structure) returns a binary X509
certificate.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition
<element name="RetrievalMethod" type="ds:RetrievalMethodType"/>
<complexType name="RetrievalMethodType">
<sequence>
<element ref="ds:Transforms" minOccurs="0"/>
</sequence>
<attribute name="URI" type="anyURI"/>
<attribute name="Type" type="anyURI" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD
<!ELEMENT RetrievalMethod (Transforms?) >
<!ATTLIST RetrievalMethod
URI CDATA #REQUIRED
Type CDATA #IMPLIED >
</pre>
<p><strong>Note:</strong> The schema for the <code>URI</code>
attribute of RetrievalMethod erroneously omitted the attribute:
<code>use="required"</code></p>
<p>The DTD is correct. However, this error only results in a more
lax schema which permits all valid RetrievalMethod elements.
Because the existing schema is embedded in many applications,
which may include the schema in their signatures, the schema has
not been corrected to be more restrictive.</p>
<h4>4.4.4 The <a id="sec-X509Data" name="sec-X509Data" shape=
"rect"><code>X509Data</code></a> Element</h4>
<dl>
<dt>Identifier</dt>
<dd><code>Type="<a name="X509Data" id="X509Data" href=
"http://www.w3.org/2000/09/xmldsig#SPKIData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#X509Data</a></code>
"<br clear="none" />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p>An <code>X509Data</code> element within <code>KeyInfo</code>
contains one or more identifiers of keys or X509 certificates (or
certificates' identifiers or a revocation list). The content of
<code>X509Data</code> is:</p>
<ol>
<li>At least one element, from the following set of element
types; any of these may appear together or more than once iff
(if and only if) each instance describes or is related to the
same certificate:</li>
<li style="list-style: none">
<ul>
<li>The <code>X509IssuerSerial</code> element, which
contains an X.509 issuer distinguished name/serial number
pair. The distinguished name SHOULD be represented as a
string that complies with section 3 of RFC4514 [<a href=
"#ref-LDAP-DN" shape="rect">LDAP-DN</a>], to be generated
according to the <a href="#dname-encrules" shape=
"rect">Distinguished Name Encoding Rules</a> section
below,</li>
<li>The <code>X509SubjectName</code> element, which
contains an X.509 subject distinguished name that SHOULD be
represented as a string that complies with section 3 of
RFC4514 [<a href="#ref-LDAP-DN" shape="rect">LDAP-DN</a>],
to be generated according to the <a href="#dname-encrules"
shape="rect">Distinguished Name Encoding Rules</a> section
below,</li>
<li>The <code>X509SKI</code> element, which contains the
base64 encoded plain (i.e. non-DER-encoded) value of a X509
V.3 SubjectKeyIdentifier extension.</li>
<li>The <code>X509Certificate</code> element, which
contains a base64-encoded [<a href="#ref-X509v3" shape=
"rect">X509v3</a>] certificate, and</li>
<li>Elements from an external namespace which
accompanies/complements any of the elements above.</li>
<li>The <code>X509CRL</code> element, which contains a
base64-encoded certificate revocation list (CRL) [<a href=
"#ref-X509v3" shape="rect">X509v3</a>].</li>
</ul>
</li>
</ol>
<p>Any <code>X509IssuerSerial</code>, <code>X509SKI</code>, and
<code>X509SubjectName</code> elements that appear MUST refer to
the certificate or certificates containing the validation key.
All such elements that refer to a particular individual
certificate MUST be grouped inside a single <code>X509Data</code>
element and if the certificate to which they refer appears, it
MUST also be in that <code>X509Data</code> element.</p>
<p>Any <code>X509IssuerSerial</code>, <code>X509SKI</code>, and
<code>X509SubjectName</code> elements that relate to the same key
but different certificates MUST be grouped within a single
<code>KeyInfo</code> but MAY occur in multiple
<code>X509Data</code> elements.</p>
<p>All certificates appearing in an <code>X509Data</code> element
MUST relate to the validation key by either containing it or
being part of a certification chain that terminates in a
certificate containing the validation key.</p>
<p>No ordering is implied by the above constraints. The comments
in the following instance demonstrate these constraints:</p>
<pre class="xml-example" xml:space="preserve">
<KeyInfo>
<X509Data> <!-- two pointers to certificate-A -->
<X509IssuerSerial>
<X509IssuerName><span class=
"tx">CN=TAMURA Kent, OU=TRL, O=IBM,
L=Yamato-shi, ST=Kanagawa, C=JP</span></X509IssuerName>
<X509SerialNumber>12345678</X509SerialNumber>
</X509IssuerSerial>
<X509SKI>31d97bd7</X509SKI>
</X509Data>
<X509Data><!-- single pointer to certificate-B -->
<X509SubjectName>Subject of Certificate B</X509SubjectName>
</X509Data>
<X509Data> <!-- certificate chain -->
<!--Signer cert, issuer CN=arbolCA,OU=FVT,O=IBM,C=US, serial 4-->
<X509Certificate>MIICXTCCA..</X509Certificate>
<!-- Intermediate cert subject CN=arbolCA,OU=FVT,O=IBM,C=US
issuer CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
<X509Certificate>MIICPzCCA...</X509Certificate>
<!-- Root cert subject CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
<X509Certificate>MIICSTCCA...</X509Certificate>
</X509Data>
</KeyInfo>
</pre>
<p>Note, there is no direct provision for a PKCS#7 encoded "bag"
of certificates or CRLs. However, a set of certificates and CRLs
can occur within an <code>X509Data</code> element and multiple
<code>X509Data</code> elements can occur in a
<code>KeyInfo</code>. Whenever multiple certificates occur in an
<code>X509Data</code> element, at least one such certificate must
contain the public key which verifies the signature.</p>
<h4><a name="dname-encrules" id="dname-encrules" shape=
"rect">4.4.4.1 Distinguished Name Encoding Rules</a></h4>
<p>To encode a distinguished name
(<code>X509IssuerSerial</code>,<code>X509SubjectName</code>, and
<code>KeyName</code> if appropriate), the encoding rules in
section 2 of RFC 4514 [<a href="#ref-LDAP-DN" shape=
"rect">LDAP-DN</a>] SHOULD be applied, except that the character
escaping rules in section 2.4 of RFC 4514 [<a href="#ref-LDAP-DN"
shape="rect">LDAP-DN</a>] MAY be augmented as follows:</p>
<ul>
<li>Escape all occurrences of ASCII control characters (Unicode
range \x00 - \x1f) by replacing them with "\" followed by a two
digit hex number showing its Unicode number.</li>
<li>Escape any trailing space characters (Unicode \x20) by
replacing them with "\20", instead of using the escape sequence
"\ ".</li>
</ul>
<p>Since a XML document logically consists of characters, not
octets, the resulting Unicode string is finally encoded according
to the character encoding used for producing the physical
representation of the XML document.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition
<element name="X509Data" type="ds:X509DataType"/>
<complexType name="X509DataType">
<sequence maxOccurs="unbounded">
<choice>
<element name="X509IssuerSerial" type="ds:X509IssuerSerialType"/>
<element name="X509SKI" type="base64Binary"/>
<element name="X509SubjectName" type="string"/>
<element name="X509Certificate" type="base64Binary"/>
<element name="X509CRL" type="base64Binary"/>
<any namespace="##other" processContents="lax"/>
</choice>
</sequence>
</complexType>
<complexType name="X509IssuerSerialType">
<sequence>
<element name="X509IssuerName" type="string"/>
<element name="X509SerialNumber" type="integer"/>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD
<!ELEMENT X509Data ((X509IssuerSerial | X509SKI | X509SubjectName |
X509Certificate | X509CRL)+ %X509.ANY;)>
<!ELEMENT X509IssuerSerial (X509IssuerName, X509SerialNumber) >
<!ELEMENT X509IssuerName (#PCDATA) >
<!ELEMENT X509SubjectName (#PCDATA) >
<!ELEMENT X509SerialNumber (#PCDATA) >
<!ELEMENT X509SKI (#PCDATA) >
<!ELEMENT X509Certificate (#PCDATA) >
<!ELEMENT X509CRL (#PCDATA) >
<!-- Note, this DTD and schema permit <code>X509Data</code> to be empty; this is
precluded by the text in <a href="#sec-KeyInfo" shape=
"rect"><code>KeyInfo</code> Element</a> (section 4.4) which states
that at least one element from the dsig namespace should be present
in the PGP, SPKI, and X509 structures. This is easily expressed for
the other key types, but not for X509Data because of its rich
structure. -->
</pre>
<h4>4.4.5 The <a id="sec-PGPData" name="sec-PGPData" shape=
"rect"><code>PGPData</code></a> Element</h4>
<dl>
<dt>Identifier</dt>
<dd><code>Type="<a name="PGPData" id="PGPData" href=
"http://www.w3.org/2000/09/xmldsig#PGPData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#PGPData</a></code>
"<br clear="none" />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p>The <code>PGPData</code> element within <code>KeyInfo</code>
is used to convey information related to PGP public key pairs and
signatures on such keys. The <code>PGPKeyID</code>'s value is a
base64Binary sequence containing a standard PGP public key
identifier as defined in [<a href="#ref-PGP" shape=
"rect">PGP</a>, section 11.2]. The <code>PGPKeyPacket</code>
contains a base64-encoded Key Material Packet as defined in
[<a href="#ref-PGP" shape="rect">PGP</a>, section 5.5]. These
children element types can be complemented/extended by siblings
from an external namespace within <code>PGPData</code>, or
<code>PGPData</code> can be replaced all together with an
alternative PGP XML structure as a child of <code>KeyInfo</code>.
<code>PGPData</code> must contain one <code>PGPKeyID</code>
and/or one <code>PGPKeyPacket</code> and 0 or more elements from
an external namespace.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="PGPData" type="ds:PGPDataType"/>
<complexType name="PGPDataType">
<choice>
<sequence>
<element name="PGPKeyID" type="base64Binary"/>
<element name="PGPKeyPacket" type="base64Binary" minOccurs="0"/>
<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
<sequence>
<element name="PGPKeyPacket" type="base64Binary"/>
<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</choice>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT PGPData ((PGPKeyID, PGPKeyPacket?) | (PGPKeyPacket) %PGPData.ANY;) >
<!ELEMENT PGPKeyPacket (#PCDATA) >
<!ELEMENT PGPKeyID (#PCDATA) >
</pre>
<h4>4.4.6 The <a id="sec-SPKIData" name="sec-SPKIData" shape=
"rect"><code>SPKIData</code></a> Element</h4>
<dl>
<dt>Identifier</dt>
<dd><code>Type="<a name="SPKIData" id="SPKIData" href=
"http://www.w3.org/2000/09/xmldsig#SPKIData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#SPKIData</a></code>
"<br clear="none" />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p>The <code>SPKIData</code> element within <code>KeyInfo</code>
is used to convey information related to SPKI public key pairs,
certificates and other SPKI data. <code>SPKISexp</code> is the
base64 encoding of a SPKI canonical S-expression.
<code>SPKIData</code> must have at least one
<code>SPKISexp</code>; <code>SPKISexp</code> can be
complemented/extended by siblings from an external namespace
within <code>SPKIData</code>, or <code>SPKIData</code> can be
entirely replaced with an alternative SPKI XML structure as a
child of <code>KeyInfo</code>.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="SPKIData" type="ds:SPKIDataType"/>
<complexType name="SPKIDataType">
<sequence maxOccurs="unbounded">
<element name="SPKISexp" type="base64Binary"/>
<any namespace="##other" processContents="lax" minOccurs="0"/>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT SPKIData (SPKISexp %SPKIData.ANY;) >
<!ELEMENT SPKISexp (#PCDATA) >
</pre>
<h4>4.4.7 The <a id="sec-MgmtData" name="sec-MgmtData" shape=
"rect"><code>MgmtData</code></a> Element</h4>
<dl>
<dt>Identifier</dt>
<dd><code>Type="<a name="MgmtData" id="MgmtData" href=
"http://www.w3.org/2000/09/xmldsig#MgmtData" shape=
"rect">http://www.w3.org/2000/09/xmldsig#MgmtData</a></code>
"<br clear="none" />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p>The <code>MgmtData</code> element within <code>KeyInfo</code>
is a string value used to convey in-band key distribution or
agreement data. For example, DH key exchange, RSA key encryption,
etc. Use of this element is NOT RECOMMENDED. It provides a
syntactic hook where in-band key distribution or agreement data
can be placed. However, superior interoperable child elements of
<code>KeyInfo</code> for the transmission of encrypted keys and
for key agreement are being specified by the W3C XML Encryption
Working Group and they should be used instead of
<code>MgmtData</code>.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="MgmtData" type="string"/>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT MgmtData (#PCDATA)>
</pre>
<h3>4.5 The <a id="sec-Object" name="sec-Object" shape=
"rect"><code>Object</code></a> Element</h3>
<dl>
<dt>Identifier</dt>
<dd><code>Type=<a id="Object" href=
"http://www.w3.org/2000/09/xmldsig#Object" name="Object" shape=
"rect">"http://www.w3.org/2000/09/xmldsig#Object"</a><br clear=
"none" /></code> (this can be used within a
<code>Reference</code> element to identify the referent's
type)</dd>
</dl>
<p><code>Object</code> is an optional element that may occur one
or more times. When present, this element may contain any data.
