index.html
210 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta name="generator"
content="HTML Tidy for Linux/x86 (vers 1st March 2002), see www.w3.org" />
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>
XML-Signature Syntax and Processing
</title>
<style type="text/css">
/*<![CDATA[*/
/**/
/**/
u { background: white; color: red;}
ins { background: white; color: red;}
del,strike,.strike { background: white; color: silver; text-decoration: line-through;}
code {font-weight: normal; }
.link-def { background: #FFFFFF; color: teal; font-style: italic;}
.comment { background: #FFFFF5; color: black; padding: .7em;
border: navy thin solid;}
.discuss { color: blue; background: yellow; }
.xml-example, .xml-dtd { margin-left: -1em; padding: .5em;
white-space: pre; border: none;}
.xml-dtd { background: #efeff8; color: black;}
/**/
/**/
/*]]>*/
</style>
<link rel="stylesheet" type="text/css"
href="http://www.w3.org/StyleSheets/TR/W3C-REC.css" />
</head>
<body xml:lang="en" lang="en">
<div class="head">
<p>
<a href="http://www.ietf.org"><img src="http://ietf.org/images/ietflogo2e.gif"
alt="IETF" height="48" width="92" /></a><a href="http://www.w3.org/"><img
src="http://www.w3.org/Icons/w3c_home" alt="W3C" height="48" width="72" /></a>
</p>
<h1 class="notoc">
XML-Signature Syntax and Processing
</h1>
<h2 class="notoc">
W3C Recommendation 12 February 2002
</h2>
<dl>
<dt>
This version:
</dt>
<dd>
<a
href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/">http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/</a>
</dd>
<dd>
<a
href="http://www.ietf.org/rfc/rfc3275.txt">http://www.ietf.org/rfc/rfc3275.txt</a>
</dd>
<dt>
Latest version:
</dt>
<dd>
<a
href="http://www.w3.org/TR/xmldsig-core/">http://www.w3.org/TR/xmldsig-core/</a>
</dd>
<dt>
Previous version:
</dt>
<dd>
<a
href="http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/">http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/</a>
</dd>
<dd>
<a
href="http://www.ietf.org/rfc/rfc3075.txt">http://www.ietf.org/rfc/rfc3075.txt</a>
[corresponds to <a
href="http://www.w3.org/TR/2001/CR-xmldsig-core-20010419/">CR-xmldsig-core-20001031</a>]<br />
</dd>
<dt>
Editors
</dt>
<dd>
Donald Eastlake <<a
href="mailto:dee3@torque.pothole.com">dee3@torque.pothole.com</a>><br />
Joseph Reagle <<a href="mailto:reagle@w3.org">reagle@w3.org</a>><br />
David Solo <<a
href="mailto:dsolo@alum.mit.edu">dsolo@alum.mit.edu</a>>
</dd>
<dt>
Authors
</dt>
<dd>
Mark Bartel <<a
href="mailto:mbartel@accelio.com">mbartel@accelio.com</a>>
</dd>
<dd>
John Boyer <<a
href="mailto:jboyer@PureEdge.com">jboyer@PureEdge.com</a>><br />
Barb Fox <<a
href="mailto:bfox@Exchange.Microsoft.com">bfox@Exchange.Microsoft.com</a>>
</dd>
<dd>
Brian LaMacchia <<a
href="mailto:bal@microsoft.com">bal@microsoft.com</a>>
</dd>
<dd>
Ed Simon <<a href="mailto:edsimon@xmlsec.com">edsimon@xmlsec.com</a>>
</dd>
<dt>
Contributors
</dt>
<dd>
See <a href="#sec-Acknowledgements">Acknowledgements</a>
</dd>
</dl>
<p class="copyright">
<a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright">Copyright</a>
© 2002 <a href="http://www.ietf.org/">The Internet Society</a> & <a
href="http://www.w3.org/"><abbr
title="World Wide Web Consortium">W3C</abbr></a>® (<a
href="http://www.lcs.mit.edu/"><abbr
title="Massachusetts Institute of Technology">MIT</abbr></a>, <a
href="http://www.inria.fr/"><abbr xml:lang="fr" lang="fr"
title="Institut National de Recherche en Informatique et Automatique">INRIA</abbr></a>,
<a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer">liability</a>,
<a
href="http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks">trademark</a>,
<a href="http://www.w3.org/Consortium/Legal/copyright-documents-19990405">docum
ent use</a> and <a
href="http://www.w3.org/Consortium/Legal/copyright-software-19980720">software
licensing</a> rules apply.
</p>
<hr title="Separator from Header" />
</div>
<h2 class="notoc">
Abstract
</h2>
<p>
This document specifies XML digital signature processing rules and syntax. XML
Signatures provide <a href="#def-Integrity" class="link-def">integrity</a>, <a
href="#def-AuthenticationMessage" class="link-def">message authentication</a>,
and/or <a href="#def-AuthenticationSigner" class="link-def">signer
authentication</a> services for data of any type, whether located within the XML
that includes the signature or elsewhere.
</p>
<h2 class="notoc">
<a id="status" name="status"></a>Status of this document
</h2>
<div class="">
<p>
This document has been reviewed by W3C Members and other interested parties and
has been endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited as a normative
reference from another document. W3C's role in making the Recommendation is to
draw attention to the specification and to promote its widespread deployment.
This enhances the functionality and interoperability of the Web.
</p>
<p class="notoc">
This specification was produced by the IETF/W3C <a
href="http://www.w3.org/Signature/">XML Signature Working Group</a> (<a
href="http://www.w3.org/Signature/Activity.html">W3C Activity Statement</a>)
which believes the specification is sufficient for the creation of independent
interoperable implementations; the <a
href="http://www.w3.org/Signature/2001/04/05-xmldsig-interop.html">Interoperability
Report</a> shows at least 10 implementations with at least two interoperable
implementations over every feature.
</p>
<p>
Patent disclosures relevant to this specification may be found on the Working
Group's <a href="http://www.w3.org/Signature/Disclosures.html">patent
disclosure page</a>, in conformance with W3C policy, and the <a
href="http://www.ietf.org/ipr.html">IETF Page of Intellectual Property Rights
Notices</a>, in conformance with IETF policy.
</p>
<p>
Please report errors in this document to <a
href="mailto:w3c-ietf-xmldsig@w3.org">w3c-ietf-xmldsig@w3.org</a> (<a
href="http://lists.w3.org/Archives/Public/xml-encryption/">archive</a>).
</p>
<p>
The list of known errors in this specification is available at <a
href="http://www.w3.org/2001/10/xmldsig-errata">http://www.w3.org/2001/10/xmldsig-errata</a>.
</p>
<p>
The English version of this specification is the only normative version.
Information about translations of this document (if any) is available <a
href="http://www.w3.org/Signature/2002/02/xmldsig-translations">http://www.w3.org/Signature/2002/02/xmldsig-translations</a>
</p>
<p>
A list of current W3C Technical Reports can be found at <a
href="http://www.w3.org/TR/">http://www.w3.org/TR/</a>.
</p>
</div>
<h2>
Table of Contents
</h2>
<ol>
<li>
<a href="#sec-Introduction">Introduction</a>
<ol>
<li>
<a href="#sec-Editorial">Editorial Conventions</a>
</li>
<li>
<a href="#sec-Design">Design Philosophy</a>
</li>
<li>
<a href="#sec-Versions">Versions, Namespaces and Identifiers</a>
</li>
<li>
<a href="#sec-Acknowledgements">Acknowledgements</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Overview">Signature Overview and Examples</a>
<ol>
<li>
<a href="#sec-o-Simple">Simple Example (<code>Signature</code>,
<code>SignedInfo</code>, <code>Method</code>s, and
<code>Reference</code>s)</a>
<ol>
<li>
<a href="#sec-o-Reference">More on <code>Reference</code></a>
</li>
</ol>
</li>
<li>
<a href="#sec-o-SignatureProperty">Extended Example (<code>Object</code>
and <code>SignatureProperty</code>)</a>
</li>
<li>
<a href="#sec-o-Manifest">Extended Example (<code>Object</code> and
<code>Manifest</code>)</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Processing">Processing Rules</a>
<ol>
<li>
<a href="#sec-CoreGeneration">Signature Generation</a>
</li>
<li>
<a href="#sec-CoreValidation">Signature Validation</a>
</li>
</ol>
</li>
<li>
<a href="#sec-CoreSyntax">Core Signature Syntax</a>
<ol>
<li>
<a href="#sec-Signature">The <code>Signature</code> element</a>
</li>
<li>
<a href="#sec-SignatureValue">The <code>SignatureValue</code> Element</a>
</li>
<li>
<a href="#sec-SignedInfo">The <code>SignedInfo</code> Element</a>
<ol>
<li>
<a href="#sec-CanonicalizationMethod">The
<code>CanonicalizationMethod</code> Element</a>
</li>
<li>
<a href="#sec-SignatureMethod">The <code>SignatureMethod</code>
Element</a>
</li>
<li>
<a href="#sec-Reference">The <code>Reference</code> Element</a>
<ol>
<li>
<a href="#sec-URI">The <code>URI</code> Attribute</a>
</li>
<li>
<a href="#sec-ReferenceProcessingModel">The Reference Processing
Model</a>
</li>
<li>
<a href="#sec-Same-Document">Same-Document URI-References</a>
</li>
<li>
<a href="#sec-Transforms">The <code>Transforms</code> Element</a>
</li>
<li>
<a href="#sec-DigestMethod">The <code>DigestMethod</code>
Element</a>
</li>
<li>
<a href="#sec-DigestValue">The <code>DigestValue</code> Element</a>
</li>
</ol>
</li>
</ol>
</li>
<li>
<a href="#sec-KeyInfo">The <code>KeyInfo</code> Element</a>
<ol>
<li>
<a href="#sec-KeyName">The <code>KeyName</code> Element</a>
</li>
<li>
<a href="#sec-KeyValue">The <code>KeyValue</code> Element</a>
<ol>
<li>
<a href="#sec-DSAKeyValue">The <code>DSAKeyValue</code> Element</a>
</li>
<li>
<a href="#sec-RSAKeyValue">The <code>RSAKeyValue</code> Element</a>
</li>
</ol>
</li>
<li>
<a href="#sec-RetrievalMethod">The <code>RetrievalMethod</code>
Element</a>
</li>
<li>
<a href="#sec-X509Data">The <code>X509Data</code> Element</a>
</li>
<li>
<a href="#sec-PGPData">The <code>PGPData</code> Element</a>
</li>
<li>
<a href="#sec-SPKIData">The <code>SPKIData</code> Element</a>
</li>
<li>
<a href="#sec-MgmtData">The <code>MgmtData</code> Element</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Object">The <code>Object</code> Element</a>
</li>
</ol>
</li>
<li>
<a href="#sec-AdditionalSyntax">Additional Signature Syntax</a>
<ol>
<li>
<a href="#sec-Manifest">The <code>Manifest</code> Element</a>
</li>
<li>
<a href="#sec-SignatureProperties">The <code>SignatureProperties</code>
Element</a>
</li>
<li>
<a href="#sec-PI">Processing Instructions</a>
</li>
<li>
<a href="#sec-comments">Comments in dsig Elements</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Algorithms">Algorithms</a>
<ol>
<li>
<a href="#sec-AlgID">Algorithm Identifiers and Implementation
Requirements</a>
</li>
<li>
<a href="#sec-MessageDigests">Message Digests</a>
</li>
<li>
<a href="#sec-MACs">Message Authentication Codes</a>
</li>
<li>
<a href="#sec-SignatureAlg">Signature Algorithms</a>
</li>
<li>
<a href="#sec-c14nAlg">Canonicalization Algorithms</a>
</li>
<li>
<a href="#sec-TransformAlg">Transform Algorithms</a>
<ol>
<li>
<a href="#sec-Canonicalization">Canonicalization</a>
</li>
<li>
<a href="#sec-Base-64">Base64</a>
</li>
<li>
<a href="#sec-XPath">XPath Filtering</a>
</li>
<li>
<a href="#sec-EnvelopedSignature">Enveloped Signature Transform</a>
</li>
<li>
<a href="#sec-XSLT">XSLT Transform</a>
</li>
</ol>
</li>
</ol>
</li>
<li>
<a href="#sec-XML-Canonicalization">XML Canonicalization and Syntax Constraint
Considerations</a>
<ol>
<li>
<a href="#sec-XML-1">XML 1.0, Syntax Constraints, and Canonicalization</a>
</li>
<li>
<a href="#sec-DOM-SAX">DOM/SAX Processing and Canonicalization</a>
</li>
<li>
<a href="#sec-NamespaceContext">Namespace Context and Portable
Signatures</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Security">Security Considerations</a>
<ol>
<li>
<a href="#sec-Security-Transofrms">Transforms</a>
<ol>
<li>
<a href="#sec-Secure">Only What is Signed is Secure</a>
</li>
<li>
<a href="#sec-Seen">Only What is "Seen" Should be Signed</a>
</li>
<li>
<a href="#sec-See">"See" What is Signed</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Check">Check the Security Model</a>
</li>
<li>
<a href="#sec-KeyLength">Algorithms, Key Lengths, Etc.</a>
</li>
</ol>
</li>
<li>
<a href="#sec-Schema">Schema, DTD, Data Model, and Valid Examples</a>
</li>
<li>
<a href="#sec-Definitions">Definitions</a>
</li>
<li>
<a href="#sec-References">References</a>
</li>
<li>
<a href="#sec-Authors">Authors' Address</a>
</li>
</ol>
<hr />
<h2>
1.0 <a id="sec-Introduction" name="sec-Introduction">Introduction</a>
</h2>
<p>
This document specifies XML syntax and processing rules for creating and
representing digital signatures. XML Signatures can be applied to any <a
href="#def-DataObject" class="link-def">digital content (data object)</a>,
including XML. An XML Signature may be applied to the content of one or more
resources. <a href="#def-SignatureEnveloped" class="link-def">Enveloped</a> or <a
href="#def-SignatureEnveloping" class="link-def">enveloping</a> signatures are
over data within the same XML document as the signature; <a
href="#def-SignatureDetached" class="link-def">detached</a> signatures are over
data external to the signature element. More specifically, this
specification defines an XML signature element type and an <a
href="#def-SignatureApplication" class="link-def">XML signature application</a>;
conformance requirements for each are specified by way of schema definitions and
prose respectively. This specification also includes other useful types that
identify methods for referencing collections of resources, algorithms, and keying
and management information.