The <code>Object</code> element may include optional MIME type,
ID, and encoding attributes.</p>
<p>The <code>Object</code>'s <code>Encoding</code> attributed may
be used to provide a URI that identifies the method by which the
object is encoded (e.g., a binary file).</p>
<p>The <code>MimeType</code> attribute is an optional attribute
which describes the data within the <code>Object</code>
(independent of its encoding). This is a string with values
defined by [<a href="#ref-MIME" shape="rect">MIME</a>]. For
example, if the <code>Object</code> contains base64 encoded
<a href="http://www.w3.org/Graphics/PNG/" shape="rect">PNG</a>,
the <code>Encoding</code> may be specified as
'http://www.w3.org/2000/09/xmldsig#base64' and the
<code>MimeType</code> as 'image/png'. This attribute is purely
advisory; no validation of the <code>MimeType</code> information
is required by this specification. Applications which require
normative type and encoding information for signature validation
should specify <code><a href="#sec-Transforms" shape=
"rect">Transforms</a></code> with well defined resulting types
and/or encodings.</p>
<p>The <code>Object</code>'s <code>Id</code> is commonly
referenced from a <code>Reference</code> in
<code>SignedInfo</code>, or <code>Manifest</code>. This element
is typically used for <a href="#def-SignatureEnveloping" class=
"link-def" shape="rect">enveloping signatures</a> where the
object being signed is to be included in the signature element.
The digest is calculated over the entire <code>Object</code>
element including start and end tags.</p>
<p>Note, if the application wishes to exclude the
<code><Object></code> tags from the digest calculation the
<code>Reference</code> must identify the actual data object (easy
for XML documents) or a transform must be used to remove the
<code>Object</code> tags (likely where the data object is
non-XML). Exclusion of the object tags may be desired for cases
where one wants the signature to remain valid if the data object
is moved from inside a signature to outside the signature (or
vice versa), or where the content of the <code>Object</code> is
an encoding of an original binary document and it is desired to
extract and decode so as to sign the original bitwise
representation.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="Object" type="ds:ObjectType"/>
<complexType name="ObjectType" mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##any" processContents="lax"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
<attribute name="MimeType" type="string" use="optional"/>
<attribute name="Encoding" type="anyURI" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT Object (#PCDATA|Signature|SignatureProperties|Manifest %Object.ANY;)* >
<!ATTLIST Object
Id ID #IMPLIED
MimeType CDATA #IMPLIED
Encoding CDATA #IMPLIED >
</pre>
<h2>5.0 <a id="sec-AdditionalSyntax" name="sec-AdditionalSyntax"
shape="rect">Additional Signature Syntax</a></h2>
<p>This section describes the optional to implement
<code>Manifest</code> and <code>SignatureProperties</code>
elements and describes the handling of XML processing
instructions and comments. With respect to the elements
<code>Manifest</code> and <code>SignatureProperties</code> this
section specifies syntax and little behavior -- it is left to the
application. These elements can appear anywhere the parent's
content model permits; the <code>Signature</code> content model
only permits them within <code>Object</code>.</p>
<h3>5.1 The <a id="sec-Manifest" name="sec-Manifest" shape=
"rect"><code>Manifest</code></a> Element</h3>
<dl>
<dt>Identifier</dt>
<dd><code>Type=<a id="Manifest" href=
"http://www.w3.org/2000/09/xmldsig#Manifest" name="Manifest"
shape=
"rect">"http://www.w3.org/2000/09/xmldsig#Manifest"</a><br clear="none" />
</code> (this can be used within a <code>Reference</code>
element to identify the referent's type)</dd>
</dl>
<p>The <code>Manifest</code> element provides a list of
<code>Reference</code>s. The difference from the list in
<code>SignedInfo</code> is that it is application defined which,
if any, of the digests are actually checked against the objects
referenced and what to do if the object is inaccessible or the
digest compare fails. If a <code>Manifest</code> is pointed to
from <code>SignedInfo</code>, the digest over the
<code>Manifest</code> itself will be checked by the core
signature validation behavior. The digests within such a
<code>Manifest</code> are checked at the application's
discretion. If a <code>Manifest</code> is referenced from another
<code>Manifest</code>, even the overall digest of this two level
deep <code>Manifest</code> might not be checked.</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="Manifest" type="ds:ManifestType"/>
<complexType name="ManifestType">
<sequence>
<element ref="ds:Reference" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT Manifest (Reference+) >
<!ATTLIST Manifest
Id ID #IMPLIED >
</pre>
<h3>5.2 The <a id="sec-SignatureProperties" name=
"sec-SignatureProperties" shape=
"rect"><code>SignatureProperties</code></a> Element</h3>
<dl>
<dt> </dt>
<dt>Identifier</dt>
<dd><code>Type="<a id="SignatureProperties" href=
"http://www.w3.org/2000/09/xmldsig#SignatureProperties" name=
"SignatureProperties" shape=
"rect">http://www.w3.org/2000/09/xmldsig#SignatureProperties</a>"<br clear="none" />
</code> (this can be used within a <code>Reference</code>
element to identify the referent's type)</dd>
</dl>
<p>Additional information items concerning the generation of the
signature(s) can be placed in a <code>SignatureProperty</code>
element (i.e., date/time stamp or the serial number of
cryptographic hardware used in signature generation).</p>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<element name="SignatureProperties" type="ds:SignaturePropertiesType"/>
<complexType name="SignaturePropertiesType">
<sequence>
<element ref="ds:SignatureProperty" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
<element name="SignatureProperty" type="ds:SignaturePropertyType"/>
<complexType name="SignaturePropertyType" mixed="true">
<choice maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>
<!-- (1,1) elements from (1,unbounded) namespaces -->
</choice>
<attribute name="Target" type="anyURI" use="required"/>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT SignatureProperties (SignatureProperty+) >
<!ATTLIST SignatureProperties
Id ID #IMPLIED >
<!ELEMENT SignatureProperty (#PCDATA %SignatureProperty.ANY;)* >
<!ATTLIST SignatureProperty
Target CDATA #REQUIRED
Id ID #IMPLIED >
</pre>
<h3>5.3 <a id="sec-PI" name="sec-PI" shape="rect">Processing
Instructions</a> in Signature Elements</h3>
<p>No XML processing instructions (PIs) are used by this
specification.</p>
<p>Note that PIs placed inside <code>SignedInfo</code> by an
application will be signed unless the
<code>CanonicalizationMethod</code> algorithm discards them.
(This is true for any signed XML content.) All of the
<code>CanonicalizationMethod</code>s identified within this
specification retain PIs. When a PI is part of content that is
signed (e.g., within <code>SignedInfo</code> or referenced XML
documents) any change to the PI will obviously result in a
signature failure.</p>
<h3>5.4 <a id="sec-comments" name="sec-comments" shape=
"rect">Comments</a> in Signature Elements</h3>
<p>XML comments are not used by this specification.</p>
<p>Note that unless <code>CanonicalizationMethod</code> removes
comments within <code>SignedInfo</code> or any other referenced
XML (which [<a href="#ref-XML-C14N" shape="rect">XML-C14N</a>]
does), they will be signed. Consequently, if they are retained, a
change to the comment will cause a signature failure. Similarly,
the XML signature over any XML data will be sensitive to comment
changes unless a comment-ignoring canonicalization/transform
method, such as the Canonical XML [<a href="#ref-XML-C14N" shape=
"rect">XML-C14N</a>], is specified.</p>
<h2>6.0 <a id="sec-Algorithms" name="sec-Algorithms" shape=
"rect">Algorithms</a></h2>
<p>This section identifies algorithms used with the XML digital
signature specification. Entries contain the identifier to be
used in <code>Signature</code> elements, a reference to the
formal specification, and definitions, where applicable, for the
representation of keys and the results of cryptographic
operations.</p>
<h3>6.1 <a id="sec-AlgID" name="sec-AlgID" shape=
"rect">Algorithm</a> Identifiers and Implementation
Requirements</h3>
<p>Algorithms are identified by URIs that appear as an attribute
to the element that identifies the algorithms' role
(<code>DigestMethod</code>, <code>Transform</code>,
<code>SignatureMethod</code>, or
<code>CanonicalizationMethod</code>). All algorithms used herein
take parameters but in many cases the parameters are implicit.
For example, a <code>SignatureMethod</code> is implicitly given
two parameters: the keying info and the output of
<code>CanonicalizationMethod</code>. Explicit additional
parameters to an algorithm appear as content elements within the
algorithm role element. Such parameter elements have a
descriptive element name, which is frequently algorithm specific,
and MUST be in the XML Signature namespace or an algorithm
specific namespace.</p>
<p>This specification defines a set of algorithms, their URIs,
and requirements for implementation. Requirements are specified
over implementation, not over requirements for signature use.
Furthermore, the mechanism is extensible; alternative algorithms
may be used by signature applications.</p>
<dl>
<dt>Digest</dt>
<dd>
<ol>
<li>Required SHA1<br clear="none" />
<a href="http://www.w3.org/2000/09/xmldsig#sha1" shape=
"rect">http://www.w3.org/2000/09/xmldsig#sha1</a></li>
</ol>
</dd>
<dt>Encoding</dt>
<dd>
<ol>
<li>Required base64<br clear="none" />
<a href="http://www.w3.org/2000/09/xmldsig#base64" shape=
"rect"><span style=
"font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span>base64</a></li>
</ol>
</dd>
<dt>MAC</dt>
<dd>
<ol>
<li>Required HMAC-SHA1<br clear="none" />
<a href="http://www.w3.org/2000/09/xmldsig#hmac-sha1"
shape="rect">http://www.w3.org/2000/09/xmldsig#hmac-sha1</a></li>
</ol>
</dd>
<dt>Signature</dt>
<dd>
<ol>
<li>Required DSAwithSHA1 (DSS)<br clear="none" />
<a href="http://www.w3.org/2000/09/xmldsig#dsa-sha1" shape=
"rect"><span style=
"font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span>dsa-sha1</a></li>
<li>Recommended RSAwithSHA1<br clear="none" />
<a href="http://www.w3.org/2000/09/xmldsig#rsa-sha1" shape=
"rect"><span style=
"font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span>rsa-sha1</a></li>
</ol>
</dd>
<dt>Canonicalization</dt>
<dd>
<ol>
<li>Required Canonical XML 1.0(omits comments)<br clear=
"none" />
<a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"
shape=
"rect">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></li>
<li>Recommended Canonical XML 1.0with Comments<br clear=
"none" />
<a href=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"
shape=
"rect">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a></li>
<li>Required Canonical XML 1.1 (omits comments)<br clear=
"none" />
<a href="http://www.w3.org/2006/12/xml-c14n11" shape=
"rect">http://www.w3.org/2006/12/xml-c14n11</a></li>
<li>Recommended Canonical XML 1.1 with Comments<br clear=
"none" />
<a href="http://www.w3.org/2006/12/xml-c14n11#WithComments"
shape=
"rect">http://www.w3.org/2006/12/xml-c14n11#WithComments</a></li>
</ol>
</dd>
<dt>Transform</dt>
<dd>
<ol>
<li>Optional XSLT<br clear="none" />
<a href="http://www.w3.org/TR/1999/REC-xslt-19991116"
shape="rect">http://www.w3.org/TR/1999/REC-xslt-19991116</a></li>
<li>Recommended XPath<br clear="none" />
<a href="http://www.w3.org/TR/1999/REC-xpath-19991116"
shape=
"rect">http://www.w3.org/TR/1999/REC-xpath-19991116</a></li>
<li>Required Enveloped Signature*<br clear="none" />
<a href=
"http://www.w3.org/2000/09/xmldsig#enveloped-signature"
shape=
"rect">http://www.w3.org/2000/09/xmldsig#enveloped-signature</a></li>
</ol>
</dd>
</dl>
<p>* The Enveloped Signature transform removes the
<code>Signature</code> element from the calculation of the
signature when the signature is within the content that it is
being signed. This MAY be implemented via the RECOMMENDED XPath
specification specified in 6.6.4: <a href=
"#sec-EnvelopedSignature" shape="rect">Enveloped Signature
Transform</a>; it MUST have the same effect as that specified by
the <a href="#sec-XPath" shape="rect">XPath Transform</a>.</p>
<h3>6.2 <a id="sec-MessageDigests" name="sec-MessageDigests"
shape="rect">Message Digests</a></h3>
<p>Only one digest algorithm is defined herein. However, it is
expected that one or more additional strong digest algorithms
will be developed in connection with the US Advanced Encryption
Standard effort. Use of <a href=
"http://www.ietf.org/rfc/rfc1321.txt" shape="rect">MD5</a>
[<a href="#ref-MD5" shape="rect">MD5</a>] is NOT RECOMMENDED
because recent advances in cryptanalysis have cast doubt on its
strength.</p>
<h4>6.2.1 <a id="sec-SHA-1" name="sec-SHA-1" shape=
"rect">SHA-1</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="sha1" href="http://www.w3.org/2000/09/xmldsig#sha1"
name="sha1" shape=
"rect">http://www.w3.org/2000/09/xmldsig#sha1</a></dd>
</dl>
<p>The <a href=
"http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf"
shape="rect">SHA-1</a> algorithm [<a href="#ref-SHA-1" shape=
"rect">SHA-1</a>] takes no explicit parameters. An example of an
SHA-1 DigestAlg element is:</p>
<pre class="xml-example" xml:space="preserve">
<code><DigestMethod Algorithm="</code><span style=
"font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span><code>sha1"/></code>
</pre>
<p>A SHA-1 digest is a 160-bit string. The content of the
DigestValue element shall be the base64 encoding of this bit
string viewed as a 20-octet octet stream. For example, the
DigestValue element for the message digest:</p>
<pre class="xml-example" xml:space="preserve">
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
</pre>
<p>from Appendix A of the SHA-1 standard would be:</p>
<pre class="xml-example" xml:space="preserve">
<DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue>
</pre>
<h3>6.3 <a id="sec-MACs" name="sec-MACs" shape="rect">Message
Authentication Codes</a></h3>
<p>MAC algorithms take two implicit parameters, their keying
material determined from <code>KeyInfo</code> and the octet
stream output by <code>CanonicalizationMethod</code>. MACs and
signature algorithms are syntactically identical but a MAC
implies a shared secret key.</p>
<h4>6.3.1 <a id="sec-HMAC" name="sec-HMAC" shape=
"rect">HMAC</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="hmac-sha1" name="hmac-sha1" href=
"http://www.w3.org/2000/09/xmldsig#hmac-sha1" shape=
"rect">http://www.w3.org/2000/09/xmldsig#hmac-sha1</a></dd>
</dl>
<p>The <a href="http://www.ietf.org/rfc/rfc2104.txt" shape=
"rect">HMAC</a> algorithm (RFC2104 [<a href="#ref-HMAC" shape=
"rect">HMAC</a>]) takes the truncation length in bits as a
parameter; if the parameter is not specified then all the bits of
the hash are output. An example of an HMAC
<code>SignatureMethod</code> element:</p>
<pre class="xml-example" xml:space="preserve">
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1">
<HMACOutputLength>128</HMACOutputLength>
</SignatureMethod>
</pre>
<p>The output of the HMAC algorithm is ultimately the output
(possibly truncated) of the chosen digest algorithm. This value
shall be base64 encoded in the same straightforward fashion as
the output of the digest algorithms. Example: the SignatureValue
element for the HMAC-SHA1 digest</p>
<pre class="xml-example" xml:space="preserve">
9294727A 3638BB1C 13F48EF8 158BFC9D
</pre>
<p>from the test vectors in [<a href="#ref-HMAC" shape=
"rect">HMAC</a>] would be</p>
<pre class="xml-example" xml:space="preserve">
<SignatureValue>kpRyejY4uxwT9I74FYv8nQ==</SignatureValue>
</pre>
<pre class="xml-dtd" xml:space="preserve">
Schema Definition:
<simpleType name="HMACOutputLengthType">
<restriction base="integer"/>
</simpleType>
</pre>
<pre class="xml-dtd" xml:space="preserve">
DTD:
<!ELEMENT HMACOutputLength (#PCDATA)>
</pre>
<h3>6.4 <a id="sec-SignatureAlg" name="sec-SignatureAlg" shape=
"rect">Signature Algorithms</a></h3>
<p>Signature algorithms take two implicit parameters, their
keying material determined from <code>KeyInfo</code> and the
octet stream output by <code>CanonicalizationMethod</code>.
Signature and MAC algorithms are syntactically identical but a
signature implies public key cryptography.</p>
<h4>6.4.1 <a id="sec-DSA" name="sec-DSA" shape=
"rect">DSA</a></h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="dsa-sha1" name="dsa-sha1" href=
"http://www.w3.org/2000/09/xmldsig#dsa-sha1" shape=
"rect">http://www.w3.org/2000/09/xmldsig#dsa-sha1</a></dd>
</dl>
<p>The DSA algorithm [<a href="#ref-DSS" shape="rect">DSS</a>]
takes no explicit parameters. An example of a DSA
<code>SignatureMethod</code> element is:</p>
<pre class="xml-example" xml:space="preserve">
<code><SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/></code>
</pre>
<p>The output of the DSA algorithm consists of a pair of integers
usually referred by the pair (r, s). The signature value consists
of the base64 encoding of the concatenation of two octet-streams
that respectively result from the octet-encoding of the values r
and s in that order. Integer to octet-stream conversion must be
done according to the I2OSP operation defined in the <a href=
"http://www.ietf.org/rfc/rfc2437.txt" shape="rect">RFC 2437</a>
[<a href="#ref-PKCS1" shape="rect">PKCS1</a>] specification with
a <code>l</code> parameter equal to 20. For example, the
SignatureValue element for a DSA signature (<code>r</code>,
<code>s</code>) with values specified in hexadecimal:</p>
<pre class="xml-example" xml:space="preserve">
<code>r = 8BAC1AB6 6410435C B7181F95 B16AB97C 92B341C0</code>
<code>s = 41E2345F 1F56DF24 58F426D1 55B4BA2D B6DCD8C8</code>
</pre>
<p>from the example in Appendix 5 of the DSS standard would
be</p>
<pre class="xml-example" xml:space="preserve">
<code><SignatureValue></code>
<code>i6watmQQQ1y3GB+VsWq5fJKzQcBB4jRfH1bfJFj0JtFVtLotttzYyA==</SignatureValue></code>
</pre>
<h4>6.4.2 <a id="sec-PKCS1" name="sec-PKCS1" shape=
"rect">PKCS1</a> (RSA-SHA1)</h4>
<dl>
<dt>Identifier:</dt>
<dd><a id="rsa-sha1" href=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1" name="rsa-sha1"
shape=
"rect">http://www.w3.org/2000/09/xmldsig#rsa-sha1</a></dd>
</dl>
<p>The expression "RSA algorithm" as used in this specification
refers to the RSASSA-PKCS1-v1_5 algorithm described in <a href=
"http://www.ietf.org/rfc/rfc2437.txt" shape="rect">RFC 2437</a>
[<a href="#ref-PKCS1" shape="rect">PKCS1</a>]. The RSA algorithm
takes no explicit parameters. An example of an RSA
SignatureMethod element is:</p>
<pre class="xml-example" xml:space="preserve">
<code><SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/></code>
</pre>
<p>The <code>SignatureValue</code> content for an RSA signature
is the base64 [<a href="#ref-MIME" shape="rect">MIME</a>]
encoding of the octet string computed as per <a href=
"http://www.ietf.org/rfc/rfc2437.txt" shape="rect">RFC 2437</a>
[<a href="#ref-PKCS1" shape="rect">PKCS1</a>, section 8.1.1:
Signature generation for the RSASSA-PKCS1-v1_5 signature scheme].
As specified in the EMSA-PKCS1-V1_5-ENCODE function <a href=
"http://www.ietf.org/rfc/rfc2437.txt" shape="rect">RFC 2437</a>
[<a href="#ref-PKCS1" shape="rect">PKCS1</a>, section 9.2.1], the
value input to the signature function MUST contain a pre-pended
algorithm object identifier for the hash function, but the
availability of an ASN.1 parser and recognition of OIDs is not
required of a signature verifier. The PKCS#1 v1.5 representation
appears as:</p>
<pre class="xml-example" xml:space="preserve">
CRYPT (PAD (ASN.1 (OID, DIGEST (data))))
</pre>
<p>Note that the padded ASN.1 will be of the following form:</p>
<pre class="xml-example" xml:space="preserve">
01 | FF* | 00 | prefix | hash
</pre>
<p>where "|" is concatenation, "01", "FF", and "00" are fixed
octets of the corresponding hexadecimal value, "hash" is the SHA1
digest of the data, and "prefix" is the ASN.1 BER SHA1 algorithm
designator prefix required in PKCS1 [RFC 2437], that is,</p>
<pre class="xml-example" xml:space="preserve">
hex 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14
</pre>
<p>This prefix is included to make it easier to use standard
cryptographic libraries. The FF octet MUST be repeated the
maximum number of times such that the value of the quantity being
CRYPTed is one octet shorter than the RSA modulus.</p>
<p>The resulting base64 [<a href="#ref-MIME" shape=
"rect">MIME</a>] string is the value of the child text node of
the SignatureValue element, e.g.</p>
<pre class="xml-example" xml:space="preserve">
<SignatureValue>
IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
</SignatureValue>
</pre>
<h3>6.5 <a id="sec-c14nAlg" name="sec-c14nAlg" shape=
"rect">Canonicalization Algorithms</a></h3>
<p>If canonicalization is performed over octets, the
canonicalization algorithms take two implicit parameters: the
content and its charset. The charset is derived according to the
rules of the transport protocols and media types (e.g, RFC2376
[<a href="#ref-XML-MT" shape="rect">XML-MT</a>] defines the media
types for XML). This information is necessary to correctly sign
and verify documents and often requires careful server side
configuration.</p>
<p>Various canonicalization algorithms require conversion to
[<a href="#ref-UTF-8" shape="rect">UTF-8</a>].The algorithms
below understand at least [<a href="#ref-UTF-8" shape=
"rect">UTF-8</a>] and [<a href="#ref-UTF-16" shape=
"rect">UTF-16</a>] as input encodings. We RECOMMEND that
externally specified algorithms do the same. Knowledge of other
encodings is OPTIONAL.</p>
<p>Various canonicalization algorithms transcode from a
non-Unicode encoding to Unicode. The output of these algorithms
will be in NFC [<a href="#ref-NFC" shape="rect">NFC</a>, <a href=
"#ref-NFC-Corrigendum" shape="rect">NFC-Corrigendum</a>]. This is
because the XML processor used to prepare the XPath data model
input is required (by the Data Model) to use Normalization Form C
when converting an XML document to the UCS character domain from
any encoding that is not UCS-based.</p>
<p>We RECOMMEND that externally specified canonicalization
algorithms do the same. (Note, there can be ambiguities in
converting existing charsets to Unicode, for an example see the
XML Japanese Profile [<a href="#ref-XML-Japanese" shape=
"rect">XML-Japanese</a>] Note.)</p>
<p>This specification REQUIRES implementation of both Canonical
XML 1.0 [<a href="#ref-XML-C14N" shape="rect">XML-C14N</a>] and
Canonical XML 1.1 [<a href="#ref-XML-C14N11" shape=
"rect">XML-C14N11</a>]. We RECOMMEND that applications that
generate signatures choose Canonical XML 1.1 [<a href=
"#ref-XML-C14N11" shape="rect">XML-C14N11</a>] when inclusive
canonicalization is desired.</p>
<p><b>Note</b>: Canonical XML 1.0 [<a href="#ref-XML-C14N" shape=
"rect">XML-C14N</a>] and Canonical XML 1.1 [<a href=
"#ref-XML-C14N11" shape="rect">XML-C14N11</a>] specify a standard
serialization of XML that, when applied to a subdocument,
includes the subdocument's ancestor context including all of the
namespace declarations and some attributes in the 'xml:'
namespace. However, some applications require a method which, to
the extent practical, excludes unused ancestor context from a
canonicalized subdocument. The Exclusive XML Canonicalization
Recommendation [<a href="#ref-XML-exc-C14N" shape=
"rect">XML-exc-C14N</a>] may be used to address requirements
resulting from scenarios where a subdocument is moved between
contexts.</p>
<h4>6.5.1 <a id="sec-Canonical" name="sec-Canonical" shape=
"rect">Canonical</a> XML 1.0</h4>
<dl>
<dt>Identifier for REQUIRED Canonical XML 1.0 (omits
comments):</dt>
<dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"
shape=
"rect">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></dd>
</dl>
<dl>
<dt>Identifier for Canonical XML 1.0 with Comments:</dt>
<dd><a href=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"
shape=
"rect">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a></dd>
</dl>
<p>An example of an XML canonicalization element is:</p>
<pre class="xml-example" xml:space="preserve">
<code><CanonicalizationMethod Algorithm="</code>http://www.w3.org/TR/2001/REC-xml-c14n-20010315<code>"/></code>
</pre>
<p>The normative specification of Canonical XML1.0 is [<a href=
"#ref-XML-C14N" shape="rect">XML-C14N</a>]. The algorithm is
capable of taking as input either an octet stream or an XPath
node-set (or sufficiently functional alternative). The algorithm
produces an octet stream as output. Canonical XML is easily
parameterized (via an additional URI) to omit or retain
comments.</p>
<h4 id="sec-Canonical11">6.5.2 Canonical XML 1.1</h4>
<dl>
<dt>Identifier for REQUIRED Canonical XML 1.1 (omits
comments):</dt>
<dd><a href="http://www.w3.org/2006/12/xml-c14n11" shape=
"rect">http://www.w3.org/2006/12/xml-c14n11</a></dd>
<dt>Identifier for Canonical XML 1.1 with Comments:</dt>
<dd><a href="http://www.w3.org/2006/12/xml-c14n11#WithComments"
shape=
"rect">http://www.w3.org/2006/12/xml-c14n11#WithComments</a></dd>
</dl>
<p>The normative specification of Canonical XML 1.1 is [<a href=
"#ref-XML-C14N11" shape="rect">XML-C14N11</a>]. The algorithm is
capable of taking as input either an octet stream or an XPath
node-set (or sufficiently functional alternative). The algorithm
produces an octet stream as output. Canonical XML 1.1 is easily
parameterized (via an additional URI) to omit or retain
comments.</p><!--
<ins>
<p class="discuss"><a name="Editors-Note-C14N11-AppendixA2" id="Editors-Note-C14N11-AppendixA2">
Editors Note</a>: There has been a correction to Appendix A of the C14N11 Candidate Recommendation. This
correction is available at
<a href="http://lists.w3.org/Archives/Public/public-xml-core-wg/2007Jun/att-0050/Apendix_20060625.html">
http://lists.w3.org/Archives/Public/public-xml-core-wg/2007Jun/att-0050/Apendix_20060625.html</a>.