</p>
<p>
The XML Signature is a method of associating a key with referenced data (octets);
it does not normatively specify how keys are associated with persons or
institutions, nor the meaning of the data being referenced and signed.
Consequently, while this specification is an important component of secure XML
applications, it itself is not sufficient to address all application
security/trust concerns, particularly with respect to using signed XML (or other
data formats) as a basis of human-to-human communication and agreement. Such an
application must specify additional key, algorithm, processing and rendering
requirements. For further information, please see <a
href="#sec-Security">Security Considerations</a> (section 8).
</p>
<h3>
1.1 <a id="sec-Editorial" name="sec-Editorial">Editorial</a> and Conformance
Conventions
</h3>
<p>
For readability, brevity, and historic reasons this document uses the term
"signature" to generally refer to digital authentication values of all types.
Obviously, the term is also strictly used to refer to authentication values that
are based on public keys and that provide signer authentication. When
specifically discussing authentication values based on symmetric secret key codes
we use the terms authenticators or authentication codes. (See <a
href="#sec-Check">Check the Security Model</a>, section 8.3.)
</p>
<p>
This specification provides an XML Schema [<a
href="#ref-XML-schema">XML-schema</a>] and DTD [<a href="#ref-XML">XML</a>]. The
schema definition is normative.
</p>
<p>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to
be interpreted as described in <a
href="http://www.ietf.org/rfc/rfc2119.txt">RFC2119</a> [<a
href="#ref-KEYWORDS">KEYWORDS</a>]:
</p>
<blockquote>
<p>
"they MUST only be used where it is actually required for interoperation or to
limit behavior which has potential for causing harm (e.g., limiting
retransmissions)"
</p>
</blockquote>
<p>
Consequently, we use these capitalized key words to unambiguously specify
requirements over protocol and application features and behavior that affect the
interoperability and security of implementations. These key words are not used
(capitalized) to describe XML grammar; schema definitions unambiguously describe
such requirements and we wish to reserve the prominence of these terms for the
natural language descriptions of protocols and features. For instance, an XML
attribute might be described as being "optional." Compliance with the Namespaces
in XML specification [<a href="#ref-XML-ns">XML-ns</a>] is described as
"REQUIRED."
</p>
<h3>
1.2 <a id="sec-Design" name="sec-Design">Design</a> Philosophy
</h3>
<p>
The design philosophy and requirements of this specification are addressed in the
XML-Signature Requirements document [<a
href="#ref-XML-Signature-RD">XML-Signature-RD</a>].
</p>
<h3>
1.3 <a id="sec-Versions" name="sec-Versions">Versions</a>, Namespaces and
Identifiers
</h3>
<p>
No provision is made for an explicit version number in this syntax. If a future
version is needed, it will use a different namespace. The XML namespace [<a
href="#ref-XML-ns">XML-ns</a>] URI that MUST be used by implementations of this
(dated) specification is:
</p>
<pre class="xml-example">
xmlns="http://www.w3.org/2000/09/xmldsig#"
</pre>
<p>
This namespace is also used as the prefix for algorithm identifiers used by this
specification. While applications MUST support XML and XML namespaces, the use of
<a href="http://www.w3.org/TR/REC-xml#sec-internal-ent">internal entities</a> [<a
href="#ref-XML">XML</a>] or our "dsig" XML <a
href="http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-prefix">namespace
prefix</a> and defaulting/scoping conventions are OPTIONAL; we use these
facilities to provide compact and readable examples.
</p>
<p>
This specification uses Uniform Resource Identifiers [<a
href="#ref-URI">URI</a>] to identify resources, algorithms, and semantics. The
URI in the namespace declaration above is also used as a prefix for URIs under
the control of this specification. For resources not under the control of this
specification, we use the designated Uniform Resource Names [<a
href="#ref-URN">URN</a>] or Uniform Resource Locators [<a
href="#ref-URL">URL</a>] defined by its normative external specification. If an
external specification has not allocated itself a Uniform Resource Identifier we
allocate an identifier under our own namespace. For instance:
</p>
<dl>
<dt>
<code>SignatureProperties</code> is identified and defined by this
specification's namespace
</dt>
<dd>
http://www.w3.org/2000/09/xmldsig#<span
style="font-weight: normal">SignatureProperties</span>
</dd>
<dt>
<span style="font-weight: normal">XSLT is identified and defined by an external
URI</span>
</dt>
<dd>
http://www.w3.org/TR/1999/REC-xslt-19991116
</dd>
<dt>
SHA1 is identified via this specification's namespace and defined via a
normative reference
</dt>
<dd>
http://www.w3.org/2000/09/xmldsig#sha1
</dd>
<dd>
FIPS PUB 180-1. <em>Secure Hash Standard.</em> U.S. Department of
Commerce/National Institute of Standards and Technology.
</dd>
</dl>
<p>
Finally, in order to provide for terse namespace declarations we sometimes use <a
href="http://www.w3.org/TR/REC-xml#sec-internal-ent">XML internal entities</a>
[<a href="#ref-XML">XML</a>] within URIs. For instance:
</p>
<pre class="xml-example">
<?xml version='1.0'?>
<!DOCTYPE Signature SYSTEM
"xmldsig-core-schema.dtd" [ <!ENTITY dsig
"http://www.w3.org/2000/09/xmldsig#"> ]>
<Signature xmlns="&dsig;" Id="MyFirstSignature">
<SignedInfo>
...
</pre>
<h3>
1.4 <a id="sec-Acknowledgements" name="sec-Acknowledgements">Acknowledgements</a>
</h3>
<p>
The contributions of the following Working Group members to this specification
are gratefully acknowledged:
</p>
<ul>
<li>
Mark Bartel, Accelio (Author)
</li>
<li>
John Boyer, PureEdge (Author)
</li>
<li>
Mariano P. Consens, University of Waterloo
</li>
<li>
John Cowan, Reuters Health
</li>
<li>
Donald Eastlake 3rd, Motorola (Chair, Author/Editor)
</li>
<li>
Barb Fox, Microsoft (Author)
</li>
<li>
Christian Geuer-Pollmann, University Siegen
</li>
<li>
Tom Gindin, IBM
</li>
<li>
Phillip Hallam-Baker, VeriSign Inc
</li>
<li>
Richard Himes, US Courts
</li>
<li>
Merlin Hughes, Baltimore
</li>
<li>
Gregor Karlinger, IAIK TU Graz
</li>
<li>
Brian LaMacchia, Microsoft (Author)
</li>
<li>
Peter Lipp, IAIK TU Graz
</li>
<li>
Joseph Reagle, W3C (Chair, Author/Editor)
</li>
<li>
Ed Simon, XMLsec (Author)
</li>
<li>
David Solo, Citigroup (Author/Editor)
</li>
<li>
Petteri Stenius, Capslock
</li>
<li>
Raghavan Srinivas, Sun
</li>
<li>
Kent Tamura, IBM
</li>
<li>
Winchel Todd Vincent III, GSU
</li>
<li>
Carl Wallace, Corsec Security, Inc.
</li>
<li>
Greg Whitehead, Signio Inc.
</li>
</ul>
<p>
As are the Last Call comments from the following:
</p>
<ul>
<li>
Dan Connolly, W3C
</li>
<li>
Paul Biron, Kaiser Permanente, on behalf of the <a
href="http://www.w3.org/XML/Schema.html">XML Schema WG</a>.
</li>
<li>
Martin J. Duerst, W3C; and Masahiro Sekiguchi, Fujitsu; on behalf of the <a
href="http://www.w3.org/International/">Internationalization WG/IG</a>.
</li>
<li>
Jonathan Marsh, Microsoft, on behalf of the <a
href="http://www.w3.org/Style/XSL/">Extensible Stylesheet Language WG</a>.
</li>
</ul>
<h2>
2.0 <a id="sec-Overview" name="sec-Overview">Signature Overview</a> and Examples
</h2>
<p>
This section provides an overview and examples of XML digital signature syntax.
The specific processing is given in <a
href="http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing">Processing
Rules</a> (section 3). The formal syntax is found in <a
href="#sec-CoreSyntax">Core Signature Syntax</a> (section 4) and <a
href="#sec-AdditionalSyntax">Additional Signature Syntax</a> (section 5).
</p>
<p>
In this section, an informal representation and examples are used to
describe the structure of the XML signature syntax. This representation and
examples may omit attributes, details and potential features that are fully
explained later.
</p>
<p>
XML Signatures are applied to arbitrary <a href="#def-DataObject"
class="link-def">digital content (data objects)</a> via an indirection. Data
objects are digested, the resulting value is placed in an element (with other
information) and that element is then digested and cryptographically signed. XML
digital signatures are represented by the <code>Signature</code> element which
has the following structure (where "?" denotes zero or one occurrence; "+"
denotes one or more occurrences; and "*" denotes zero or more occurrences):
</p>
<pre class="xml-example">
<Signature ID?>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >
(<Transforms>)?
<DigestMethod>
<DigestValue>
</Reference>)+
</SignedInfo>
<SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*
</Signature>
</pre>
<p>
Signatures are related to <a href="#def-DataObject" class="link-def">data
objects</a> via URIs [<a href="#ref-URI">URI</a>]. Within an XML document,
signatures are related to local data objects via fragment identifiers. Such local
data can be included within an <a href="#def-SignatureEnveloping"
class="link-def">enveloping</a> signature or can enclose an <a
href="#def-SignatureEnveloped" class="link-def">enveloped</a> signature. <a
href="#def-SignatureDetached" class="link-def">Detached signatures</a> are over
external network resources or local data objects that reside within the same XML
document as sibling elements; in this case, the signature is neither enveloping
(signature is parent) nor enveloped (signature is child). Since a
<code>Signature</code> element (and its <code>Id</code> attribute value/name) may
co-exist or be combined with other elements (and their IDs) within a single XML
document, care should be taken in choosing names such that there are no
subsequent collisions that violate the <a
href="http://www.w3.org/TR/REC-xml#id">ID uniqueness validity constraint</a> [<a
href="#ref-XML">XML</a>].
</p>
<h3>
2.1 <a id="sec-o-Simple" name="sec-o-Simple">Simple Example</a>
(<code>Signature</code>, <code>SignedInfo</code>, <code>Methods</code>, and
<code>Reference</code>)s
</h3>
<p>
The following example is a detached signature of the content of the HTML4 in XML
specification.
</p>
<pre class="xml-example">
[s01] <Signature Id="MyFirstSignature"
xmlns="http://www.w3.org/2000/09/xmldsig#">
[s02] <SignedInfo>
[s03] <CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
[s04] <SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[s05] <Reference
URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06] <Transforms>
[s07] <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
[s08] </Transforms>
[s09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s10] <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[s11] </Reference>
[s12] </SignedInfo>
[s13] <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
[s14] <KeyInfo>
[s15a] <KeyValue>
[s15b] <DSAKeyValue>
[s15c] <P>...</P><Q>...</Q><G>...</G><Y>...</Y>
[s15d] </DSAKeyValue>
[s15e] </KeyValue>
[s16] </KeyInfo>
[s17] </Signature>
</pre>
<p>
<code>[s02-12]</code> The required <code>SignedInfo</code> element is the
information that is actually signed. <a href="#def-ValidationCore"
class="link-def">Core validation</a> of <code>SignedInfo</code> consists of two
mandatory processes: <a href="#def-ValidationSignature"
class="link-def">validation of the signature</a> over <code>SignedInfo</code> and
<a href="#def-ValidationReference" class="link-def">validation of each
<code>Reference</code></a> digest within <code>SignedInfo</code>. Note that the
algorithms used in calculating the <code>SignatureValue</code> are also included
in the signed information while the <code>SignatureValue</code> element is
outside <code>SignedInfo</code>.