The XML Security Specifications Maintenance WG anticipates this change will be adopted as part of
C14N11 CR review and will use this update to Appendix A for Interop testing.
</p>
</ins>
-->
<h3>6.6 <a id="sec-TransformAlg" name="sec-TransformAlg" shape=
"rect"><code>Transform</code></a> Algorithms</h3>
<p>A <code>Transform</code> algorithm has a single implicit
parameter: an octet stream from the <code>Reference</code> or the
output of an earlier <code>Transform</code>.</p>
<p>Application developers are strongly encouraged to support all
transforms listed in this section as RECOMMENDED unless the
application environment has resource constraints that would make
such support impractical. Compliance with this recommendation
will maximize application interoperability and libraries should
be available to enable support of these transforms in
applications without extensive development.</p>
<h4>6.6.1 <a id="sec-Canonicalization" name=
"sec-Canonicalization" shape="rect">Canonicalization</a></h4>
<p>Any canonicalization algorithm that can be used for
<code>CanonicalizationMethod</code> (such as those in
<a href="#sec-c14nAlg" shape="rect">Canonicalization
Algorithms</a> (section 6.5)) can be used as a
<code>Transform</code>.</p>
<h4>6.6.2 <a id="sec-Base-64" name="sec-Base-64" shape=
"rect">Base64</a></h4>
<dl>
<dt>Identifiers:</dt>
<dd><a id="base64" href=
"http://www.w3.org/2000/09/xmldsig#base64" name="base64" shape=
"rect">http://www.w3.org/2000/09/xmldsig#base64</a></dd>
</dl>
<p>The normative specification for base64 decoding transforms is
[<a href="#ref-MIME" shape="rect">MIME</a>]. The base64
<code>Transform</code> element has no content. The input is
decoded by the algorithms. This transform is useful if an
application needs to sign the raw data associated with the
encoded content of an element.</p>
<p>This transform requires an octet stream for input. If an XPath
node-set (or sufficiently functional alternative) is given as
input, then it is converted to an octet stream by performing
operations logically equivalent to 1) applying an XPath transform
with expression <code>self::text()</code>, then 2) taking the
string-value of the node-set. Thus, if an XML element is
identified by a shortname XPointer in the <code>Reference</code>
URI, and its content consists solely of base64 encoded character
data, then this transform automatically strips away the start and
end tags of the identified element and any of its descendant
elements as well as any descendant comments and processing
instructions. The output of this transform is an octet
stream.</p>
<h4>6.6.3 <a name="sec-XPath" id="sec-XPath" shape=
"rect">XPath</a> Filtering</h4>
<dl>
<dt>Identifier:</dt>
<dd><a href="http://www.w3.org/TR/1999/REC-xpath-19991116"
shape=
"rect">http://www.w3.org/TR/1999/REC-xpath-19991116</a></dd>
</dl>
<p>The normative specification for XPath expression evaluation is
[<a href="#ref-XPath" shape="rect">XPath</a>]. The XPath
expression to be evaluated appears as the character content of a
transform parameter child element named <code>XPath</code>.</p>
<p>The input required by this transform is an XPath node-set.
Note that if the actual input is an XPath node-set resulting from
a null URI or shortname XPointer dereference, then comment nodes
will have been omitted. If the actual input is an octet stream,
then the application MUST convert the octet stream to an XPath
node-set suitable for use by Canonical XML with Comments. (A
subsequent application of the REQUIRED Canonical XML algorithm
would strip away these comments.) In other words, the input
node-set should be equivalent to the one that would be created by
the following process:</p>
<ol>
<li>Initialize an XPath evaluation context by setting the
initial node equal to the input XML document's root node, and
set the context position and size to 1.</li>
<li>Evaluate the XPath expression <code>(//. | //@* |
//namespace::*)</code></li>
</ol>
<p>The evaluation of this expression includes all of the
document's nodes (including comments) in the node-set
representing the octet stream.</p>
<p>The transform output is also an XPath node-set. The XPath
expression appearing in the <code>XPath</code> parameter is
evaluated once for each node in the input node-set. The result is
converted to a boolean. If the boolean is true, then the node is
included in the output node-set. If the boolean is false, then
the node is omitted from the output node-set.</p>
<p><strong>Note:</strong> Even if the input node-set has had
comments removed, the comment nodes still exist in the underlying
parse tree and can separate text nodes. For example, the markup
<code><e>Hello, <!-- comment
-->world!</e></code> contains two text nodes. Therefore,
the expression <code>self::text()[string()="Hello,
world!"]</code> would fail. Should this problem arise in the
application, it can be solved by either canonicalizing the
document before the XPath transform to physically remove the
comments or by matching the node based on the parent element's
string value (e.g. by using the expression
<code>self::text()[string(parent::e)="Hello,
world!"]</code>).</p>
<p>The primary purpose of this transform is to ensure that only
specifically defined changes to the input XML document are
permitted after the signature is affixed. This is done by
omitting precisely those nodes that are allowed to change once
the signature is affixed, and including all other input nodes in
the output. It is the responsibility of the XPath expression
author to include all nodes whose change could affect the
interpretation of the transform output in the application
context.</p>
<p>Note that the XML-Signature XPath Filter 2.0 Recommendation
[<a href="#ref-XPath-Filter-2" shape="rect">XPath-Filter-2</a>]
may be used for this purpose. This recommendation defines an
XPath transform that permits the easy specification of subtree
selection and omission that can be efficiently implemented.</p>
<p>An important scenario would be a document requiring two
enveloped signatures. Each signature must omit itself from its
own digest calculations, but it is also necessary to exclude the
second signature element from the digest calculations of the
first signature so that adding the second signature does not
break the first signature.</p>
<p>The XPath transform establishes the following evaluation
context for each node of the input node-set:</p>
<ul>
<li>A <strong>context node</strong> equal to a node of the
input node-set.</li>
<li>A <strong>context position</strong>, initialized to 1.</li>
<li>A <strong>context size</strong>, initialized to 1.</li>
<li>A <strong>library of functions</strong> equal to the
function set defined in [<a href="#ref-XPath" shape=
"rect">XPath]</a> plus a function named <strong><a href=
"#function-here" shape="rect">here</a></strong>.</li>
<li>A set of variable bindings. No means for initializing these
is defined. Thus, the set of variable bindings used when
evaluating the XPath expression is empty, and use of a variable
reference in the XPath expression results in an error.</li>
<li>The set of namespace declarations in scope for the XPath
expression.</li>
</ul>
<p>As a result of the context node setting, the XPath expressions
appearing in this transform will be quite similar to those used
in used in [<a href="#ref-XSLT" shape="rect">XSLT</a>], except
that the size and position are always 1 to reflect the fact that
the transform is automatically visiting every node (in XSLT, one
recursively calls the command <code>apply-templates</code> to
visit the nodes of the input tree).</p>
<p><strong>The function <code>here()</code> is defined as
follows:</strong></p>
<p><a name="function-here" id="function-here" shape=
"rect"><strong>Function:</strong> <em>node-set</em>
<strong>here</strong>()</a></p>
<p>The <strong><a href="#function-here" shape=
"rect">here</a></strong> function returns a node-set containing
the attribute or processing instruction node or the parent
element of the text node that directly bears the XPath
expression. This expression results in an error if the
containing XPath expression does not appear in the same XML
document against which the XPath expression is being
evaluated.</p>
<p>As an example, consider creating an enveloped signature (a
<code>Signature</code> element that is a descendant of an element
being signed). Although the signed content should not be changed
after signing, the elements within the <code>Signature</code>
element are changing (e.g. the digest value must be put inside
the <code>DigestValue</code> and the <code>SignatureValue</code>
must be subsequently calculated). One way to prevent these
changes from invalidating the digest value in
<code>DigestValue</code> is to add an XPath
<code>Transform</code> that omits all <code>Signature</code>
elements and their descendants. For example,</p>
<pre class="xml-example" xml:space="preserve">
<Document>
...
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
...
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<XPath xmlns:dsig="&dsig;">
not(ancestor-or-self::dsig:Signature)
</XPath>
</Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue></DigestValue>
</Reference>
</SignedInfo>
<SignatureValue></SignatureValue>
</Signature>
...
</Document>
</pre>
<p>Due to the null <code>Reference</code> URI in this example,
the XPath transform input node-set contains all nodes in the
entire parse tree starting at the root node (except the comment
nodes). For each node in this node-set, the node is included in
the output node-set except if the node or one of its ancestors
has a tag of <code>Signature</code> that is in the namespace
given by the replacement text for the entity
<code>&dsig;</code>.</p>
<p>A more elegant solution uses the <strong><a href=
"#function-here" shape="rect">here</a></strong> function to omit
only the <code>Signature</code> containing the XPath Transform,
thus allowing enveloped signatures to sign other signatures. In
the example above, use the <code>XPath</code> element:</p>
<pre class="xml-example" xml:space="preserve">
<XPath xmlns:dsig="&dsig;">
count(ancestor-or-self::dsig:Signature |
here()/ancestor::dsig:Signature[1]) >
count(ancestor-or-self::dsig:Signature)</XPath>
</pre>
<p>Since the XPath equality operator converts node sets to string
values before comparison, we must instead use the XPath union
operator (|). For each node of the document, the predicate
expression is true if and only if the node-set containing the
node and its <code>Signature</code> element ancestors does not
include the enveloped <code>Signature</code> element containing
the XPath expression (the union does not produce a larger set if
the enveloped <code>Signature</code> element is in the node-set
given by <code>ancestor-or-self::Signature</code>).</p>
<h4>6.6.4 <a name="sec-EnvelopedSignature" id=
"sec-EnvelopedSignature" shape="rect">Enveloped Signature</a>
Transform</h4>
<dl>
<dt>Identifier:</dt>
<dd><a href=
"http://www.w3.org/2000/09/xmldsig#enveloped-signature" name=
"enveloped-signature" id="enveloped-signature" shape=
"rect">http://www.w3.org/2000/09/xmldsig#enveloped-signature</a></dd>
</dl>
<p>An enveloped signature transform <strong><em>T</em></strong>
removes the whole <code>Signature</code> element containing
<strong><em>T</em></strong> from the digest calculation of the
<code>Reference</code> element containing
<strong><em>T</em></strong>. The entire string of characters used
by an XML processor to match the <code>Signature</code> with the
XML production <code>element</code> is removed. The output of the
transform is equivalent to the output that would result from
replacing <strong><em>T</em></strong> with an XPath transform
containing the following <code>XPath</code> parameter
element:</p>
<pre class="xml-example" xml:space="preserve">
<XPath xmlns:dsig="&dsig;">
count(ancestor-or-self::dsig:Signature |
here()/ancestor::dsig:Signature[1]) >
count(ancestor-or-self::dsig:Signature)</XPath>
</pre>
<p>The input and output requirements of this transform are
identical to those of the XPath transform, but may only be
applied to a node-set from its parent XML document. Note that it
is not necessary to use an XPath expression evaluator to create
this transform. However, this transform MUST produce output in
exactly the same manner as the XPath transform parameterized by
the XPath expression above.</p>
<h4>6.6.5 <a name="sec-XSLT" id="sec-XSLT" shape="rect">XSLT</a>
Transform</h4>
<dl>
<dt>Identifier:</dt>
<dd><a href="http://www.w3.org/TR/1999/REC-xslt-19991116"
shape="rect">http://www.w3.org/TR/1999/REC-xslt-19991116</a></dd>
</dl>
<p>The normative specification for XSL Transformations is
[<a href="#ref-XSLT" shape="rect">XSLT</a>]. Specification of a
namespace-qualified stylesheet element, which MUST be the sole
child of the <code>Transform</code> element, indicates that the
specified style sheet should be used. Whether this instantiates
in-line processing of local XSLT declarations within the resource
is determined by the XSLT processing model; the ordered
application of multiple stylesheet may require multiple
<code>Transforms</code>. No special provision is made for the
identification of a remote stylesheet at a given URI because it
can be communicated via an <a href=
"http://www.w3.org/TR/1999/REC-xslt-19991116#section-Combining-Stylesheets"
shape="rect"><code>xsl:include</code></a> or <a href=
"http://www.w3.org/TR/1999/REC-xslt-19991116#section-Combining-Stylesheets"
shape="rect"><code>xsl:import</code></a> within the
<code>stylesheet</code> child of the <code>Transform</code>.</p>
<p>This transform requires an octet stream as input. If the
actual input is an XPath node-set, then the signature application
should attempt to convert it to octets (apply <a href=
"#sec-Canonical" shape="rect">Canonical XML</a>]) as described in
<a href="#sec-ReferenceProcessingModel" shape="rect">the
Reference Processing Model</a> (section 4.3.3.2).</p>
<p>The output of this transform is an octet stream. The
processing rules for the XSL style sheet or transform element are
stated in the XSLT specification [<a href="#ref-XSLT" shape=
"rect">XSLT</a>]. We RECOMMEND that XSLT transform authors use an
output method of <code>xml</code> for XML and HTML. As XSLT
implementations do not produce consistent serializations of their
output, we further RECOMMEND inserting a transform after the XSLT
transform to canonicalize the output. These steps will help to
ensure interoperability of the resulting signatures among
applications that support the XSLT transform. Note that if the
output is actually HTML, then the result of these steps is
logically equivalent [<a href="#ref-XHTML" shape=
"rect">XHTML</a>].</p>
<h2>7.0 <a id="sec-XML-Canonicalization" name=
"sec-XML-Canonicalization" shape="rect">XML Canonicalization</a>
and Syntax Constraint Considerations</h2>
<p>Digital signatures only work if the verification calculations
are performed on exactly the same bits as the signing
calculations. If the surface representation of the signed data
can change between signing and verification, then some way to
standardize the changeable aspect must be used before signing and
verification. For example, even for simple ASCII text there are
at least three widely used line ending sequences. If it is
possible for signed text to be modified from one line ending
convention to another between the time of signing and signature