</p>
<p>
<code>[s03]</code> The <code>CanonicalizationMethod</code> is the algorithm that
is used to canonicalize the <code>SignedInfo</code> element before it is digested
as part of the signature operation. Note that this example, and all examples in
this specification, are not in canonical form.
</p>
<p>
<code>[s04]</code> The <code>SignatureMethod</code> is the algorithm that is used
to convert the canonicalized <code>SignedInfo</code> into the
<code>SignatureValue</code>. It is a combination of a digest algorithm and a key
dependent algorithm and possibly other algorithms such as padding, for example
RSA-SHA1. The algorithm names are signed to resist attacks based on substituting
a weaker algorithm. To promote application interoperability we specify a set of
signature algorithms that MUST be implemented, though their use is at the
discretion of the signature creator. We specify additional algorithms as
RECOMMENDED or OPTIONAL for implementation; the design also permits arbitrary
user specified algorithms.
</p>
<p>
<code>[s05-11]</code> Each <code>Reference</code> element includes the digest
method and resulting digest value calculated over the identified data object. It
also may include transformations that produced the input to the digest operation.
A data object is signed by computing its digest value and a signature over that
value. The signature is later checked via <a href="#def-ValidationReference"
class="link-def">reference</a> and <a href="#def-ValidationSignature"
class="link-def">signature validation</a>.
</p>
<p>
<code>[s14-16]</code> <code>KeyInfo</code> indicates the key to be used to
validate the signature. Possible forms for identification include certificates,
key names, and key agreement algorithms and information -- we define only a few.
<code>KeyInfo</code> is optional for two reasons. First, the signer may not wish
to reveal key information to all document processing parties. Second, the
information may be known within the application's context and need not be
represented explicitly. Since <code>KeyInfo</code> is outside of
<code>SignedInfo</code>, if the signer wishes to bind the keying information to
the signature, a <code>Reference</code> can easily identify and include the
<code>KeyInfo</code> as part of the signature.
</p>
<h3>
2.1.1 More on <a id="sec-o-Reference"
name="sec-o-Reference"><code>Reference</code></a>
</h3>
<pre class="xml-example">
[s05] <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[s06] <Transforms>
[s07] <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
[s08] </Transforms>
[s09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[s10] <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[s11] </Reference>
</pre>
<p>
<code>[s05]</code> The optional <code>URI</code> attribute of
<code>Reference</code> identifies the data object to be signed. This attribute
may be omitted on at most one <code>Reference</code> in a <code>Signature</code>.
(This limitation is imposed in order to ensure that references and objects may be
matched unambiguously.)
</p>
<p>
<code>[s05-08]</code> This identification, along with the transforms, is a
description provided by the signer on how they obtained the signed data object in
the form it was digested (i.e. the digested content). The verifier may obtain the
digested content in another method so long as the digest verifies. In particular,
the verifier may obtain the content from a different location such as a local
store than that specified in the <code>URI</code>.
</p>
<p>
<code>[s06-08] Transforms</code> is an optional ordered list of processing steps
that were applied to the resource's content before it was digested. Transforms
can include operations such as canonicalization, encoding/decoding (including
compression/inflation), XSLT, XPath, XML schema validation, or XInclude. XPath
transforms permit the signer to derive an XML document that omits portions of the
source document. Consequently those excluded portions can change without
affecting signature validity. For example, if the resource being signed encloses
the signature itself, such a transform must be used to exclude the signature
value from its own computation. If no <code>Transforms</code> element is present,
the resource's content is digested directly. While the Working Group has
specified mandatory (and optional) canonicalization and decoding algorithms, user
specified transforms are permitted.
</p>
<p>
<code>[s09-10] DigestMethod</code> is the algorithm applied to the data after
<code>Transforms</code> is applied (if specified) to yield the
<code>DigestValue</code>. The signing of the <code>DigestValue</code> is what
binds a resources content to the signer's key.
</p>
<h3>
2.2 Extended Example (<code>Object</code> and <a id="sec-o-SignatureProperty"
name="sec-o-SignatureProperty"><code>SignatureProperty</code></a>)
</h3>
<p>
This specification does not address mechanisms for making statements or
assertions. Instead, this document defines what it means for something to be
signed by an XML Signature (<a href="#def-Integrity"
class="link-def">integrity</a>, <a href="#def-AuthenticationMessage"
class="link-def">message authentication</a>, and/or <a
href="#def-AuthenticationSigner" class="link-def">signer authentication</a>).
Applications that wish to represent other semantics must rely upon other
technologies, such as [<a href="#ref-XML">XML</a>, <a href="#ref-RDF">RDF</a>].
For instance, an application might use a <code>foo:assuredby</code> attribute
within its own markup to reference a <code>Signature</code> element.
Consequently, it's the application that must understand and know how to make
trust decisions given the validity of the signature and the meaning of
<code>assuredby</code> syntax. We also define a <code>SignatureProperties</code>
element type for the inclusion of assertions about the signature itself (e.g.,
signature semantics, the time of signing or the serial number of hardware used in
cryptographic processes). Such assertions may be signed by including a
<code>Reference</code> for the <code>SignatureProperties</code> in
<code>SignedInfo</code>. While the signing application should be very careful
about what it signs (it should understand what is in the
<code>SignatureProperty</code>) a receiving application has no obligation to
understand that semantic (though its parent trust engine may wish to). Any
content about the signature generation may be located within the
<code>SignatureProperty</code> element. The mandatory <code>Target</code>
attribute references the <code>Signature</code> element to which the property
applies.
</p>
<p>
Consider the preceding example with an additional reference to a local
<code>Object</code> that includes a <code>SignatureProperty</code> element. (Such
a signature would not only be <a href="#def-SignatureDetached"
class="link-def">detached</a> <code>[p02]</code> but <a
href="#def-SignatureEnveloping" class="link-def">enveloping</a>
<code>[p03]</code>.)
</p>
<pre class="xml-example">
[ ] <Signature Id="MySecondSignature" ...>
[p01] <SignedInfo>
[ ] ...
[p02] <Reference URI="http://www.w3.org/TR/xml-stylesheet/">
[ ] ...
[p03] <Reference URI="#AMadeUpTimeStamp"
[p04] Type="http://www.w3.org/2000/09/xmldsig#SignatureProperties">
[p05] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[p06] <DigestValue>k3453rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[p07] </Reference>
[p08] </SignedInfo>
[p09] ...
[p10] <Object>
[p11] <SignatureProperties>
[p12] <SignatureProperty Id="AMadeUpTimeStamp" Target="#MySecondSignature">
[p13] <timestamp xmlns="http://www.ietf.org/rfcXXXX.txt">
[p14] <date>19990908</date>
[p15] <time>14:34:34:34</time>
[p16] </timestamp>
[p17] </SignatureProperty>
[p18] </SignatureProperties>
[p19] </Object>
[p20]</Signature>
</pre>
<p>
<code>[p04]</code> The optional <code>Type</code> attribute of
<code>Reference</code> provides information about the resource identified by the
<code>URI</code>. In particular, it can indicate that it is an
<code>Object</code>, <code>SignatureProperty</code>, or <code>Manifest</code>
element. This can be used by applications to initiate special processing of some
<code>Reference</code> elements. References to an XML data element within an
<code>Object</code> element SHOULD identify the actual element pointed to. Where
the element content is not XML (perhaps it is binary or encoded data) the
reference should identify the <code>Object</code> and the <code>Reference</code>
<code>Type</code>, if given, SHOULD indicate <code>Object</code>. Note that
<code>Type</code> is advisory and no action based on it or checking of its
correctness is required by core behavior.
</p>
<p>
<code>[p10]</code> <code>Object</code> is an optional element for including data
objects within the signature element or elsewhere. The <code>Object</code> can be
optionally typed and/or encoded.
</p>
<p>
<code>[p11-18]</code> Signature properties, such as time of signing, can be
optionally signed by identifying them from within a <code>Reference</code>.
(These properties are traditionally called signature "attributes" although that
term has no relationship to the XML term "attribute".)
</p>
<h3>
2.3 Extended Example (<code>Object</code> and <a id="sec-o-Manifest"
name="sec-o-Manifest"><code>Manifest</code></a>)
</h3>
<p>
The <code>Manifest</code> element is provided to meet additional requirements not
directly addressed by the mandatory parts of this specification. Two requirements
and the way the <code>Manifest</code> satisfies them follow.
</p>
<p>
First, applications frequently need to efficiently sign multiple data objects
even where the signature operation itself is an expensive public key signature.
This requirement can be met by including multiple <code>Reference</code> elements
within <code>SignedInfo</code> since the inclusion of each digest secures the
data digested. However, some applications may not want the <a
href="#def-ValidationCore" class="link-def">core validation</a> behavior
associated with this approach because it requires every <code>Reference</code>
within <code>SignedInfo</code> to undergo <a href="#def-ValidationReference"
class="link-def">reference validation</a> -- the <code>DigestValue</code>
elements are checked. These applications may wish to reserve reference validation
decision logic to themselves. For example, an application might receive a <a
href="#def-ValidationSignature" class="link-def">signature valid</a>
<code>SignedInfo</code> element that includes three <code>Reference</code>
elements. If a single <code>Reference</code> fails (the identified data object
when digested does not yield the specified <code>DigestValue</code>) the
signature would fail <a href="#def-ValidationCore" class="link-def">core
validation</a>. However, the application may wish to treat the signature over the
two valid <code>Reference</code> elements as valid or take different actions
depending on which fails. To accomplish this, <code>SignedInfo</code> would
reference a <code>Manifest</code> element that contains one or more
<code>Reference</code> elements (with the same structure as those in
<code>SignedInfo</code>). Then, reference validation of the <code>Manifest</code>
is under application control.
</p>
<p>
Second, consider an application where many signatures (using different keys) are
applied to a large number of documents. An inefficient solution is to have a
separate signature (per key) repeatedly applied to a large
<code>SignedInfo</code> element (with many <code>Reference</code>s); this is
wasteful and redundant. A more efficient solution is to include many references
in a single <code>Manifest</code> that is then referenced from multiple
<code>Signature</code> elements.
</p>
<p>
The example below includes a <code>Reference</code> that signs a
<code>Manifest</code> found within the <code>Object</code> element.
</p>
<pre class="xml-example">
[ ] ...
[m01] <Reference URI="#MyFirstManifest"
[m02] Type="http://www.w3.org/2000/09/xmldsig#Manifest">
[m03] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[m04] <DigestValue>345x3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[m05] </Reference>
[ ] ...
[m06] <Object>
[m07] <Manifest Id="MyFirstManifest">
[m08] <Reference>
[m09] ...
[m10] </Reference>
[m11] <Reference>
[m12] ...
[m13] </Reference>
[m14] </Manifest>
[m15] </Object>
</pre>
<h2>
3.0 <a id="sec-Processing" name="sec-Processing">Processing</a> Rules
</h2>
<p>
The sections below describe the operations to be performed as part of signature
generation and validation.
</p>
<h3>
3.1 Core <a id="sec-CoreGeneration" name="sec-CoreGeneration">Generation</a>
</h3>
<p>
The REQUIRED steps include the generation of <code>Reference</code> elements and
the <code>SignatureValue</code> over <code>SignedInfo</code>.
</p>
<h4>
3.1.1 <a id="sec-ReferenceGeneration" name="sec-ReferenceGeneration">Reference
Generation</a>
</h4>
<p>
For each data object being signed:
</p>
<ol>
<li>
Apply the <code>Transforms</code>, as determined by the application, to the
data object.
</li>
<li>
Calculate the digest value over the resulting data object.
</li>
<li>
Create a <code>Reference</code> element, including the (optional)
identification of the data object, any (optional) transform elements, the
digest algorithm and the <code>DigestValue</code>. (Note, it is the canonical
form of these references that are signed in 3.1.2 and validated in 3.2.1 .)
</li>
</ol>
<h4>
3.1.2 <a id="sec-SignatureGeneration" name="sec-SignatureGeneration">Signature
Generation</a>
</h4>
<ol>
<li>
Create <code>SignedInfo</code> element with <code>SignatureMethod</code>,
<code>CanonicalizationMethod</code> and <code>Reference</code>(s).
</li>
<li>
Canonicalize and then calculate the <code>SignatureValue</code> over
<code>SignedInfo</code> based on algorithms specified in
<code>SignedInfo</code>.
</li>
<li>
Construct the <code>Signature</code> element that includes
<code>SignedInfo</code>, <code>Object</code>(s) (if desired, encoding may be
different than that used for signing), <code>KeyInfo</code> (if required), and
<code>SignatureValue</code>.
<p>
Note, if the <code>Signature</code> includes same-document references, [<a
href="#ref-XML">XML</a>] or [<a href="#ref-XML-schema">XML-schema</a>]
validation of the document might introduce changes that break the signature.
Consequently, applications should be careful to consistently process the
document or refrain from using external contributions (e.g., defaults and
entities).
</p>
</li>
</ol>
<h3>
3.2 Core <a id="sec-CoreValidation" name="sec-CoreValidation">Validation</a>
</h3>
<p>
The REQUIRED steps of <a href="#def-ValidationCore" class="link-def">core
validation</a> include (1) <a href="#def-ValidationReference"
class="link-def">reference validation</a>, the verification of the digest
contained in each <code>Reference</code> in <code>SignedInfo</code>, and (2) the
cryptographic <a href="#def-ValidationSignature" class="link-def">signature
validation</a> of the signature calculated over <code>SignedInfo</code>.
</p>
<p>
Note, there may be valid signatures that some signature applications are unable
to validate. Reasons for this include failure to implement optional parts of this
specification, inability or unwillingness to execute specified algorithms, or
inability or unwillingness to dereference specified URIs (some URI schemes may
cause undesirable side effects), etc.
</p>
<p>
Comparison of values in reference and signature validation are over the numeric
(e.g., integer) or decoded octet sequence of the value. Different implementations
may produce different encoded digest and signature values when processing the
same resources because of variances in their encoding, such as accidental white
space. But if one uses numeric or octet comparison (choose one) on both the
stated and computed values these problems are eliminated.
</p>
<h4>
3.2.1 <a id="sec-ReferenceValidation" name="sec-ReferenceValidation">Reference
Validation</a>
</h4>
<ol>
<li>
Canonicalize the <code>SignedInfo</code> element based on the
<code>CanonicalizationMethod</code> in <code>SignedInfo</code>.
</li>
<li>
For each <code>Reference</code> in <code>SignedInfo</code>:
<ol>
<li>
Obtain the data object to be digested. (For example, the signature
application may dereference the <code>URI</code> and execute
<code>Transforms</code> provided by the signer in the
<code>Reference</code> element, or it may obtain the content through other
means such as a local cache.)
</li>
<li>
Digest the resulting data object using the <code>DigestMethod</code>
specified in its <code>Reference</code> specification.
</li>
<li>
Compare the generated digest value against <code>DigestValue</code> in the
<code>SignedInfo</code> <code>Reference</code>; if there is any mismatch,
validation fails.
</li>
</ol>
</li>
</ol>
<p>
Note, <code>SignedInfo</code> is canonicalized in step 1. The application must
ensure that the CanonicalizationMethod has no dangerous side affects, such as
rewriting URIs, (see <code><a
href="#sec-CanonicalizationMethod-NOTE">CanonicalizationMethod</a></code>
(section 4.3)) and that it <a href="#sec-See">Sees What is Signed</a>, which is
the canonical form.
</p>
<h4>
3.2.2 <a id="sec-SignatureValidation" name="sec-SignatureValidation">Signature
Validation</a>
</h4>
<ol>
<li>
Obtain the keying information from <code><a
href="#sec-KeyInfo">KeyInfo</a></code> or from an external source.
</li>
<li>
Obtain the canonical form of the <code>SignatureMethod</code> using the
<code>CanonicalizationMethod</code> and use the result (and previously
obtained <code>KeyInfo</code>) to confirm the <code>SignatureValue</code> over
the <code>SignedInfo</code> element.
</li>
</ol>
<p>
Note, <code><a href="#sec-KeyInfo">KeyInfo</a></code> (or some transformed
version thereof) may be signed via a <code>Reference</code> element.
Transformation and validation of this reference (3.2.1) is orthogonal to
Signature Validation which uses the <code>KeyInfo</code> as parsed.
</p>
<p>
Additionally, the <code>SignatureMethod</code> URI may have been altered by the
canonicalization of <code>SignedInfo</code> (e.g., absolutization of relative
URIs) and it is the canonical form that MUST be used. However, the required
canonicalization [<a href="#ref-XML-C14N">XML-C14N</a>] of this specification
does not change URIs.
</p>
<h2>
4.0 <a id="sec-CoreSyntax" name="sec-CoreSyntax">Core Signature Syntax</a>
</h2>
<p>
The general structure of an XML signature is described in <a
href="#sec-Overview">Signature Overview</a> (section 2). This section provides
detailed syntax of the core signature features. Features described in this
section are mandatory to implement unless otherwise indicated. The syntax is
defined via DTDs and [<a href="#ref-XML-schema">XML-Schema</a>] with the
following XML preamble, declaration, and internal entity.
</p>
<pre class="xml-dtd">
Schema Definition:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE schema
PUBLIC "-//W3C//DTD XMLSchema 200102//EN" "http://www.w3.org/2001/XMLSchema.dtd"
[
<!ATTLIST schema
xmlns:ds CDATA #FIXED "http://www.w3.org/2000/09/xmldsig#">
<!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>
<!ENTITY % p ''>
<!ENTITY % s ''>
]>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
targetNamespace="http://www.w3.org/2000/09/xmldsig#"
version="0.1" elementFormDefault="qualified">
</pre>
<pre class="xml-dtd">
DTD:
<!--
The following entity declarations enable external/flexible content in
the Signature content model.
#PCDATA emulates schema:string; when combined with element types it
emulates schema mixed="true".
%foo.ANY permits the user to include their own element types from
other namespaces, for example:
<!ENTITY % KeyValue.ANY '| ecds:ECDSAKeyValue'>
...
<!ELEMENT ecds:ECDSAKeyValue (#PCDATA) >
-->
<!ENTITY % Object.ANY ''>
<!ENTITY % Method.ANY ''>
<!ENTITY % Transform.ANY ''>
<!ENTITY % SignatureProperty.ANY ''>
<!ENTITY % KeyInfo.ANY ''>
<!ENTITY % KeyValue.ANY ''>
<!ENTITY % PGPData.ANY ''>
<!ENTITY % X509Data.ANY ''>
<!ENTITY % SPKIData.ANY ''>
</pre>
<h4>
4.0.1 The ds:<a name="sec-CryptoBinary" id="sec-CryptoBinary">CryptoBinary</a>
Simple Type
</h4>
<p>
This specification defines the <code>ds:CryptoBinary</code> simple type for
representing arbitrary-length integers (e.g. "bignums") in XML as octet strings.
The integer value is first converted to a "big endian" bitstring. The bitstring
is then padded with leading zero bits so that the total number of bits == 0 mod 8
(so that there are an integral number of octets). If the bitstring contains
entire leading octets that are zero, these are removed (so the high-order octet
is always non-zero). This octet string is then base64 [<a
href="#ref-MIME">MIME</a>] encoded. (The conversion from integer to octet string
is equivalent to IEEE 1363's I2OSP [<a href="#ref-1363">1363</a>] with minimal
length).
</p>
<p>
This type is used by "bignum" values such as <code>RSAKeyValue</code> and
<code>DSAKeyValue</code>. If a value can be of type <code>base64Binary</code> or
<code>ds:CryptoBinary</code> they are defined as <a
href="http://www.w3.org/TR/xmlschema-2/#base64Binary"><code>base64Binary</code></a>.
For example, if the signature algorithm is RSA or DSA then
<code>SignatureValue</code> represents a bignum and could be
<code>ds:CryptoBinary</code>. However, if HMAC-SHA1 is the signature algorithm
then <code>SignatureValue</code> could have leading zero octets that must be
preserved. Thus <code>SignatureValue</code> is generically defined as of type
<code>base64Binary</code>.
</p>
<pre class="xml-dtd">
Schema Definition:
<simpleType name="CryptoBinary">
<restriction base="base64Binary">
</restriction>
</simpleType>
</pre>
<h3>
4.1 The <a id="sec-Signature" name="sec-Signature"><code>Signature</code></a>
element
</h3>
<p>
The <code>Signature</code> element is the root element of an XML Signature.
Implementation MUST generate <a
href="http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/#cvc-elt-lax">laxly
schema valid</a> [<a href="#ref-XML-schema">XML-schema</a>]
<code>Signature</code> elements as specified by the following schema:
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="Signature" type="ds:SignatureType"/>
<complexType name="SignatureType">
<sequence>
<element ref="ds:SignedInfo"/>
<element ref="ds:SignatureValue"/>
<element ref="ds:KeyInfo" minOccurs="0"/>
<element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT Signature (SignedInfo, SignatureValue, KeyInfo?, Object*) >
<!ATTLIST Signature
xmlns CDATA #FIXED 'http://www.w3.org/2000/09/xmldsig#'
Id ID #IMPLIED >
</pre>
<h3>
4.2 The <a id="sec-SignatureValue"
name="sec-SignatureValue"><code>SignatureValue</code></a> Element
</h3>
<p>
The <code>SignatureValue</code> element contains the actual value of the digital
signature; it is always encoded using base64 [<a href="#ref-MIME">MIME</a>].
While we identify two <code>SignatureMethod</code> algorithms, one mandatory and
one optional to implement, user specified algorithms may be used as well.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="SignatureValue" type="ds:SignatureValueType"/>
<complexType name="SignatureValueType">
<simpleContent>
<extension base="base64Binary">
<attribute name="Id" type="ID" use="optional"/>
</extension>
</simpleContent>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT SignatureValue (#PCDATA) >
<!ATTLIST SignatureValue
Id ID #IMPLIED>
</pre>
<h3>
4.3 The <a id="sec-SignedInfo" name="sec-SignedInfo"><code>SignedInfo</code></a>
Element
</h3>
<p>
The structure of <code>SignedInfo</code> includes the canonicalization algorithm,
a signature algorithm, and one or more references. The <code>SignedInfo</code>
element may contain an optional ID attribute that will allow it to be referenced
by other signatures and objects.
</p>
<p>
<code>SignedInfo</code> does not include explicit signature or digest properties
(such as calculation time, cryptographic device serial number, etc.). If an
application needs to associate properties with the signature or digest, it may
include such information in a <code>SignatureProperties</code> element within an
<code>Object</code> element.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="SignedInfo" type="ds:SignedInfoType"/>
<complexType name="SignedInfoType">
<sequence>
<element ref="ds:CanonicalizationMethod"/>
<element ref="ds:SignatureMethod"/>
<element ref="ds:Reference" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT SignedInfo (CanonicalizationMethod,
SignatureMethod, Reference+) >
<!ATTLIST SignedInfo
Id ID #IMPLIED
</pre>
<h4>
4.3.1 The <a id="sec-CanonicalizationMethod"
name="sec-CanonicalizationMethod"><code>CanonicalizationMethod</code></a> Element
</h4>
<p>
<code>CanonicalizationMethod</code> is a required element that specifies the
canonicalization algorithm applied to the <code>SignedInfo</code> element prior
to performing signature calculations. This element uses the general structure for
algorithms described in <a href="#sec-AlgID">Algorithm Identifiers and
Implementation Requirements</a> (section 6.1). Implementations MUST support the
REQUIRED <a href="#sec-c14nAlg">canonicalization algorithms</a>.
</p>
<p>
Alternatives to the REQUIRED <a href="#sec-c14nAlg">canonicalization
algorithms</a> (section 6.5), such as <a href="#sec-Canonical">Canonical XML with
Comments</a> (section 6.5.1) or a minimal canonicalization (such as CRLF and
charset normalization), may be explicitly specified but are NOT REQUIRED.
Consequently, their use may not interoperate with other applications that do not
support the specified algorithm (see <a href="#sec-XML-Canonicalization">XML
Canonicalization and Syntax Constraint Considerations</a>, section 7). Security
issues may also arise in the treatment of entity processing and comments if
non-XML aware canonicalization algorithms are not properly constrained (see
section 8.2: <a href="#sec-Seen">Only What is "Seen" Should be Signed</a>).
</p>
<p>
The way in which the <code>SignedInfo</code> element is presented to the
canonicalization method is dependent on that method. The following applies to
algorithms which process XML as nodes or characters:
</p>
<ul>
<li>
XML based canonicalization implementations MUST be provided with a [<a
href="#ref-XPath">XPath</a>] node-set originally formed from the document
containing the <code>SignedInfo</code> and currently indicating the
<code>SignedInfo</code>, its descendants, and the attribute and namespace nodes
of <code>SignedInfo</code> and its descendant elements.
</li>
<li>
Text based canonicalization algorithms (such as CRLF and charset normalization)
should be provided with the UTF-8 octets that represent the well-formed
SignedInfo element, from the first character to the last character of the XML
representation, inclusive. This includes the entire text of the start and end
tags of the SignedInfo element as well as all descendant <a
href="http://www.w3.org/TR/1998/REC-xml-19980210#syntax">markup and character
data</a> (i.e., the <a
href="http://www.w3.org/TR/1998/REC-xml-19980210#dt-text">text</a>) between
those tags. Use of text based canonicalization of SignedInfo is NOT
RECOMMENDED.