verification, then the line endings need to be canonicalized to a
standard form before signing and verification or the signatures
will break.</p>
<p>XML is subject to surface representation changes and to
processing which discards some surface information. For this
reason, XML digital signatures have a provision for indicating
canonicalization methods in the signature so that a verifier can
use the same canonicalization as the signer.</p>
<p>Throughout this specification we distinguish between the
canonicalization of a <code>Signature</code> element and other
signed XML data objects. It is possible for an isolated XML
document to be treated as if it were binary data so that no
changes can occur. In that case, the digest of the document will
not change and it need not be canonicalized if it is signed and
verified as such. However, XML that is read and processed using
standard XML parsing and processing techniques is frequently
changed such that some of its surface representation information
is lost or modified. In particular, this will occur in many cases
for the <code>Signature</code> and enclosed
<code>SignedInfo</code> elements since they, and possibly an
encompassing XML document, will be processed as XML.</p>
<p>Similarly, these considerations apply to
<code>Manifest</code>, <code>Object</code>, and
<code>SignatureProperties</code> elements if those elements have
been digested, their <code>DigestValue</code> is to be checked,
and they are being processed as XML.</p>
<p>The kinds of changes in XML that may need to be canonicalized
can be divided into four categories. There are those related to
the basic [<a href="#ref-XML" shape="rect">XML</a>], as described
in 7.1 below. There are those related to [<a href="#ref-DOM"
shape="rect">DOM</a>], [<a href="#ref-SAX" shape="rect">SAX</a>],
or similar processing as described in 7.2 below. Third, there is
the possibility of coded character set conversion, such as
between UTF-8 and UTF-16, both of which all [<a href=
"#ref-XML" shape="rect">XML</a>] compliant processors are
required to support, which is described in the paragraph
immediately below. And, fourth, there are changes that related to
namespace declaration and XML namespace attribute context as
described in 7.3 below.</p>
<p>Any canonicalization algorithm should yield output in a
specific fixed coded character set. All canonicalization <a href=
"#sec-c14nAlg" shape="rect">algorithms</a> identified in this
document use UTF-8 (without a byte order mark (BOM)) and do not
provide character normalization. We RECOMMEND that signature
applications create XML content (<code>Signature</code> elements
and their descendents/content) in Normalization Form C [<a href=
"#ref-NFC" shape="rect">NFC</a>, <a href="#ref-NFC-Corrigendum"
shape="rect">NFC-Corrigendum</a>] and check that any XML being
consumed is in that form as well; (if not, signatures may
consequently fail to validate). Additionally, none of these
algorithms provide data type normalization. Applications that
normalize data types in varying formats (e.g., (true, false) or
(1,0)) may not be able to validate each other's signatures.</p>
<h3>7.1 <a id="sec-XML-1" name="sec-XML-1" shape="rect">XML
1.0</a>, Syntax Constraints, and Canonicalization</h3>
<p>XML 1.0 [<a href="#ref-XML" shape="rect">XML</a>] defines an
interface where a conformant application reading XML is given
certain information from that XML and not other information. In
particular,</p>
<ol>
<li>line endings are normalized to the single character #xA by
dropping #xD characters if they are immediately followed by a
#xA and replacing them with #xA in all other cases,</li>
<li>missing attributes declared to have default values are
provided to the application as if present with the default
value, </li>
<li>character references are replaced with the corresponding
character,</li>
<li>entity references are replaced with the corresponding
declared entity,</li>
<li>attribute values are normalized by
<ol>
<li>replacing character and entity references as
above,</li>
<li>replacing occurrences of #x9, #xA, and #xD with #x20
(space) except that the sequence #xD#xA is replaced by a
single space, and</li>
<li>if the attribute is not declared to be CDATA, stripping
all leading and trailing spaces and replacing all interior
runs of spaces with a single space.</li>
</ol>
</li>
</ol>
<p>Note that items (2), (4), and (5.3) depend on the presence of
a schema, DTD or similar declarations. The <code>Signature</code>
element type is <a href=
"http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/#cvc-elt-lax"
shape="rect">laxly schema valid</a> [<a href="#ref-XML-schema"
shape="rect">XML-schema</a>], consequently external XML or even
XML within the same document as the signature may be (only)
well-formed or from another namespace (where permitted by the
signature schema); the noted items may not be present. Thus, a
signature with such content will only be verifiable by other
signature applications if the following syntax constraints are
observed when generating any signed material including the
<code>SignedInfo</code> element:</p>
<ol>
<li>attributes having default values be explicitly
present,</li>
<li>all entity references (except "amp", "lt", "gt", "apos",
"quot", and other character entities not representable in the
encoding chosen) be expanded,</li>
<li>attribute value white space be normalized</li>
</ol>
<h3>7.2 <a id="sec-DOM-SAX" name="sec-DOM-SAX" shape=
"rect">DOM/SAX</a> Processing and Canonicalization</h3>
<p>In addition to the canonicalization and syntax constraints
discussed above, many XML applications use the Document Object
Model [<a href="#ref-DOM" shape="rect">DOM</a>] or the Simple API
for XML [<a href="#ref-SAX" shape="rect">SAX</a>]. DOM maps
XML into a tree structure of nodes and typically assumes it will
be used on an entire document with subsequent processing being
done on this tree. SAX converts XML into a series of events such
as a start tag, content, etc. In either case, many surface
characteristics such as the ordering of attributes and
insignificant white space within start/end tags is lost. In
addition, namespace declarations are mapped over the nodes to
which they apply, losing the namespace prefixes in the source
text and, in most cases, losing where namespace declarations
appeared in the original instance.</p>
<p>If an XML Signature is to be produced or verified on a system
using the DOM or SAX processing, a canonical method is needed to
serialize the relevant part of a DOM tree or sequence of SAX
events. XML canonicalization specifications, such as [<a href=
"#ref-XML-C14N" shape="rect">XML-C14N</a>], are based only on
information which is preserved by DOM and SAX. For an XML
Signature to be verifiable by an implementation using DOM or SAX,
not only must the <a href="#sec-XML-1" shape="rect">XML 1.0
syntax constraints given in the previous section</a> be followed
but an appropriate XML canonicalization MUST be specified so that
the verifier can re-serialize DOM/SAX mediated input into the
same octet stream that was signed.</p>
<h3>7.3 <a name="sec-NamespaceContext" id="sec-NamespaceContext"
shape="rect">Namespace Context</a> and Portable Signatures</h3>
<p>In [<a href="#ref-XPath" shape="rect">XPath</a>] and
consequently the Canonical XML data model an element has
namespace nodes that correspond to those declarations within the
element and its ancestors:</p>
<blockquote>
<p>"<strong>Note:</strong> An element
<strong><em>E</em></strong> has namespace nodes that represent
its namespace declarations <em>as well as</em> any namespace
declarations made by its ancestors that have not been
overridden in <strong><em>E</em></strong>'s declarations, the
default namespace if it is non-empty, and the declaration of
the prefix <code>xml</code>." [<a href="#ref-XML-C14N" shape=
"rect">XML-C14N</a>]</p>
</blockquote>
<p>When serializing a <code>Signature</code> element or signed
XML data that's the child of other elements using these data
models, that <code>Signature</code> element and its children, may
contain namespace declarations from its ancestor context. In
addition, the Canonical XML and Canonical XML with Comments
algorithms import all xml namespace attributes (such as
<code>xml:lang</code>) from the nearest ancestor in which they
are declared to the apex node of canonicalized XML unless they
are already declared at that node. This may frustrate the intent
of the signer to create a signature in one context which remains
valid in another. For example, given a signature which is a child
of <code>B</code> and a grandchild of <code>A</code>:</p>
<pre class="xml-example" xml:space="preserve">
<A xmlns:n1="&foo;">
<B xmlns:n2="&bar;">
<Signature xmlns="&dsig;"> ...
<Reference URI="#signme"/> ...
</Signature>
<C ID="signme" xmlns="&baz;"/>
</B>
</A>
</pre>
<p>when either the element <code>B</code> or the signed element
<code>C</code> is moved into a [<a href="#ref-SOAP" shape=
"rect">SOAP</a>] envelope for transport:</p>
<pre class="xml-example" xml:space="preserve">
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
...
<SOAP:Body>
<B xmlns:n2="&bar;">
<Signature xmlns="&dsig;">
...
</Signature>
<C ID="signme" xmlns="&baz;"/>
</B>
</SOAP:Body>
</SOAP:Envelope>
</pre>
<p>The canonical form of the signature in this context will
contain new namespace declarations from the
<code>SOAP:Envelope</code> context, invalidating the signature.
Also, the canonical form will lack namespace declarations it may
have originally had from element <code>A</code>'s context, also
invalidating the signature. To avoid these problems, the
application may:</p>
<ol>
<li>Rely upon the enveloping application to properly divorce
its body (the signature payload) from the context (the
envelope) before the signature is validated. Or,</li>
<li>Use a canonicalization method that "repels/excludes"
instead of "attracts" ancestor context. [<a href=
"#ref-XML-C14N" shape="rect">XML-C14N</a>] purposefully
attracts such context.</li>
</ol>
<h2>8.0 <a id="sec-Security" name="sec-Security" shape=
"rect">Security Considerations</a></h2>
<p>The XML Signature specification provides a very flexible
digital signature mechanism. Implementors must give consideration
to their application threat models and to the following
factors.</p>
<h3>8.1 <a name="sec-Security-Transofrms" id=
"sec-Security-Transofrms" shape="rect">Transforms</a></h3>
<p>A requirement of this specification is to permit signatures to
"apply to a part or totality of a XML document." (See
[<a href="#ref-XML-Signature-RD" shape=
"rect">XML-Signature-RD</a>, section 3.1.3].) The
<code>Transforms</code> mechanism meets this requirement by
permitting one to sign data derived from processing the content
of the identified resource. For instance, applications that wish
to sign a form, but permit users to enter limited field data
without invalidating a previous signature on the form might use
[<a href="#ref-XPath" shape="rect">XPath</a>] to exclude those
portions the user needs to change. <code>Transforms</code> may be
arbitrarily specified and may include encoding transforms,
canonicalization instructions or even XSLT transformations. Three
cautions are raised with respect to this feature in the following
sections.</p>
<p>Note, <a class="link-def" href="#def-ValidationCore" shape=
"rect">core validation</a> behavior does not confirm that the
signed data was obtained by applying each step of the indicated
transforms. (Though it does check that the digest of the
resulting content matches that specified in the signature.)
For example, some applications may be satisfied with verifying an
XML signature over a cached copy of already transformed data.
Other applications might require that content be freshly
dereferenced and transformed.</p>
<h4>8.1.1 <strong><a id="sec-Secure" name="sec-Secure" shape=
"rect">Only What is Signed is Secure</a></strong></h4>
<p>First, obviously, signatures over a transformed document do
not secure any information discarded by transforms: only what is
signed is secure.</p>
<p>Note that the use of Canonical XML [<a href=
"#ref-XML-C14N" shape="rect">XML-C14N</a>] ensures that all
internal entities and XML namespaces are expanded within the
content being signed. All entities are replaced with their
definitions and the canonical form explicitly represents the
namespace that an element would otherwise inherit. Applications
that do not canonicalize XML content (especially the
<code>SignedInfo</code> element) SHOULD NOT use internal entities
and SHOULD represent the namespace explicitly within the content
being signed since they can not rely upon canonicalization to do
this for them. Also, users concerned with the integrity of the
element type definitions associated with the XML instance being
signed may wish to sign those definitions as well (i.e., the
schema, DTD, or natural language description associated with the
namespace/identifier).</p>
<p>Second, an envelope containing signed information is not
secured by the signature. For instance, when an encrypted
envelope contains a signature, the signature does not protect the
authenticity or integrity of unsigned envelope headers nor its
ciphertext form, it only secures the plaintext actually
signed.</p>
<h4>8.1.2 <a id="sec-Seen" name="sec-Seen" shape="rect">Only What
is "Seen" Should be Signed</a></h4>
<p>Additionally, the signature secures any information introduced
by the transform: only what is "seen" (that which is represented
to the user via visual, auditory or other media) should be
signed. If signing is intended to convey the judgment or consent
of a user (an automated mechanism or person), then it is normally
necessary to secure as exactly as practical the information that
was presented to that user. Note that this can be accomplished by
literally signing what was presented, such as the screen images
shown a user. However, this may result in data which is difficult
for subsequent software to manipulate. Instead, one can sign the
data along with whatever filters, style sheets, client profile or
other information that affects its presentation.</p>
<h4>8.1.3 <a name="sec-See" id="sec-See" shape="rect">"See" What
is Signed</a></h4>
<p>Just as a user should only sign what he or she "sees," persons
and automated mechanism that trust the validity of a transformed
document on the basis of a valid signature should operate over
the data that was transformed (including canonicalization) and
signed, not the original pre-transformed data. This
recommendation applies to transforms specified within the
signature as well as those included as part of the document
itself. For instance, if an XML document includes an <a href=
"http://www.w3.org/TR/xslt#section-Creating-Processing-Instructions"
shape="rect">embedded style sheet</a> [<a href="#ref-XSLT" shape=
"rect">XSLT</a>] it is the transformed document that should be
represented to the user and signed. To meet this recommendation
where a document references an external style sheet, the content
of that external resource should also be signed as via a
signature <code>Reference</code> otherwise the content of that
external content might change which alters the resulting document
without invalidating the signature.</p>
<p>Some applications might operate over the original or
intermediary data but should be extremely careful about potential
weaknesses introduced between the original and transformed data.