</li>
</ul>
<p>
We recommend applications that implement a text-based instead of XML-based
canonicalization -- such as resource constrained apps -- generate canonicalized
XML as their output serialization so as to mitigate interoperability and security
concerns. For instance, such an implementation SHOULD (at least) generate <a
href="http://www.w3.org/TR/REC-xml#sec-rmd">standalone</a> XML instances [<a
href="#ref-XML">XML</a>].
</p>
<p>
<a name="sec-CanonicalizationMethod-NOTE"
id="sec-CanonicalizationMethod-NOTE">NOTE</a>: The signature application must
exercise great care in accepting and executing an arbitrary
<code>CanonicalizationMethod</code>. For example, the canonicalization method
could rewrite the URIs of the <code>Reference</code>s being validated. Or, the
method could massively transform <code>SignedInfo</code> so that validation would
always succeed (i.e., converting it to a trivial signature with a known key over
trivial data). Since <code>CanonicalizationMethod</code> is inside
<code>SignedInfo</code>, in the resulting canonical form it could erase itself
from <code>SignedInfo</code> or modify the <code>SignedInfo</code> element so
that it appears that a different canonicalization function was used! Thus a
<code>Signature</code> which appears to authenticate the desired data with the
desired key, <code>DigestMethod</code>, and <code>SignatureMethod</code>, can be
meaningless if a capricious <code>CanonicalizationMethod</code> is used.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="CanonicalizationMethod" type="ds:CanonicalizationMethodType"/>
<complexType name="CanonicalizationMethodType" mixed="true">
<sequence>
<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
<!-- (0,unbounded) elements from (1,1) namespace -->
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT CanonicalizationMethod (#PCDATA %Method.ANY;)* >
<!ATTLIST CanonicalizationMethod
Algorithm CDATA #REQUIRED >
</pre>
<h4>
4.3.2 The <a id="sec-SignatureMethod"
name="sec-SignatureMethod"><code>SignatureMethod</code></a> Element
</h4>
<p>
<code>SignatureMethod</code> is a required element that specifies the algorithm
used for signature generation and validation. This algorithm identifies all
cryptographic functions involved in the signature operation (e.g. hashing, public
key algorithms, MACs, padding, etc.). This element uses the general structure
here for algorithms described in section 6.1: <a href="#sec-AlgID">Algorithm
Identifiers and Implementation Requirements</a>. While there is a single
identifier, that identifier may specify a format containing multiple distinct
signature values.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="SignatureMethod" type="ds:SignatureMethodType"/>
<complexType name="SignatureMethodType" mixed="true">
<sequence>
<element name="HMACOutputLength" minOccurs="0" type="ds:HMACOutputLengthType"/>
<any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
<!-- (0,unbounded) elements from (1,1) external namespace -->
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT SignatureMethod (#PCDATA|HMACOutputLength %Method.ANY;)* >
<!ATTLIST SignatureMethod
Algorithm CDATA #REQUIRED >
</pre>
<h4>
4.3.3 The <a id="sec-Reference" name="sec-Reference"><code>Reference</code></a>
Element
</h4>
<p>
<code>Reference</code> is an element that may occur one or more times. It
specifies a digest algorithm and digest value, and optionally an identifier of
the object being signed, the type of the object, and/or a list of transforms to
be applied prior to digesting. The identification (URI) and transforms describe
how the digested content (i.e., the input to the digest method) was created. The
<code>Type</code> attribute facilitates the processing of referenced data. For
example, while this specification makes no requirements over external data, an
application may wish to signal that the referent is a <code>Manifest</code>. An
optional ID attribute permits a <code>Reference</code> to be referenced from
elsewhere.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="Reference" type="ds:ReferenceType"/>
<complexType name="ReferenceType">
<sequence>
<element ref="ds:Transforms" minOccurs="0"/>
<element ref="ds:DigestMethod"/>
<element ref="ds:DigestValue"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
<attribute name="URI" type="anyURI" use="optional"/>
<attribute name="Type" type="anyURI" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT Reference (Transforms?, DigestMethod, DigestValue) >
<!ATTLIST Reference
Id ID #IMPLIED
URI CDATA #IMPLIED
Type CDATA #IMPLIED>
</pre>
<h4>
4.3.3.1 The <a name="sec-URI" id="sec-URI"><code>URI</code></a> Attribute
</h4>
<p>
The <code>URI</code> attribute identifies a data object using a URI-Reference, as
specified by RFC2396 [<a href="#ref-URI">URI</a>]. The set of allowed characters
for <code>URI</code> attributes is the same as for XML, namely <a
href="#ref-Unicode">[Unicode]</a>. However, some Unicode characters are
disallowed from URI references including all non-ASCII characters and the
excluded characters listed in RFC2396 [<a href="#ref-URI">URI</a>, section 2.4].
However, the number sign (#), percent sign (%), and square bracket characters
re-allowed in RFC 2732 [<a href="#ref-URI-Literal">URI-Literal</a>] are
permitted. Disallowed characters must be escaped as follows:
</p>
<ol>
<li>
Each disallowed character is converted to [<a href="#ref-UTF-8">UTF-8</a>] as
one or more octets.
</li>
<li>
Any octets corresponding to a disallowed character are escaped with the URI
escaping mechanism (that is, converted to %HH, where HH is the hexadecimal
notation of the octet value).
</li>
<li>
The original character is replaced by the resulting character sequence.
</li>
</ol>
<p>
XML signature applications MUST be able to parse URI syntax. We RECOMMEND they be
able to dereference URIs in the HTTP scheme. Dereferencing a URI in the HTTP
scheme MUST comply with the <a
href="http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4">Status
Code Definitions</a> of [<a href="#ref-HTTP">HTTP</a>] (e.g., 302, 305 and 307
redirects are followed to obtain the entity-body of a 200 status code response).
Applications should also be cognizant of the fact that protocol parameter and
state information, (such as HTTP cookies, HTML device profiles or content
negotiation), may affect the content yielded by dereferencing a URI.
</p>
<p>
If a resource is identified by more than one URI, the most specific should be
used (e.g. http://www.w3.org/2000/06/interop-pressrelease.html.en instead of
http://www.w3.org/2000/06/interop-pressrelease). (See the <a
href="#sec-CoreValidation">Reference Validation</a> (section 3.2.1) for a further
information on reference processing.)
</p>
<p>
If the <code>URI</code> attribute is omitted altogether, the receiving
application is expected to know the identity of the object. For example, a
lightweight data protocol might omit this attribute given the identity of the
object is part of the application context. This attribute may be omitted from at
most one <code>Reference</code> in any particular <code>SignedInfo</code>, or
<code>Manifest</code>.
</p>
<p>
The optional Type attribute contains information about the type of object being
signed. This is represented as a URI. For example:
</p>
<p>
<code>Type=<a
href="http://www.w3.org/2000/09/xmldsig#Object">"http://www.w3.org/2000/09/xmldsig#Object"</a><br />
Type=<a
href="http://www.w3.org/2000/09/xmldsig#Manifest">"http://www.w3.org/2000/09/xmldsig#Manifest"</a></code>
</p>
<p>
The Type attribute applies to the item being pointed at, not its contents. For
example, a reference that identifies an <code>Object</code> element containing a
<code>SignatureProperties</code> element is still of type <code>#Object</code>.
The type attribute is advisory. No validation of the type information is required
by this specification.
</p>
<h4>
4.3.3.2 The <a name="sec-ReferenceProcessingModel"
id="sec-ReferenceProcessingModel">Reference Processing Model</a>
</h4>
<p class="comment">
<a name="Note-Xpath" id="Note-Xpath">Note</a>: XPath is RECOMMENDED. Signature
applications need not conform to [<a href="#ref-XPath">XPath</a>] specification
in order to conform to this specification. However, the XPath data model,
definitions (e.g., <a href="http://www.w3.org/TR/xpath#node-sets">node-sets</a>)
and syntax is used within this document in order to describe functionality for
those that want to process XML-as-XML (instead of octets) as part of signature
generation. For those that want to use these features, a conformant [<a
href="#ref-XPath">XPath</a>] implementation is one way to implement these
features, but it is not required. Such applications could use a sufficiently
functional replacement to a node-set and implement only those XPath expression
behaviors REQUIRED by this specification. However, for simplicity we generally
will use XPath terminology without including this qualification on every point.
Requirements over "XPath node-sets" can include a node-set functional equivalent.
Requirements over XPath processing can include application behaviors that are
equivalent to the corresponding XPath behavior.
</p>
<p>
The data-type of the result of URI dereferencing or subsequent Transforms is
either an octet stream or an XPath node-set.
</p>
<p>
The <code>Transforms</code> specified in this document are defined with respect
to the input they require. The following is the default signature application
behavior:
</p>
<ul>
<li>
If the data object is an octet stream and the next transform requires a
node-set, the signature application MUST attempt to parse the octets yielding
the required node-set via [<a href="#ref-XML">XML</a>] well-formed processing.
</li>
<li>
If the data object is a node-set and the next transform requires octets, the
signature application MUST attempt to convert the node-set to an octet stream
using Canonical XML [<a href="#ref-XML-C14N">XML-C14N</a>].
</li>
</ul>
<p>
Users may specify alternative transforms that override these defaults in
transitions between transforms that expect different inputs. The final octet
stream contains the data octets being secured. The digest algorithm specified by
<code>DigestMethod</code> is then applied to these data octets, resulting in the
<code>DigestValue</code>.
</p>
<p>
Unless the URI-Reference is a 'same-document' reference as defined in [<a
href="#ref-URI">URI</a>, Section 4.2], the result of dereferencing the
URI-Reference MUST be an octet stream. In particular, an XML document identified
by URI is not parsed by the signature application unless the URI is a
same-document reference or unless a transform that requires XML parsing is
applied. (See <a href="#sec-Transforms">Transforms</a> (section 4.3.3.1).)
</p>
<p>
When a fragment is preceded by an absolute or relative URI in the URI-Reference,
the meaning of the fragment is defined by the resource's MIME type. Even for XML
documents, URI dereferencing (including the fragment processing) might be done
for the signature application by a proxy. Therefore, reference validation might
fail if fragment processing is not performed in a standard way (as defined in the
following section for same-document references). Consequently, we RECOMMEND that
the <code>URI</code> attribute not include fragment identifiers and that
such processing be specified as an additional <a href="#sec-XPath">XPath
Transform</a>.
</p>
<p>
When a fragment is not preceded by a URI in the URI-Reference, XML signature
applications MUST support the null URI and barename XPointer. We RECOMMEND
support for the same-document XPointers '#xpointer(/)' and '#xpointer(id('ID'))'
if the application also intends to support any <a
href="#sec-Canonical">canonicalization</a> that preserves comments. (Otherwise
URI="#foo" will automatically remove comments before the canonicalization can
even be invoked.) All other support for XPointers is OPTIONAL, especially all
support for barename and other XPointers in external resources since the
application may not have control over how the fragment is generated (leading to
interoperability problems and validation failures).
</p>
<p>
The following examples demonstrate what the URI attribute identifies and how it
is dereferenced:
</p>
<dl>
<dt>
<code>URI="http://example.com/bar.xml"</code>
</dt>
<dd>
Identifies the octets that represent the external resource
'http://example.com/bar.xml', that is probably an XML document given its file
extension.
</dd>
<dt>
<code>URI="http://example.com/bar.xml#chapter1"</code>
</dt>
<dd>
Identifies the element with ID attribute value 'chapter1' of the external XML
resource 'http://example.com/bar.xml', provided as an octet stream. Again, for
the sake of interoperability, the element identified as 'chapter1' should be
obtained using an XPath transform rather than a URI fragment (barename XPointer
resolution in external resources is not REQUIRED in this specification).
</dd>
<dt>
<code>URI=""</code>
</dt>
<dd>
Identifies the node-set (minus any comment nodes) of the XML resource
containing the signature
</dd>
<dt>
<code>URI="#chapter1"</code>
</dt>
<dd>
Identifies a node-set containing the element with ID attribute value 'chapter1'
of the XML resource containing the signature. XML Signature (and its
applications) modify this node-set to include the element plus all descendents
including namespaces and attributes -- but not comments.
</dd>
</dl>
<h4>
4.3.3.3 <a name="sec-Same-Document" id="sec-Same-Document">Same-Document</a>
URI-References
</h4>
<p>
Dereferencing a same-document reference MUST result in an XPath node-set suitable
for use by Canonical XML [<a href="#ref-XML-C14N">XML-C14N</a>]. Specifically,
dereferencing a null URI (<code>URI=""</code>) MUST result in an XPath node-set
that includes every non-comment node of the XML document containing the
<code>URI</code> attribute. In a fragment URI, the characters after the number
sign ('#') character conform to the XPointer syntax [<a
href="#ref-XPointer">Xptr</a>]. When processing an XPointer, the application MUST
behave as if the root node of the XML document containing the <code>URI</code>
attribute were used to initialize the XPointer evaluation context. The
application MUST behave as if the result of XPointer processing were a node-set
derived from the resultant location-set as follows:
</p>
<ol>
<li>
discard point nodes
</li>
<li>
replace each range node with all XPath nodes having full or partial content
within the range
</li>
<li>
replace the root node with its children (if it is in the node-set)
</li>
<li>
replace any element node <strong>E</strong> with <strong>E</strong> plus all
descendants of <strong>E</strong> (text, comment, PI, element) and all
namespace and attribute nodes of <strong>E</strong> and its descendant
elements.
</li>
<li>
if the URI is not a full XPointer, then delete all comment nodes
</li>
</ol>
<p>
The second to last replacement is necessary because XPointer typically indicates
a subtree of an XML document's parse tree using just the element node at the root
of the subtree, whereas Canonical XML treats a node-set as a set of nodes in
which absence of descendant nodes results in absence of their representative text
from the canonical form.
</p>
<p>
The last step is performed for null URIs, barename XPointers and child sequence
XPointers. It's necessary because when [<a href="#ref-XML-C14N">XML-C14N</a>] is
passed a node-set, it processes the node-set as is: with or without comments.
Only when it's called with an octet stream does it invoke its own XPath
expressions (default or without comments). Therefore to retain the default
behavior of stripping comments when passed a node-set, they are removed in the
last step if the URI is not a full XPointer. To retain comments while selecting
an element by an identifier <em>ID</em>, use the following full XPointer:
<code>URI='#xpointer(id('ID'))'</code>. To retain comments while selecting the
entire document, use the following full XPointer:
<code>URI='#xpointer(/)'</code>. This XPointer contains a simple XPath expression
that includes the root node, which the second to last step above replaces with
all nodes of the parse tree (all descendants, plus all attributes, plus all
namespaces nodes).
</p>
<h4>
4.3.3.4 The <a id="sec-Transforms"
name="sec-Transforms"><code>Transforms</code></a> Element
</h4>
<p>
The optional <code>Transforms</code> element contains an ordered list of
<code>Transform</code> elements; these describe how the signer obtained the data
object that was digested. The output of each <code>Transform</code> serves as
input to the next <code>Transform</code>. The input to the first
<code>Transform</code> is the result of dereferencing the <code>URI</code>
attribute of the <code>Reference</code> element. The output from the last
<code>Transform</code> is the input for the <code>DigestMethod</code> algorithm.
When transforms are applied the signer is not signing the native (original)
document but the resulting (transformed) document. (See <a
href="#sec-Secure">Only What is Signed is Secure</a> (section 8.1).)
</p>
<p>
Each <code>Transform</code> consists of an <code>Algorithm</code> attribute and
content parameters, if any, appropriate for the given algorithm. The
<code>Algorithm</code> attribute value specifies the name of the algorithm to be
performed, and the <code>Transform</code> content provides additional data to
govern the algorithm's processing of the transform input. (See <a
href="#sec-AlgID">Algorithm Identifiers and Implementation Requirements</a>
(section 6).)
</p>
<p>
As described in <a href="#sec-ReferenceProcessingModel">The Reference Processing
Model</a> (section 4.3.3.2), some transforms take an XPath node-set as
input, while others require an octet stream. If the actual input matches the
input needs of the transform, then the transform operates on the unaltered input.
If the transform input requirement differs from the format of the actual input,
then the input must be converted.
</p>
<p>
Some <code>Transform</code>s may require explicit MIME type, charset (IANA
registered "character set"), or other such information concerning the data they
are receiving from an earlier <code>Transform</code> or the source data, although
no <code>Transform</code> algorithm specified in this document needs such
explicit information. Such data characteristics are provided as parameters to the
<code>Transform</code> algorithm and should be described in the specification for
the algorithm.
</p>
<p>
Examples of transforms include but are not limited to base64 decoding [<a
href="#ref-MIME">MIME</a>], canonicalization [<a
href="#ref-XML-C14N">XML-C14N</a>], XPath filtering [<a
href="#ref-XPath">XPath</a>], and XSLT [<a href="#ref-XSLT">XSLT</a>]. The
generic definition of the <code>Transform</code> element also allows
application-specific transform algorithms. For example, the transform could be a
decompression routine given by a Java class appearing as a base64 encoded
parameter to a Java <code>Transform</code> algorithm. However, applications
should refrain from using application-specific transforms if they wish their
signatures to be verifiable outside of their application domain. <a
href="#sec-Transforms">Transform Algorithms</a> (section 6.6) defines the list of
standard transformations.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="Transforms" type="ds:TransformsType"/>
<complexType name="TransformsType">
<sequence>
<element ref="ds:Transform" maxOccurs="unbounded"/>
</sequence>
</complexType>
<element name="Transform" type="ds:TransformType"/>
<complexType name="TransformType" mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>
<!-- (1,1) elements from (0,unbounded) namespaces -->
<element name="XPath" type="string"/>
</choice>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT Transforms (Transform+)>
<!ELEMENT Transform (#PCDATA|XPath %Transform.ANY;)* >
<!ATTLIST Transform
Algorithm CDATA #REQUIRED >
<!ELEMENT XPath (#PCDATA) >
</pre>
<h4>
4.3.3.5 The <a id="sec-DigestMethod"
name="sec-DigestMethod"><code>DigestMethod</code></a> Element
</h4>
<p>
<code>DigestMethod</code> is a required element that identifies the digest
algorithm to be applied to the signed object. This element uses the general
structure here for algorithms specified in <a href="#sec-AlgID">Algorithm
Identifiers and Implementation Requirements</a> (section 6.1).
</p>
<p>
If the result of the URI dereference and application of Transforms is an XPath
node-set (or sufficiently functional replacement implemented by the application)
then it must be converted as described in <a
href="#sec-ReferenceProcessingModel">the Reference Processing Model</a>
(section 4.3.3.2). If the result of URI dereference and application of
transforms is an octet stream, then no conversion occurs (comments might be
present if the Canonical XML with Comments was specified in the Transforms). The
digest algorithm is applied to the data octets of the resulting octet stream.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="DigestMethod" type="ds:DigestMethodType"/>
<complexType name="DigestMethodType" mixed="true">
<sequence>
<any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT DigestMethod (#PCDATA %Method.ANY;)* >
<!ATTLIST DigestMethod
Algorithm CDATA #REQUIRED >
</pre>
<h4>
4.3.3.6 The <a id="sec-DigestValue"
name="sec-DigestValue"><code>DigestValue</code></a> Element
</h4>
<p>
DigestValue is an element that contains the encoded value of the digest. The
digest is always encoded using base64 [<a href="#ref-MIME">MIME</a>].
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="DigestValue" type="ds:DigestValueType"/>
<simpleType name="DigestValueType">
<restriction base="base64Binary"/>
</simpleType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT DigestValue (#PCDATA) >
<code><!-- base64 encoded digest value --></code>
</pre>
<h3>
4.4 The <a id="sec-KeyInfo" name="sec-KeyInfo"><code>KeyInfo</code></a> Element
</h3>
<p>
<code>KeyInfo</code> is an optional element that enables the recipient(s) to
obtain the key needed to validate the signature. <code>KeyInfo</code> may
contain keys, names, certificates and other public key management information,
such as in-band key distribution or key agreement data. This specification
defines a few simple types but applications may extend those types or all
together replace them with their own key identification and exchange semantics
using the XML namespace facility. [<a href="#ref-XML-ns">XML-ns</a>] However,
questions of trust of such key information (e.g., its authenticity or
strength) are out of scope of this specification and left to the application.
</p>
<p>
If <code>KeyInfo</code> is omitted, the recipient is expected to be able to
identify the key based on application context. Multiple declarations within
<code>KeyInfo</code> refer to the same key. While applications may define and use
any mechanism they choose through inclusion of elements from a different
namespace, compliant versions MUST implement <a
href="#sec-KeyValue"><code>KeyValue</code></a> (section 4.4.2) and SHOULD
implement <code><a href="#sec-RetrievalMethod">RetrievalMethod</a></code>
(section 4.4.3).
</p>
<p>
The schema/DTD specifications of many of <code>KeyInfo</code>'s children (e.g.,
<code>PGPData</code>, <code>SPKIData</code>, <code>X509Data</code>) permit their
content to be extended/complemented with elements from another namespace. This
may be done only if it is safe to ignore these extension elements while claiming
support for the types defined in this specification. Otherwise, external
elements, including <em>alternative</em> structures to those defined by this
specification, MUST be a child of <code>KeyInfo</code>. For example, should a
complete XML-PGP standard be defined, its root element MUST be a child of
<code>KeyInfo</code>. (Of course, new structures from external namespaces can
incorporate elements from the <code>&dsig;</code> namespace via features of
the type definition language. For instance, they can create a DTD that mixes
their own and dsig qualified elements, or a schema that permits, includes,
imports, or derives new types based on <code>&dsig;</code> elements.)
</p>
<p>
The following list summarizes the <code>KeyInfo</code> types that are allocated
an identifier in the <code>&dsig;</code> namespace; these can be used within
the <code>RetrievalMethod</code> <code>Type</code> attribute to describe a remote
<code>KeyInfo</code> structure.
</p>
<ul>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#DSAKeyValue">http://www.w3.org/2000/09/xmldsig#DSAKeyValue</a>
</li>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#RSAKeyValue">http://www.w3.org/2000/09/xmldsig#RSAKeyValue</a>
</li>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#X509Data">http://www.w3.org/2000/09/xmldsig#X509Data</a>
</li>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#PGPData">http://www.w3.org/2000/09/xmldsig#PGPData</a>
</li>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#SPKIData">http://www.w3.org/2000/09/xmldsig#SPKIData</a>
</li>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#MgmtData">http://www.w3.org/2000/09/xmldsig#MgmtData</a>
</li>
</ul>
<p>
In addition to the types above for which we define an XML structure, we specify
one additional type to indicate a <a name="rawX509Certificate"
id="rawX509Certificate">binary (ASN.1 DER) X.509 Certificate</a>.
</p>
<ul>
<li>
<a
href="http://www.w3.org/2000/09/xmldsig#rawX509Certificate">http://www.w3.org/2000/09/xmldsig#rawX509Certificate</a>
</li>
</ul>
<pre class="xml-dtd">
Schema Definition:
<element name="KeyInfo" type="ds:KeyInfoType"/>
<complexType name="KeyInfoType" mixed="true">
<choice maxOccurs="unbounded">
<element ref="ds:KeyName"/>
<element ref="ds:KeyValue"/>
<element ref="ds:RetrievalMethod"/>
<element ref="ds:X509Data"/>
<element ref="ds:PGPData"/>
<element ref="ds:SPKIData"/>
<element ref="ds:MgmtData"/>
<any processContents="lax" namespace="##other"/>
<!-- (1,1) elements from (0,unbounded) namespaces -->
</choice>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT KeyInfo (#PCDATA|KeyName|KeyValue|RetrievalMethod|
X509Data|PGPData|SPKIData|MgmtData %KeyInfo.ANY;)* >
<!ATTLIST KeyInfo
Id ID #IMPLIED >
</pre>
<h4>
4.4.1 The <a id="sec-KeyName" name="sec-KeyName"><code>KeyName</code></a> Element
</h4>
<p>
The <code>KeyName</code> element contains a string value (in which white space is
significant) which may be used by the signer to communicate a key identifier to
the recipient. Typically, <code>KeyName</code> contains an identifier related to
the key pair used to sign the message, but it may contain other protocol-related
information that indirectly identifies a key pair. (Common uses of
<code>KeyName</code> include simple string names for keys, a key index, a
distinguished name (DN), an email address, etc.)