This is a trust decision about the character and meaning of the
transforms that an application needs to make with caution.
Consider a canonicalization algorithm that normalizes character
case (lower to upper) or character composition ('e and accent' to
'accented-e'). An adversary could introduce changes that are
normalized and consequently inconsequential to signature validity
but material to a DOM processor. For instance, by changing the
case of a character one might influence the result of an XPath
selection. A serious risk is introduced if that change is
normalized for signature validation but the processor operates
over the original data and returns a different result than
intended.</p>
<p>As a result:</p>
<ul>
<li>All documents operated upon and generated by signature
applications MUST be in [<a href="#ref-NFC" shape=
"rect">NFC</a>, <a href="#ref-NFC-Corrigendum" shape=
"rect">NFC-Corrigendum</a>] (otherwise intermediate processors
might unintentionally break the signature)</li>
<li>Encoding normalizations SHOULD NOT be done as part of a
signature transform, or (to state it another way) if
normalization does occur, the application SHOULD always "see"
(operate over) the normalized form.</li>
</ul>
<h3>8.2 <a id="sec-Check" name="sec-Check" shape="rect">Check the
Security Model</a></h3>
<p>This specification uses public key signatures and keyed hash
authentication codes. These have substantially different security
models. Furthermore, it permits user specified algorithms which
may have other models.</p>
<p>With public key signatures, any number of parties can hold the
public key and verify signatures while only the parties with the
private key can create signatures. The number of holders of the
private key should be minimized and preferably be one. Confidence
by verifiers in the public key they are using and its binding to
the entity or capabilities represented by the corresponding
private key is an important issue, usually addressed by
certificate or online authority systems.</p>
<p>Keyed hash authentication codes, based on secret keys, are
typically much more efficient in terms of the computational
effort required but have the characteristic that all verifiers
need to have possession of the same key as the signer. Thus any
verifier can forge signatures.</p>
<p>This specification permits user provided signature algorithms
and keying information designators. Such user provided algorithms
may have different security models. For example, methods
involving biometrics usually depend on a physical characteristic
of the authorized user that can not be changed the way public or
secret keys can be and may have other security model
differences.</p>
<h3>8.3 Algorithms, <a id="sec-KeyLength" name="sec-KeyLength"
shape="rect">Key Lengths</a>, Certificates, Etc.</h3>
<p>The strength of a particular signature depends on all links in
the security chain. This includes the signature and digest
algorithms used, the strength of the key generation [<a href=
"#ref-RANDOM" shape="rect">RANDOM</a>] and the size of the key,
the security of key and certificate authentication and
distribution mechanisms, certificate chain validation policy,
protection of cryptographic processing from hostile observation
and tampering, etc.</p>
<p>Care must be exercised by applications in executing the
various algorithms that may be specified in an XML signature and
in the processing of any "executable content" that might be
provided to such algorithms as parameters, such as XSLT
transforms. The algorithms specified in this document will
usually be implemented via a trusted library but even there
perverse parameters might cause unacceptable processing or memory
demand. Even more care may be warranted with application defined
algorithms.</p>
<p>The security of an overall system will also depend on the
security and integrity of its operating procedures, its
personnel, and on the administrative enforcement of those
procedures. All the factors listed in this section are important
to the overall security of a system; however, most are beyond the
scope of this specification.</p>
<h2>9.0 <a id="sec-Schema" name="sec-Schema" shape=
"rect">Schema</a>, DTD, Data Model, and Valid Examples</h2>
<dl>
<dt>XML Signature Schema Instance</dt>
<dd><a href="xmldsig-core-schema.xsd" shape=
"rect">xmldsig-core-schema.xsd</a></dd>
<dd>Valid XML schema instance based on the 20001024 Schema/DTD
[<a href="#ref-XML-schema" shape="rect">XML-Schema</a>].</dd>
<dt>XML Signature DTD</dt>
<dd><a href="xmldsig-core-schema.dtd" shape=
"rect">xmldsig-core-schema.dtd</a></dd>
<dt>RDF Data Model</dt>
<dd><a href="xmldsig-datamodel-20000112.gif" shape=
"rect">xmldsig-datamodel-20000112.gif</a></dd>
<dt>XML Signature Object Example</dt>
<dd><a href="signature-example.xml" shape=
"rect">signature-example.xml</a></dd>
<dd>A cryptographical fabricated XML example that includes
foreign content and validates under the schema, it also uses
<code>schemaLocation</code> to aid automated schema fetching
and validation.</dd>
<dt>RSA XML Signature Example</dt>
<dd><a href="signature-example-rsa.xml" shape=
"rect">signature-example-rsa.xml</a></dd>
<dd>An XML Signature example with generated cryptographic
values by Merlin Hughes and validated by Gregor Karlinger.</dd>
<dt>DSA XML Signature Example</dt>
<dd><a href="signature-example-dsa.xml" shape=
"rect">signature-example-dsa.xml</a></dd>
<dd>Similar to above but uses DSA.</dd>
</dl>
<h2>10.0 <a id="sec-Definitions" name="sec-Definitions" shape=
"rect">Definitions</a></h2>
<dl>
<dt><a id="def-AuthenticationCode" name=
"def-AuthenticationCode" shape="rect">Authentication Code</a>
(<a name="def-ProtectedChecksum" id="def-ProtectedChecksum"
shape="rect">Protected Checksum</a>)</dt>
<dd>A value generated from the application of a shared key to a
message via a cryptographic algorithm such that it has the
properties of <a href="#def-AuthenticationMessage" class=
"link-def" shape="rect">message authentication</a> (and
<a href="#def-Integrity" class="link-def" shape=
"rect">integrity</a>) but not <a href=
"#def-AuthenticationSigner" class="link-def" shape=
"rect">signer authentication</a>. Equivalent to <em>protected
checksum</em>, "A checksum that is computed for a data object
by means that protect against active attacks that would attempt
to change the checksum to make it match changes made to the
data object." [<a href="#ref-SEC" shape=
"rect">SEC</a>]</dd>
<dt><a id="def-AuthenticationMessage" name=
"def-AuthenticationMessage" shape="rect">Authentication,
Message</a></dt>
<dd>The property, given an <a href="#def-AuthenticationCode"
class="link-def" shape="rect">authentication code</a>/<a href=
"#def-ProtectedChecksum" class="link-def" shape=
"rect">protected checksum</a>, that tampering with both the
data and checksum, so as to introduce changes while seemingly
preserving <a href="#def-Integrity" class="link-def" shape=
"rect">integrity</a>, are still detected. "A signature should
identify what is signed, making it impracticable to falsify or
alter either the signed matter or the signature without
detection." [<a href=
"http://www.abanet.org/scitech/ec/isc/dsgfree.html" shape=
"rect">Digital Signature Guidelines</a>, <a href="#ref-ABA"
shape="rect">ABA</a>].</dd>
<dt><a id="def-AuthenticationSigner" name=
"def-AuthenticationSigner" shape="rect">Authentication,
Signer</a></dt>
<dd>The property that the identity of the signer is as claimed.
"A signature should indicate who signed a document, message or
record, and should be difficult for another person to produce
without authorization." [<a href=
"http://www.abanet.org/scitech/ec/isc/dsgfree.html" shape=
"rect">Digital Signature Guidelines</a>, <a href="#ref-ABA"
shape="rect">ABA</a>] Note, signer authentication is an
application decision (e.g., does the signing key actually
correspond to a specific identity) that is supported by, but
out of scope, of this specification.</dd>
<dt><a name="def-Checksum" id="def-Checksum" shape=
"rect">Checksum</a></dt>
<dd>"A value that (a) is computed by a function that is
dependent on the contents of a data object and (b) is stored or
transmitted together with the object, for the purpose of
detecting changes in the data." [<a href="#ref-SEC"
shape="rect">SEC</a>]</dd>
<dt><a id="def-Core" name="def-Core" shape="rect">Core</a></dt>
<dd>The syntax and processing defined by this specification,
including <a href="#def-ValidationCore" class="link-def" shape=
"rect">core validation</a>. We use this term to distinguish
other markup, processing, and applications semantics from our
own.</dd>
<dt><a id="def-DataObject" name="def-DataObject" shape=
"rect">Data Object</a> (Content/Document)</dt>
<dd>The actual binary/octet data being operated on
(transformed, digested, or signed) by an application --
frequently an <a href=
"http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7"
shape="rect">HTTP entity</a> [<a href="#ref-HTTP" shape=
"rect">HTTP</a>]. Note that the proper noun <code>Object</code>
designates a specific XML element. Occasionally we refer to a
data object as a <em>document</em> or as a <em><a href=
"#def-Resource" class="link-def" shape="rect">resource</a>'s
content</em>. The term <em>element content</em> is used to
describe the data between XML start and end tags [<a href=
"#ref-XML" shape="rect">XML</a>]. The term <em>XML
document</em> is used to describe data objects which conform to
the XML specification [<a href="#ref-XML" shape=
"rect">XML</a>].</dd>
<dt><a id="def-Integrity" name="def-Integrity" shape=
"rect">Integrity</a></dt>
<dd>"The property that data has not been changed, destroyed, or
lost in an unauthorized or accidental manner." [<a href=
"#ref-SEC" shape="rect">SEC</a>] A simple <a href=
"#def-Checksum" class="link-def" shape="rect">checksum</a> can
provide integrity from incidental changes in the data; <a href=
"#def-AuthenticationMessage" class="link-def" shape=
"rect">message authentication</a> is similar but also protects
against an active attack to alter the data whereby a change in
the checksum is introduced so as to match the change in the
data. </dd>
<dt><a id="def-Object" name="def-Object" shape=
"rect">Object</a></dt>
<dd>An XML Signature element wherein arbitrary (non-<a href=
"#def-Core" class="link-def" shape="rect">core</a>) data may be
placed. An <code>Object</code> element is merely one type of
digital data (or document) that can be signed via a
<code>Reference</code>.</dd>
<dt><a id="def-Resource" name="def-Resource" shape=
"rect">Resource</a></dt>
<dd>"A resource can be anything that has identity. Familiar
examples include an electronic document, an image, a service
(e.g., 'today's weather report for Los Angeles'), and a
collection of other resources.... The resource is the
conceptual mapping to an entity or set of entities, not
necessarily the entity which corresponds to that mapping at any
particular instance in time. Thus, a resource can remain
constant even when its content---the entities to which it
currently corresponds---changes over time, provided that the
conceptual mapping is not changed in the process." [<a href=
"#ref-URI" shape="rect">URI</a>] In order to avoid a collision
of the term <em>entity</em> within the URI and XML
specifications, we use the term <em>data object</em>,
<em>content</em> or <em>document</em> to refer to the actual
bits/octets being operated upon.</dd>
<dt><a id="def-Signature" name="def-Signature" shape=
"rect">Signature</a></dt>
<dd>Formally speaking, a value generated from the application
of a private key to a message via a cryptographic algorithm
such that it has the properties of <a href="#def-Integrity"
class="link-def" shape="rect">integrity</a>, <a href=
"#def-AuthenticationMessage" class="link-def" shape=
"rect">message authentication</a> and/or <a href=
"#def-AuthenticationSigner" class="link-def" shape=
"rect">signer authentication</a>. (However, we sometimes use
the term signature generically such that it encompasses
<a href="#def-AuthenticationCode" class="link-def" shape=
"rect">Authentication Code</a> values as well, but we are
careful to make the distinction when the property of <a href=
"#def-AuthenticationSigner" class="link-def" shape=
"rect">signer authentication</a> is relevant to the
exposition.) A signature may be (non-exclusively) described as
<a href="#def-SignatureDetached" class="link-def" shape=
"rect">detached</a>, <a href="#def-SignatureEnveloping" class=
"link-def" shape="rect">enveloping</a>, or <a href=
"#def-SignatureEnveloped" class="link-def" shape=
"rect">enveloped</a>.</dd>
<dt><a name="def-SignatureApplication" id=
"def-SignatureApplication" shape="rect">Signature,
Application</a></dt>
<dd>An application that implements the MANDATORY
(REQUIRED/MUST) portions of this specification; these
conformance requirements are over application behavior, the
structure of the <code>Signature</code> element type and its
children (including <code>SignatureValue</code>) and the
specified algorithms.</dd>
<dt><a id="def-SignatureDetached" name="def-SignatureDetached"
shape="rect">Signature, Detached</a></dt>
<dd>The signature is over content external to the
<code>Signature</code> element, and can be identified via a
<code>URI</code> or transform. Consequently, the signature is
"detached" from the content it signs. This definition typically
applies to separate data objects, but it also includes the
instance where the <code>Signature</code> and data object
reside within the same XML document but are sibling
elements.</dd>
<dt><a id="def-SignatureEnveloping" name=
"def-SignatureEnveloping" shape="rect">Signature,
Enveloping</a></dt>
<dd>The signature is over content found within an
<code>Object</code> element of the signature itself. The
<code>Object</code> (or its content) is identified via a
<code>Reference</code> (via a <code>URI</code> fragment
identifier or transform).</dd>
<dt><a id="def-SignatureEnveloped" name=
"def-SignatureEnveloped" shape="rect">Signature,
Enveloped</a></dt>
<dd>The signature is over the XML content that contains the
signature as an element. The content provides the root XML
document element. Obviously, enveloped signatures must take
care not to include their own value in the calculation of the
<code>SignatureValue</code>.</dd>
<dt><a id="def-Transform" name="def-Transform" shape=
"rect">Transform</a></dt>
<dd>The processing of a data from its source to its derived
form. Typical transforms include XML Canonicalization, XPath,
and XSLT.</dd>
<dt><a id="def-ValidationCore" name="def-ValidationCore" shape=
"rect">Validation, Core</a></dt>
<dd>The core processing requirements of this specification
requiring <a href="#def-ValidationSignature" class="link-def"
shape="rect">signature validation</a> and
<code>SignedInfo</code> <a href="#def-ValidationReference"
class="link-def" shape="rect">reference validation</a>.</dd>
<dt><a id="def-ValidationReference" name=
"def-ValidationReference" shape="rect">Validation,
Reference</a></dt>
<dd>The hash value of the identified and transformed content,
specified by <code>Reference</code>, matches its specified
<code>DigestValue</code>.</dd>
<dt><a id="def-ValidationSignature" name=
"def-ValidationSignature" shape="rect">Validation,
Signature</a></dt>
<dd>The <code>SignatureValue</code> matches the result of
processing <code>SignedInfo</code> with
<code>CanonicalizationMethod</code> and
<code>SignatureMethod</code> as specified in <a href=
"#sec-CoreValidation" shape="rect">Core Validation</a> (section
3.2).</dd>
<dt><a id="def-ValidationTrustApplication" name=
"def-ValidationTrustApplication" shape="rect">Validation,
Trust/Application</a></dt>
<dd>The application determines that the semantics associated
with a signature are valid. For example, an application may
validate the time stamps or the integrity of the signer key --
though this behavior is external to this <a href=
"#def-ValidationCore" class="link-def" shape="rect">core</a>
specification.</dd>
</dl>
<h2>11.0 <a id="sec-References" name="sec-References" shape=
"rect">References</a></h2>
<dl>
<dt><a id="ref-ABA" name="ref-ABA" shape="rect">ABA</a></dt>
<dd><a href="http://www.abanet.org/scitech/ec/isc/dsgfree.html"
shape="rect">Digital Signature Guidelines.</a><br clear=
"none" />
<a href="http://www.abanet.org/scitech/ec/isc/dsgfree.html"
shape=
"rect">http://www.abanet.org/scitech/ec/isc/dsgfree.html</a></dd>
<dt><a id="ref-DOM" name="ref-DOM" shape="rect">DOM</a></dt>
<dd><a href=
"http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/" shape=
"rect">Document Object Model (DOM) Level 1 Specification.</a>
W3C Recommendation. V. Apparao, S. Byrne, M. Champion, S.
Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C.
Wilson, L. Wood. October 1998.<br clear="none" />
<a href="http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/"
shape=
"rect">http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/</a></dd>
<dt><a id="ref-DSS" name="ref-DSS" shape="rect">DSS</a></dt>
<dd><a href=
"http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf"
shape="rect">FIPS PUB 186-2</a>. <em>Digital Signature Standard
(DSS).</em> U.S. Department of Commerce/National Institute of
Standards and Technology.<br clear="none" />
<a href=
"http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf"
shape=
"rect">http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf</a></dd>
<dt><a id="ref-HMAC" name="ref-HMAC" shape="rect">HMAC</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2104.txt" shape=
"rect">RFC 2104</a>. <em>HMAC: Keyed-Hashing for Message
Authentication.</em> H. Krawczyk, M. Bellare, R. Canetti.
February 1997.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2104.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2104.txt</a></dd>
<dt><a id="ref-HTTP" name="ref-HTTP" shape="rect">HTTP</a></dt>
<dd><a href="http://www.w3.org/Protocols/rfc2616/rfc2616.html"
shape="rect">RFC 2616</a>. <em>Hypertext Transfer Protocol --
HTTP/1.1</em>. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee. June 1999.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2616.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2616.txt</a></dd>
<dt><a id="ref-KEYWORDS" name="ref-KEYWORDS" shape=
"rect">KEYWORDS</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2119.txt" shape=
"rect">RFC 2119.</a> <em>Key words for use in RFCs to Indicate
Requirement Levels.</em> S. Bradner. March 1997.<br clear=
"none" />
<a href="http://www.ietf.org/rfc/rfc2119.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2119.txt</a></dd>
<dt><a id="ref-LDAP-DN" name="ref-LDAP-DN" shape=
"rect">LDAP-DN</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc4514.txt" shape=
"rect">RFC4514</a> . <em>Lightweight Directory Access Protocol
: String Representation of Distinguished Names.</em> K.
Zeilenga, Ed. June 2006.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2253.txt" shape=
"rect"></a><a href="http://www.ietf.org/rfc/rfc4514.txt" shape=
"rect">http://www.ietf.org/rfc/rfc4514.txt</a></dd>
<dt><a id="ref-MD5" name="ref-MD5" shape="rect">MD5</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc1321.txt" shape=
"rect">RFC 1321</a>. <em>The MD5 Message-Digest Algorithm.</em>
R. Rivest. April 1992.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc1321.txt" shape=
"rect">http://www.ietf.org/rfc/rfc1321.txt</a></dd>
<dt><a id="ref-MIME" name="ref-MIME" shape="rect">MIME</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2045.txt" shape=
"rect">RFC 2045</a>. <em>Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies</em>. N.
Freed & N. Borenstein. November 1996.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2045.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2045.txt</a></dd>
<dt><a id="ref-NFC" name="ref-NFC" shape="rect">NFC</a></dt>
<dd><em>TR15, Unicode Normalization Forms.</em> M. Davis, M.
Dürst. Revision 18: November 1999. <a href=
"http://www.unicode.org/unicode/reports/tr15/tr15-18.html"
shape=
"rect">http://www.unicode.org/unicode/reports/tr15/tr15-18.html</a>.</dd>
<dt><a id="ref-NFC-Corrigendum" name="ref-NFC-Corrigendum"
shape="rect">NFC-Corrigendum</a></dt>
<dd><em>Normalization Corrigendum</em>. The Unicode Consortium.
<a href=
"http://www.unicode.org/unicode/uni2errata/Normalization_Corrigendum.html"
shape=
"rect">http://www.unicode.org/unicode/uni2errata/Normalization_Corrigendum.html</a>.</dd>
<dt><a id="ref-PGP" name="ref-PGP" shape="rect">PGP</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2440.txt" shape=
"rect">RFC 2440</a>. <em>OpenPGP Message Format.</em> J.
Callas, L. Donnerhacke, H. Finney, R. Thayer. November
1998.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2440.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2440.txt</a></dd>
<dt><a id="ref-RANDOM" name="ref-RANDOM" shape=
"rect">RANDOM</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc1750.txt" shape=
"rect">RFC 1750</a>. <em>Randomness Recommendations for
Security.</em> D. Eastlake, S. Crocker, J. Schiller. December
1994.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc1750.txt" shape=
"rect">http://www.ietf.org/rfc/rfc1750.txt</a></dd>
<dt><a id="ref-RDF" name="ref-RDF" shape="rect">RDF</a></dt>
<dd><a href="http://www.w3.org/TR/2000/CR-rdf-schema-20000327/"
shape="rect">Resource Description Framework (RDF) Schema
Specification 1.0.</a> W3C Candidate Recommendation. D.
Brickley, R.V. Guha. March 2000.<br clear="none" />
<a href="http://www.w3.org/TR/2000/CR-rdf-schema-20000327/"
shape=
"rect">http://www.w3.org/TR/2000/CR-rdf-schema-20000327/</a></dd>
<dd><a href=
"http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/" shape=
"rect">Resource Description Framework (RDF) Model and Syntax
Specification</a>. W3C Recommendation. O. Lassila, R. Swick.
February 1999.<br clear="none" />
<a href="http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/"
shape=
"rect">http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/</a></dd>
<dt><a id="ref-1363" name="ref-1363" shape="rect">1363</a></dt>
<dd>IEEE 1363: Standard Specifications for Public Key
Cryptography. August 2000.</dd>
<dt><a id="ref-PKCS1" name="ref-PKCS1" shape=
"rect">PKCS1</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2437.txt" shape=
"rect">RFC 2437</a>. <em>PKCS #1: RSA Cryptography
Specifications Version 2.0.</em> B. Kaliski, J. Staddon.
October 1998.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2437.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2437.txt</a></dd>
<dt><a id="ref-SAX" name="ref-SAX" shape="rect">SAX</a></dt>
<dd><a href="http://www.megginson.com/downloads/SAX/" shape=
"rect">SAX: The Simple API for XML</a>. D. Megginson, et al.
May 1998.<br clear="none" />
<a href="http://www.megginson.com/downloads/SAX/" shape=
"rect">http://www.megginson.com/downloads/SAX/</a></dd>
<dt><a name="ref-SEC" id="ref-SEC" shape="rect">SEC</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2828.txt" shape=
"rect">RFC 2828</a>. <em>Internet Security Glossary.</em> R.
Shirey. May 2000.<br clear="none" />
<a href="http://www.faqs.org/rfcs/rfc2828.html" shape=
"rect">http://www.faqs.org/rfcs/rfc2828.html</a></dd>
<dt><a id="ref-SHA-1" name="ref-SHA-1" shape=
"rect">SHA-1</a></dt>
<dd><a href=
"http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf"
shape="rect">FIPS PUB 180-2</a>. <em>Secure Hash Standard.</em>
U.S. Department of Commerce/National Institute of Standards and
Technology.<br clear="none" />
<a href=
"http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf"
shape=
"rect">http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf</a></dd>
<dt class="label"><a name="ref-SOAP" id="ref-SOAP" shape=
"rect">SOAP</a></dt>
<dd><a href="http://www.w3.org/TR/2000/NOTE-SOAP-20000508/"
shape="rect">Simple Object Access Protocol (SOAP) Version
1.1</a>. W3C Note. D. Box, D. Ehnebuske, G. Kakivaya, A.
Layman, N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Winer.
May 2001.</dd>
<dd><a href="http://www.w3.org/TR/2000/NOTE-SOAP-20000508/"
shape=
"rect">http://www.w3.org/TR/2000/NOTE-SOAP-20000508/</a></dd>
<dt><a id="ref-TESTCASES" name="ref-TESTCASES">TESTCASES</a></dt>
<dd><a href="http://www.w3.org/TR/2008/NOTE-xmldsig2ed-tests-20080610/">Test Cases for C14N 1.1
and XMLDSig Interoperability</a>. W3C Working Group Note. J.C. Cruellas, K. Lanz, S. Mullan.
June 2008.</dd>
<dd><a href="http://www.w3.org/TR/2008/NOTE-xmldsig2ed-tests-20080610/">http://www.w3.org/TR/2008/NOTE-xmldsig2ed-tests-20080610/</a></dd>
<dt><a name="ref-UTF-16" id="ref-UTF-16" shape=
"rect">UTF-16</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2781.txt" shape=
"rect">RFC 2781</a>. <em>UTF-16, an encoding of ISO 10646.</em>
P. Hoffman , F. Yergeau. February 2000.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2781.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2781.txt</a></dd>
<dt><a id="ref-UTF-8" name="ref-UTF-8" shape=
"rect">UTF-8</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2279.txt" shape=
"rect">RFC 2279</a>. <em>UTF-8, a transformation format of ISO
10646</em>. F. Yergeau. January 1998.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2279.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2279.txt</a></dd>
<dt><a id="ref-URI" name="ref-URI" shape="rect">URI</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc3986.txt" shape=
"rect">RFC 3986</a>. <em>Uniform Resource Identifiers (URI):
Generic Syntax.</em> T. Berners-Lee, R. Fielding, L. Masinter.