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="KeyName" type="string"/>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT KeyName (#PCDATA) >
</pre>
<h4>
4.4.2 The <a id="sec-KeyValue" name="sec-KeyValue"><code>KeyValue</code></a>
Element
</h4>
<p>
The <code>KeyValue</code> element contains a single public key that may be useful
in validating the signature. Structured formats for defining DSA (REQUIRED) and
RSA (RECOMMENDED) public keys are defined in <a
href="#sec-SignatureAlg">Signature Algorithms</a> (section 6.4). The
<code>KeyValue</code> element may include externally defined public keys values
represented as PCDATA or element types from an external namespace.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="KeyValue" type="ds:KeyValueType"/>
<complexType name="KeyValueType" mixed="true">
<choice>
<element ref="ds:DSAKeyValue"/>
<element ref="ds:RSAKeyValue"/>
<any namespace="##other" processContents="lax"/>
</choice>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT KeyValue (#PCDATA|DSAKeyValue|RSAKeyValue %KeyValue.ANY;)* >
</pre>
<h4>
4.4.2.1 The <a id="sec-DSAKeyValue"
name="sec-DSAKeyValue"><code>DSAKeyValue</code></a> Element
</h4>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a name="DSAKeyValue" id="DSAKeyValue"
href="http://www.w3.org/2000/09/xmldsig#DSAKeyValue">http://www.w3.org/2000/09/xmldsig#DSAKeyValue</a>"<br />
</code> (this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's type)
</dd>
</dl>
<p>
DSA keys and the DSA signature algorithm are specified in [DSS]. DSA public key
values can have the following fields:
</p>
<dl>
<dt>
<code>P</code>
</dt>
<dd>
a prime modulus meeting the [DSS] requirements
</dd>
<dt>
<code>Q</code>
</dt>
<dd>
an integer in the range 2**159 < Q < 2**160 which is a prime divisor of
P-1
</dd>
<dt>
<code>G</code>
</dt>
<dd>
an integer with certain properties with respect to P and Q
</dd>
<dt>
<code>Y</code>
</dt>
<dd>
G**X mod P (where X is part of the private key and not made public)
</dd>
<dt>
<code>J</code>
</dt>
<dd>
(P - 1) / Q
</dd>
<dt>
<code>seed</code>
</dt>
<dd>
a DSA prime generation seed
</dd>
<dt>
<code>pgenCounter</code>
</dt>
<dd>
a DSA prime generation counter
</dd>
</dl>
<p>
Parameter J is available for inclusion solely for efficiency as it is
calculatable from P and Q. Parameters seed and pgenCounter are used in the DSA
prime number generation algorithm specified in [DSS]. As such, they are optional
but must either both be present or both be absent. This prime generation
algorithm is designed to provide assurance that a weak prime is not being used
and it yields a P and Q value. Parameters P, Q, and G can be public and common to
a group of users. They might be known from application context. As such, they are
optional but P and Q must either both appear or both be absent. If all of
<code>P</code>, <code>Q</code>, <code>seed</code>, and <code>pgenCounter</code>
are present, implementations are not required to check if they are consistent and
are free to use either <code>P</code> and <code>Q</code> or <code>seed</code> and
<code>pgenCounter</code>. All parameters are encoded as base64 [<a
href="#ref-MIME">MIME</a>] values.
</p>
<p>
Arbitrary-length integers (e.g. "bignums" such as RSA moduli) are represented in
XML as octet strings as defined by the <a
href="#sec-CryptoBinary"><code>ds:CryptoBinary</code> type</a>.
</p>
<pre class="xml-dtd">
<code>Schema Definition:</code>
<element name="DSAKeyValue" type="ds:DSAKeyValueType"/>
<complexType name="DSAKeyValueType">
<sequence>
<sequence minOccurs="0">
<element name="P" type="ds:CryptoBinary"/>
<element name="Q" type="ds:CryptoBinary"/>
</sequence>
<element name="G" type="ds:CryptoBinary" minOccurs="0"/>
<element name="Y" type="ds:CryptoBinary"/>
<element name="J" type="ds:CryptoBinary" minOccurs="0"/>
<sequence minOccurs="0">
<element name="Seed" type="ds:CryptoBinary"/>
<element name="PgenCounter" type="ds:CryptoBinary"/>
</sequence>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd">
<code>DTD Definition:</code>
<!ELEMENT DSAKeyValue ((P, Q)?, G?, Y, J?, (Seed, PgenCounter)?) >
<!ELEMENT P (#PCDATA) >
<!ELEMENT Q (#PCDATA) >
<!ELEMENT G (#PCDATA) >
<!ELEMENT Y (#PCDATA) >
<!ELEMENT J (#PCDATA) >
<!ELEMENT Seed (#PCDATA) >
<!ELEMENT PgenCounter (#PCDATA) >
</pre>
<h4>
4.4.2.2 The <a id="sec-RSAKeyValue"
name="sec-RSAKeyValue"><code>RSAKeyValue</code></a> Element
</h4>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a name="RSAKeyValue" id="RSAKeyValue"
href="http://www.w3.org/2000/09/xmldsig#RSAKeyValue">http://www.w3.org/2000/09/xmldsig#RSAKeyValue</a>"<br />
</code> (this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's type)
</dd>
</dl>
<p>
RSA key values have two fields: Modulus and Exponent.
</p>
<pre class="xml-example">
<RSAKeyValue>
<Modulus>xA7SEU+e0yQH5rm9kbCDN9o3aPIo7HbP7tX6WOocLZAtNfyxSZDU16ksL6W
jubafOqNEpcwR3RdFsT7bCqnXPBe5ELh5u4VEy19MzxkXRgrMvavzyBpVRgBUwUlV
5foK5hhmbktQhyNdy/6LpQRhDUDsTvK+g9Ucj47es9AQJ3U=
</Modulus>
<Exponent>AQAB</Exponent>
</RSAKeyValue>
</pre>
<p>
Arbitrary-length integers (e.g. "bignums" such as RSA moduli) are represented in
XML as octet strings as defined by the <a
href="#sec-CryptoBinary"><code>ds:CryptoBinary</code> type</a>.
</p>
<pre class="xml-dtd">
<code>Schema Definition:</code>
<element name="RSAKeyValue" type="ds:RSAKeyValueType"/>
<complexType name="RSAKeyValueType">
<sequence>
<element name="Modulus" type="ds:CryptoBinary"/>
<element name="Exponent" type="ds:CryptoBinary"/>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd">
<code>DTD Definition:</code>
<!ELEMENT RSAKeyValue (Modulus, Exponent) >
<!ELEMENT Modulus (#PCDATA) >
<!ELEMENT Exponent (#PCDATA) >
</pre>
<h4>
4.4.3 The <a id="sec-RetrievalMethod"
name="sec-RetrievalMethod"><code>RetrievalMethod</code></a> Element
</h4>
<p>
A <code>RetrievalMethod</code> element within <code>KeyInfo</code> is used to
convey a reference to <code>KeyInfo</code> information that is stored at another
location. For example, several signatures in a document might use a key verified
by an X.509v3 certificate chain appearing once in the document or remotely
outside the document; each signature's <code>KeyInfo</code> can reference this
chain using a single <code>RetrievalMethod</code> element instead of including
the entire chain with a sequence of <code>X509Certificate</code> elements.
</p>
<p>
<code>RetrievalMethod</code> uses the same syntax and dereferencing behavior as
<a href="#sec-URI"><code>Reference</code>'s URI</a> (section 4.3.3.1) and <a
href="#sec-ReferenceProcessingModel">The Reference Processing Model</a> (section
4.3.3.2) except that there is no <code>DigestMethod</code> or
<code>DigestValue</code> child elements and presence of the URI is mandatory.
</p>
<p>
<code>Type</code> is an optional identifier for the type of data to be retrieved.
The result of dereferencing a <code>RetrievalMethod</code> <code><a
href="#sec-URI">Reference</a></code> for all <a
href="#sec-KeyInfo"><code>KeyInfo</code> types defined by this specification</a>
(section 4.4) with a corresponding XML structure is an XML element or document
with that element as the root. The <code>rawX509Certificate</code>
<code>KeyInfo</code> (for which there is no XML structure) returns a binary X509
certificate.
</p>
<pre class="xml-dtd">
Schema Definition
<element name="RetrievalMethod" type="ds:RetrievalMethodType"/>
<complexType name="RetrievalMethodType">
<sequence>
<element ref="ds:Transforms" minOccurs="0"/>
</sequence>
<attribute name="URI" type="anyURI"/>
<attribute name="Type" type="anyURI" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD
<!ELEMENT RetrievalMethod (Transforms?) >
<!ATTLIST RetrievalMethod
URI CDATA #REQUIRED
Type CDATA #IMPLIED >
</pre>
<h4>
4.4.4 The <a id="sec-X509Data" name="sec-X509Data"><code>X509Data</code></a>
Element
</h4>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a name="X509Data" id="X509Data"
href="http://www.w3.org/2000/09/xmldsig#SPKIData">http://www.w3.org/2000/09/xmldsig#X509Data</a></code>
"<br />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's type)
</dd>
</dl>
<p>
An <code>X509Data</code> element within <code>KeyInfo</code> contains one or more
identifiers of keys or X509 certificates (or certificates' identifiers or a
revocation list). The content of <code>X509Data</code> is:
</p>
<ol>
<li>
At least one element, from the following set of element types; any of these may
appear together or more than once iff (if and only if) each instance describes
or is related to the same certificate:
</li>
<li style="list-style: none">
<ul>
<li>
The <code>X509IssuerSerial</code> element, which contains an X.509 issuer
distinguished name/serial number pair that SHOULD be compliant with RFC2253
[<a href="#ref-LDAP-DN">LDAP-DN</a>],
</li>
<li>
The <code>X509SubjectName</code> element, which contains an X.509 subject
distinguished name that SHOULD be compliant with RFC2253 [<a
href="#ref-LDAP-DN">LDAP-DN</a>],
</li>
<li>
The <code>X509SKI</code> element, which contains the base64 encoded plain
(i.e. non-DER-encoded) value of a X509 V.3 SubjectKeyIdentifier extension.
</li>
<li>
The <code>X509Certificate</code> element, which contains a base64-encoded
[<a href="#ref-X509v3">X509v3</a>] certificate, and
</li>
<li>
Elements from an external namespace which accompanies/complements any of
the elements above.
</li>
<li>
The <code>X509CRL</code> element, which contains a base64-encoded
certificate revocation list (CRL) [<a href="#ref-X509v3">X509v3</a>].
</li>
</ul>
</li>
</ol>
<p>
Any <code>X509IssuerSerial</code>, <code>X509SKI</code>, and
<code>X509SubjectName</code> elements that appear MUST refer to the certificate
or certificates containing the validation key. All such elements that refer to a
particular individual certificate MUST be grouped inside a single
<code>X509Data</code> element and if the certificate to which they refer appears,
it MUST also be in that <code>X509Data</code> element.
</p>
<p>
Any <code>X509IssuerSerial</code>, <code>X509SKI</code>, and
<code>X509SubjectName</code> elements that relate to the same key but different
certificates MUST be grouped within a single <code>KeyInfo</code> but MAY occur
in multiple <code>X509Data</code> elements.
</p>
<p>
All certificates appearing in an <code>X509Data</code> element MUST relate to the
validation key by either containing it or being part of a certification chain
that terminates in a certificate containing the validation key.
</p>
<p>
No ordering is implied by the above constraints. The comments in the following
instance demonstrate these constraints:
</p>
<pre class="xml-example">
<KeyInfo>
<X509Data> <!-- two pointers to certificate-A -->
<X509IssuerSerial>
<X509IssuerName><span class="tx">CN=TAMURA Kent, OU=TRL, O=IBM,
L=Yamato-shi, ST=Kanagawa, C=JP</span></X509IssuerName>
<X509SerialNumber>12345678</X509SerialNumber>
</X509IssuerSerial>
<X509SKI>31d97bd7</X509SKI>
</X509Data>
<X509Data><!-- single pointer to certificate-B -->
<X509SubjectName>Subject of Certificate B</X509SubjectName>
</X509Data>
<X509Data> <!-- certificate chain -->
<!--Signer cert, issuer CN=arbolCA,OU=FVT,O=IBM,C=US, serial 4-->
<X509Certificate>MIICXTCCA..</X509Certificate>
<!-- Intermediate cert subject CN=arbolCA,OU=FVT,O=IBM,C=US
issuer CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
<X509Certificate>MIICPzCCA...</X509Certificate>
<!-- Root cert subject CN=tootiseCA,OU=FVT,O=Bridgepoint,C=US -->
<X509Certificate>MIICSTCCA...</X509Certificate>
</X509Data>
</KeyInfo>
</pre>
<p>
Note, there is no direct provision for a PKCS#7 encoded "bag" of certificates or
CRLs. However, a set of certificates and CRLs can occur within an
<code>X509Data</code> element and multiple <code>X509Data</code> elements can
occur in a <code>KeyInfo</code>. Whenever multiple certificates occur in an
<code>X509Data</code> element, at least one such certificate must contain the
public key which verifies the signature.
</p>
<p>
Also, strings in DNames
(<code>X509IssuerSerial</code>,<code>X509SubjectName</code>, and
<code>KeyName</code> if approriate) should be encoded as follows:
</p>
<ul>
<li>
Consider the string as consisting of Unicode characters.
</li>
<li>
Escape occurrences of the following special characters by prefixing it with the
"\" character:
<ul>
<li>
a "#" character occurring at the beginning of the string
</li>
<li>
one of the characters ",", "+", """, "\", "<", ">" or ";"
</li>
</ul>
</li>
<li>
Escape all occurrences of ASCII control characters (Unicode range \x00 - \x1f)
by replacing them with "\" followed by a two digit hex number showing its
Unicode number.