January 2005.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc3986.txt" shape=
"rect">http://www.ietf.org/rfc/rfc3986.txt</a></dd>
<dt><a id="ref-URL" name="ref-URL" shape="rect">URL</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc1738.txt" shape=
"rect">RFC 1738.</a> <em>Uniform Resource Locators (URL).</em>
T. Berners-Lee, L. Masinter, and M. McCahill. December
1994.</dd>
<dd><a href="http://www.ietf.org/rfc/rfc1738.txt" shape=
"rect">http://www.ietf.org/rfc/rfc1738.txt</a></dd>
<dt><a id="ref-URN" name="ref-URN" shape="rect">URN</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2141.txt" shape=
"rect">RFC 2141</a>. <em>URN Syntax.</em> R. Moats. May
1997.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2141.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2141.txt</a></dd>
<dd><a href="http://www.ietf.org/rfc/rfc2611.txt" shape=
"rect">RFC 2611</a>. <em>URN Namespace Definition
Mechanisms.</em> L. Daigle, D. van Gulik, R. Iannella, P.
Falstrom. June 1999.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2611.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2611.txt</a></dd>
<dt><a name="ref-X509v3" id="ref-X509v3" shape=
"rect">X509v3</a></dt>
<dd>ITU-T Recommendation X.509 version 3 (1997). "Information
Technology - Open Systems Interconnection - The Directory
Authentication Framework" ISO/IEC 9594-8:1997.</dd>
<dt><a id="ref-XHTML" name="ref-XHTML" shape="rect">XHTML
1.0</a></dt>
<dd><a href="http://www.w3.org/TR/2000/REC-xhtml1-20000126/"
shape="rect">XHTML(tm) 1.0: The Extensible Hypertext Markup
Language</a>. W3C Recommendation. S. Pemberton, D. Raggett, et
al. January 2000.<br clear="none" />
<a href="http://www.w3.org/TR/2000/REC-xhtml1-20000126/" shape=
"rect">http://www.w3.org/TR/2000/REC-xhtml1-20000126/</a></dd>
<dt><a id="ref-XLink" name="ref-XLink" shape=
"rect">XLink</a></dt>
<dd><a href="http://www.w3.org/TR/2001/REC-xlink-20010627/"
shape="rect">XML Linking Language.</a> W3C Recommendation. S.
DeRose, E. Maler, D. Orchard. June 2001.</dd>
<dd><a href="http://www.w3.org/TR/2001/REC-xlink-20010627/"
shape=
"rect">http://www.w3.org/TR/2001/REC-xlink-20010627/</a></dd>
<dt><a id="ref-XML" name="ref-XML" shape="rect">XML</a></dt>
<dd><a href="http://www.w3.org/TR/2006/REC-xml-20060816/"
shape="rect">Extensible Markup Language (XML) 1.0 (Fourth
Edition).</a> W3C Recommendation T. Bray, E. Maler, J. Paoli,
C. M. Sperberg-McQueen, F.Yergeau. 16 August 2006, edited in
place 29 September 2006.</dd>
<dd><a href="http://www.w3.org/TR/2006/REC-xml-20060816/"
shape="rect">http://www.w3.org/TR/2006/REC-xml-20060816/</a></dd>
<dt><a id="ref-XML-C14N" name="ref-XML-C14N" shape=
"rect">XML-C14N</a></dt>
<dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"
shape="rect">Canonical XML.</a> W3C Recommendation. J. Boyer.
March 2001.</dd>
<dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"
shape=
"rect">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a><br clear="none" />
<a href="http://www.ietf.org/rfc/rfc3076.txt" shape=
"rect">http://www.ietf.org/rfc/rfc3076.txt</a></dd>
<dt id="ref-XML-C14N11">XML-C14N11</dt>
<dd><a href=
"http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/" shape=
"rect">Canonical XML 1.1.</a> W3C Recommendation. J. Boyer, G.
Marcy. 2 May 2008.<br clear="none" />
<a href="http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/"
shape=
"rect">http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/</a></dd>
<dt><a id="ref-XML-exc-C14N" name="ref-XML-exc-C14N" shape=
"rect">XML-exc-C14N</a></dt>
<dd><a href=
"http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/" shape=
"rect">Exclusive XML Canonicalization Version 1.0</a> W3C
Recommendation. J. Boyer, D. Eastlake 3rd., J. Reagle. July
2002.<br clear="none" />
<a href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/"
shape=
"rect">http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/</a></dd>
<dt><a name="ref-XML-Japanese" id="ref-XML-Japanese" shape=
"rect">XML-Japanese</a></dt>
<dd><a href=
"http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/" shape=
"rect">XML Japanese Profile</a>. W3C Note. <span class=
"author">M. <span class="name">Murata</span></span> April 2000
<a class="loc" href=
"http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/" shape=
"rect">http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/</a></dd>
<dt><a name="ref-XML-MT" id="ref-XML-MT" shape=
"rect">XML-MT</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2376.txt" shape=
"rect">RFC 2376</a> . <em>XML Media Types</em>. E. Whitehead,
M. Murata. July 1998.<br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2376.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2376.txt</a></dd>
<dt><a id="ref-XML-ns" name="ref-XML-ns" shape=
"rect">XML-ns</a></dt>
<dd><a href="http://www.w3.org/TR/2006/REC-xml-names-20060816/"
shape="rect">Namespaces in XML 1.0 (Second Edition)</a>. W3C
Recommendation. T. Bray, D. Hollander, A. Layman, R. Tobin. 16
August 2006.</dd>
<dd><a href="http://www.w3.org/TR/2006/REC-xml-names-20060816/"
shape=
"rect">http://www.w3.org/TR/2006/REC-xml-names-20060816/</a></dd>
<dt><a id="ref-XML-schema" name="ref-XML-schema" shape=
"rect">XML-schema</a></dt>
<dd><a href=
"http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/" shape=
"rect">XML Schema Part 1: Structures</a>. W3C Recommendation.
H. Thompson,D. Beech, M. Maloney, N. Mendelsohn. October
2004.</dd>
<dd><a href=
"http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/" shape=
"rect">http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/</a><br clear="none" />
<a href="http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/"
shape="rect">XML Schema Part 2: Datatypes</a> W3C
Recommendation. P. Biron, A. Malhotra. May 2001.</dd>
<dd><a href=
"http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/" shape=
"rect">http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/</a></dd>
<dt><a id="ref-XML-Signature-RD" name="ref-XML-Signature-RD"
shape="rect">XML-Signature-RD</a></dt>
<dd><a href="http://www.ietf.org/rfc/rfc2807.txt" shape=
"rect">RFC 2807</a>. <a href=
"http://www.w3.org/TR/xmldsig-requirements" shape="rect">XML
Signature Requirements.</a> W3C Working Draft. J. Reagle, April
2000.<br clear="none" />
<a href=
"http://www.w3.org/TR/1999/WD-xmldsig-requirements-19991014.html"
shape=
"rect">http://www.w3.org/TR/1999/WD-xmldsig-requirements-19991014</a><br clear="none" />
<a href="http://www.ietf.org/rfc/rfc2807.txt" shape=
"rect">http://www.ietf.org/rfc/rfc2807.txt</a></dd>
<dd><a href=
"http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/" shape=
"rect">http://www.w3.org/TR/2002/REC-xmldsig-core-20020212//</a></dd>
<dt><a name="ref-XMLDSIG-2002" id="ref-XMLDSIG-2002" shape=
"rect">XMLDSIG-2002</a></dt>
<dd><a href=
"http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/" shape=
"rect">XML-Signature Syntax and Processing</a>. D. Eastlake, J.
Reagle, and D. Solo. W3C Recommendation, February 2002.</dd>
<dd><a href=
"http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/" shape=
"rect">http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/</a></dd>
<dt><a id="ref-XPath" name="ref-XPath" shape=
"rect">XPath</a></dt>
<dd><a href="http://www.w3.org/TR/1999/REC-xpath-19991116"
shape="rect">XML Path Language (XPath) Version 1.0</a>. W3C
Recommendation. J. Clark, S. DeRose. October 1999.<br clear=
"none" />
<a href="http://www.w3.org/TR/1999/REC-xpath-19991116" shape=
"rect">http://www.w3.org/TR/1999/REC-xpath-19991116</a></dd>
<dt><a id="ref-XPath-Filter-2" name="ref-XPath-Filter-2" shape=
"rect">XPath Filter-2</a></dt>
<dd><a href="http://www.w3.org/TR/xmldsig-filter2/" shape=
"rect">XML-Signature XPath Filter 2.0</a>. W3C Recommendation.
J. Boyer, M. Hughes, J. Reagle. November 2002.<br clear=
"none" />
<a href=
"http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/"
shape="rect">http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/</a></dd>
<dt><a id="ref-XPTR-2001" name="ref-XPTR-2001" shape=
"rect">XPTR-2001</a></dt>
<dd><a href="http://www.w3.org/TR/2001/CR-xptr-20010911/"
shape="rect">XML Pointer Language (XPointer)</a>. W3C Candidate
Recommendation. S. DeRose, R. Daniel, E. Maler. January
2001.</dd>
<dd><a href="http://www.w3.org/TR/2001/CR-xptr-20010911/"
shape="rect">http://www.w3.org/TR/2001/CR-xptr-20010911/</a></dd>
<dt><a name="ref-XPointer-Element" id="ref-XPointer-Element"
shape="rect">XPointer-Element</a></dt>
<dd><a href=
"http://www.w3.org/TR/2003/REC-xptr-element-20030325/" shape=
"rect">XPointer element() Scheme</a>. W3C Recommendation. P.
Grosso, E. Maler, J. Marsh, N. Walsh. March 2003.</dd>
<dd><a href=
"http://www.w3.org/TR/2003/REC-xptr-element-20030325/" shape=
"rect">http://www.w3.org/TR/2003/REC-xptr-element-20030325/</a></dd>
<dt><a name="ref-XPointer-Framework" id=
"ref-XPointer-Framework" shape=
"rect">XPointer-Framework</a></dt>
<dd><a href=
"http://www.w3.org/TR/2003/REC-xptr-framework-20030325/" shape=
"rect">XPointer Framework</a>. W3C Recommendation. P. Grosso,
E. Maler, J. Marsh, N. Walsh. March 2003.</dd>
<dd><a href=
"http://www.w3.org/TR/2003/REC-xptr-framework-20030325/" shape=
"rect">http://www.w3.org/TR/2003/REC-xptr-framework-20030325/</a></dd>
<dt><a name="ref-XPointer-xpointer" id="ref-XPointer-xpointer"
shape="rect">XPointer-xpointer</a></dt>
<dd><a href=
"http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/" shape=
"rect">XPointer xpointer() Scheme</a>. W3C Working Draft. S.
DeRose, E. Maler, R. Daniel. December 2002.</dd>
<dd><a href=
"http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/" shape=
"rect">http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/</a></dd>
<dt><a name="ref-XPointer-xmlns" id="ref-XPointer-xmlns" shape=
"rect">XPointer-xmlns</a></dt>
<dd><a href=
"http://www.w3.org/TR/2003/REC-xptr-xmlns-20030325/" shape=
"rect">XPointer xmlns() Scheme</a>. W3C Working Recommendation.
S. DeRose, R. Daniel, E. Maler, J. Marsh. March 2003.</dd>
<dd><a href=
"http://www.w3.org/TR/2003/REC-xptr-xmlns-20030325/" shape=
"rect">http://www.w3.org/TR/2003/REC-xptr-xmlns-20030325/</a></dd>
<dd><a href="http://www.w3.org/TR/2001/REC-xsl-20011015/"
shape="rect">http://www.w3.org/TR/2001/REC-xsl-20011015/</a></dd>
<dt><a id="ref-XSLT" name="ref-XSLT" shape="rect">XSLT</a></dt>
<dd><a href="http://www.w3.org/TR/1999/REC-xslt-19991116.html"
shape="rect">XSL Transforms (XSLT) Version 1.0</a>. W3C
Recommendation. J. Clark. November 1999.</dd>
<dd><a href="http://www.w3.org/TR/1999/REC-xslt-19991116.html"
shape=
"rect">http://www.w3.org/TR/1999/REC-xslt-19991116.html</a></dd>
</dl>
<h2>12. <a id="sec-Authors" name="sec-Authors" shape=
"rect">Authors'</a> Address</h2>
<p>Donald E. Eastlake 3rd<br clear="none" />
Motorola Laboratories<br clear="none" />
111 Locke Drive<br clear="none" />
Marlborough, MA 01752 USA<br clear="none" />
Phone: +1-508-786-7554<br clear="none" />
Email: <a href="mailto:d3e3e3@gmail.com" shape=
"rect">d3e3e3@gmail.com</a></p>
<p>Joseph M. Reagle Jr.<br clear="none" />
Department of Media, Culture, and Communication<br clear=
"none" />
New York University<br clear="none" />
Email: <a href="mailto:reagle@mit.edu" shape=
"rect">reagle@mit.edu</a></p>
<p>David Solo<br clear="none" />
Citigroup<br clear="none" />
909 Third Ave, 16th Floor<br clear="none" />
NY, NY 10043 USA<br clear="none" />
Phone +1-212-559-2900<br clear="none" />
Email: <a href="mailto:dsolo@alum.mit.edu" shape=
"rect">dsolo@alum.mit.edu</a></p>
</body>
</html>