</li>
<li>
Escape any trailing white space by replacing "\ " with "\20".
</li>
<li>
Since a XML document logically consists of characters, not octets, the
resulting Unicode string is finally encoded according to the character encoding
used for producing the physical representation of the XML document.
</li>
</ul>
<pre class="xml-dtd">
Schema Definition
<element name="X509Data" type="ds:X509DataType"/>
<complexType name="X509DataType">
<sequence maxOccurs="unbounded">
<choice>
<element name="X509IssuerSerial" type="ds:X509IssuerSerialType"/>
<element name="X509SKI" type="base64Binary"/>
<element name="X509SubjectName" type="string"/>
<element name="X509Certificate" type="base64Binary"/>
<element name="X509CRL" type="base64Binary"/>
<any namespace="##other" processContents="lax"/>
</choice>
</sequence>
</complexType>
<complexType name="X509IssuerSerialType">
<sequence>
<element name="X509IssuerName" type="string"/>
<element name="X509SerialNumber" type="integer"/>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd">
DTD
<!ELEMENT X509Data ((X509IssuerSerial | X509SKI | X509SubjectName |
X509Certificate | X509CRL)+ %X509.ANY;)>
<!ELEMENT X509IssuerSerial (X509IssuerName, X509SerialNumber) >
<!ELEMENT X509IssuerName (#PCDATA) >
<!ELEMENT X509SubjectName (#PCDATA) >
<!ELEMENT X509SerialNumber (#PCDATA) >
<!ELEMENT X509SKI (#PCDATA) >
<!ELEMENT X509Certificate (#PCDATA) >
<!ELEMENT X509CRL (#PCDATA) >
<!-- Note, this DTD and schema permit <code>X509Data</code> to be empty; this is
precluded by the text in <a
href="#sec-KeyInfo"><code>KeyInfo</code> Element</a> (section 4.4) which states
that at least one element from the dsig namespace should be present
in the PGP, SPKI, and X509 structures. This is easily expressed for
the other key types, but not for X509Data because of its rich
structure. -->
</pre>
<h4>
4.4.5 The <a id="sec-PGPData" name="sec-PGPData"><code>PGPData</code></a> Element
</h4>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a name="PGPData" id="PGPData"
href="http://www.w3.org/2000/09/xmldsig#PGPData">http://www.w3.org/2000/09/xmldsig#PGPData</a></code>
"<br />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's type)
</dd>
</dl>
<p>
The <code>PGPData</code> element within <code>KeyInfo</code> is used to convey
information related to PGP public key pairs and signatures on such keys. The
<code>PGPKeyID</code>'s value is a base64Binary sequence containing a standard
PGP public key identifier as defined in [<a href="#ref-PGP">PGP</a>, section
11.2]. The <code>PGPKeyPacket</code> contains a base64-encoded Key Material
Packet as defined in [<a href="#ref-PGP">PGP</a>, section 5.5]. These children
element types can be complemented/extended by siblings from an external namespace
within <code>PGPData</code>, or <code>PGPData</code> can be replaced all together
with an alternative PGP XML structure as a child of <code>KeyInfo</code>.
<code>PGPData</code> must contain one <code>PGPKeyID</code> and/or one
<code>PGPKeyPacket</code> and 0 or more elements from an external namespace.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="PGPData" type="ds:PGPDataType"/>
<complexType name="PGPDataType">
<choice>
<sequence>
<element name="PGPKeyID" type="base64Binary"/>
<element name="PGPKeyPacket" type="base64Binary" minOccurs="0"/>
<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
<sequence>
<element name="PGPKeyPacket" type="base64Binary"/>
<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</choice>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT PGPData ((PGPKeyID, PGPKeyPacket?) | (PGPKeyPacket) %PGPData.ANY;) >
<!ELEMENT PGPKeyPacket (#PCDATA) >
<!ELEMENT PGPKeyID (#PCDATA) >
</pre>
<h4>
4.4.6 The <a id="sec-SPKIData" name="sec-SPKIData"><code>SPKIData</code></a>
Element
</h4>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a name="SPKIData" id="SPKIData"
href="http://www.w3.org/2000/09/xmldsig#SPKIData">http://www.w3.org/2000/09/xmldsig#SPKIData</a></code>
"<br />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's type)
</dd>
</dl>
<p>
The <code>SPKIData</code> element within <code>KeyInfo</code> is used to convey
information related to SPKI public key pairs, certificates and other SPKI data.
<code>SPKISexp</code> is the base64 encoding of a SPKI canonical S-expression.
<code>SPKIData</code> must have at least one <code>SPKISexp</code>;
<code>SPKISexp</code> can be complemented/extended by siblings from an external
namespace within <code>SPKIData</code>, or <code>SPKIData</code> can be entirely
replaced with an alternative SPKI XML structure as a child of
<code>KeyInfo</code>.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="SPKIData" type="ds:SPKIDataType"/>
<complexType name="SPKIDataType">
<sequence maxOccurs="unbounded">
<element name="SPKISexp" type="base64Binary"/>
<any namespace="##other" processContents="lax" minOccurs="0"/>
</sequence>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT SPKIData (SPKISexp %SPKIData.ANY;) >
<!ELEMENT SPKISexp (#PCDATA) >
</pre>
<h4>
4.4.7 The <a id="sec-MgmtData" name="sec-MgmtData"><code>MgmtData</code></a>
Element
</h4>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a name="MgmtData" id="MgmtData"
href="http://www.w3.org/2000/09/xmldsig#MgmtData">http://www.w3.org/2000/09/xmldsig#MgmtData</a></code>
"<br />
(this can be used within a <code>RetrievalMethod</code> or
<code>Reference</code> element to identify the referent's type)
</dd>
</dl>
<p>
The <code>MgmtData</code> element within <code>KeyInfo</code> is a string value
used to convey in-band key distribution or agreement data. For example, DH key
exchange, RSA key encryption, etc. Use of this element is NOT RECOMMENDED. It
provides a syntactic hook where in-band key distribution or agreement data can be
placed. However, superior interoperable child elements of <code>KeyInfo</code>
for the transmission of encrypted keys and for key agreement are being specified
by the W3C XML Encryption Working Group and they should be used instead of
<code>MgmtData</code>.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="MgmtData" type="string"/>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT MgmtData (#PCDATA)>
</pre>
<h3>
4.5 The <a id="sec-Object" name="sec-Object"><code>Object</code></a> Element
</h3>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type=<a id="Object" href="http://www.w3.org/2000/09/xmldsig#Object"
name="Object">"http://www.w3.org/2000/09/xmldsig#Object"</a><br />
</code> (this can be used within a <code>Reference</code> element to identify
the referent's type)
</dd>
</dl>
<p>
<code>Object</code> is an optional element that may occur one or more times. When
present, this element may contain any data. The <code>Object</code> element may
include optional MIME type, ID, and encoding attributes.
</p>
<p>
The <code>Object</code>'s <code>Encoding</code> attributed may be used to provide
a URI that identifies the method by which the object is encoded (e.g., a binary
file).
</p>
<p>
The <code>MimeType</code> attribute is an optional attribute which describes the
data within the <code>Object</code> (independent of its encoding). This is a
string with values defined by [<a href="#ref-MIME">MIME</a>]. For example, if the
<code>Object</code> contains base64 encoded <a
href="http://www.w3.org/Graphics/PNG/">PNG</a>, the <code>Encoding</code> may be
specified as 'base64' and the <code>MimeType</code> as 'image/png'. This
attribute is purely advisory; no validation of the <code>MimeType</code>
information is required by this specification. Applications which require
normative type and encoding information for signature validation should specify
<code><a href="#sec-Transforms">Transforms</a></code> with well defined resulting
types and/or encodings.
</p>
<p>
The <code>Object</code>'s <code>Id</code> is commonly referenced from a
<code>Reference</code> in <code>SignedInfo</code>, or <code>Manifest</code>. This
element is typically used for <a href="#def-SignatureEnveloping"
class="link-def">enveloping signatures</a> where the object being signed is to be
included in the signature element. The digest is calculated over the entire
<code>Object</code> element including start and end tags.
</p>
<p>
Note, if the application wishes to exclude the <code><Object></code> tags
from the digest calculation the <code>Reference</code> must identify the actual
data object (easy for XML documents) or a transform must be used to remove the
<code>Object</code> tags (likely where the data object is non-XML). Exclusion of
the object tags may be desired for cases where one wants the signature to remain
valid if the data object is moved from inside a signature to outside the
signature (or vice versa), or where the content of the <code>Object</code> is an
encoding of an original binary document and it is desired to extract and decode
so as to sign the original bitwise representation.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="Object" type="ds:ObjectType"/>
<complexType name="ObjectType" mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##any" processContents="lax"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
<attribute name="MimeType" type="string" use="optional"/>
<attribute name="Encoding" type="anyURI" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT Object (#PCDATA|Signature|SignatureProperties|Manifest %Object.ANY;)* >
<!ATTLIST Object
Id ID #IMPLIED
MimeType CDATA #IMPLIED
Encoding CDATA #IMPLIED >
</pre>
<h2>
5.0 <a id="sec-AdditionalSyntax" name="sec-AdditionalSyntax">Additional Signature
Syntax</a>
</h2>
<p>
This section describes the optional to implement <code>Manifest</code> and
<code>SignatureProperties</code> elements and describes the handling of XML
processing instructions and comments. With respect to the elements
<code>Manifest</code> and <code>SignatureProperties</code> this section specifies
syntax and little behavior -- it is left to the application. These elements can
appear anywhere the parent's content model permits; the <code>Signature</code>
content model only permits them within <code>Object</code>.
</p>
<h3>
5.1 The <a id="sec-Manifest" name="sec-Manifest"><code>Manifest</code></a>
Element
</h3>
<dl>
<dt>
Identifier
</dt>
<dd>
<code>Type=<a id="Manifest" href="http://www.w3.org/2000/09/xmldsig#Manifest"
name="Manifest">"http://www.w3.org/2000/09/xmldsig#Manifest"</a><br />
</code> (this can be used within a <code>Reference</code> element to identify
the referent's type)
</dd>
</dl>
<p>
The <code>Manifest</code> element provides a list of <code>Reference</code>s. The
difference from the list in <code>SignedInfo</code> is that it is application
defined which, if any, of the digests are actually checked against the objects
referenced and what to do if the object is inaccessible or the digest compare
fails. If a <code>Manifest</code> is pointed to from <code>SignedInfo</code>, the
digest over the <code>Manifest</code> itself will be checked by the core
signature validation behavior. The digests within such a <code>Manifest</code>
are checked at the application's discretion. If a <code>Manifest</code> is
referenced from another <code>Manifest</code>, even the overall digest of this
two level deep <code>Manifest</code> might not be checked.
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="Manifest" type="ds:ManifestType"/>
<complexType name="ManifestType">
<sequence>
<element ref="ds:Reference" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT Manifest (Reference+) >
<!ATTLIST Manifest
Id ID #IMPLIED >
</pre>
<h3>
5.2 The <a id="sec-SignatureProperties"
name="sec-SignatureProperties"><code>SignatureProperties</code></a> Element
</h3>
<dl>
<dt>
</dt>
<dt>
Identifier
</dt>
<dd>
<code>Type="<a id="SignatureProperties"
href="http://www.w3.org/2000/09/xmldsig#SignatureProperties"
name="SignatureProperties">http://www.w3.org/2000/09/xmldsig#SignatureProperties</a>"<br />
</code> (this can be used within a <code>Reference</code> element to identify
the referent's type)
</dd>
</dl>
<p>
Additional information items concerning the generation of the signature(s) can be
placed in a <code>SignatureProperty</code> element (i.e., date/time stamp or the
serial number of cryptographic hardware used in signature generation).
</p>
<pre class="xml-dtd">
Schema Definition:
<element name="SignatureProperties" type="ds:SignaturePropertiesType"/>
<complexType name="SignaturePropertiesType">
<sequence>
<element ref="ds:SignatureProperty" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
<element name="SignatureProperty" type="ds:SignaturePropertyType"/>
<complexType name="SignaturePropertyType" mixed="true">
<choice maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>
<!-- (1,1) elements from (1,unbounded) namespaces -->
</choice>
<attribute name="Target" type="anyURI" use="required"/>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT SignatureProperties (SignatureProperty+) >
<!ATTLIST SignatureProperties
Id ID #IMPLIED >
<!ELEMENT SignatureProperty (#PCDATA %SignatureProperty.ANY;)* >
<!ATTLIST SignatureProperty
Target CDATA #REQUIRED
Id ID #IMPLIED >
</pre>
<h3>
5.3 <a id="sec-PI" name="sec-PI">Processing Instructions</a> in Signature
Elements
</h3>
<p>
No XML processing instructions (PIs) are used by this specification.
</p>
<p>
Note that PIs placed inside <code>SignedInfo</code> by an application will be
signed unless the <code>CanonicalizationMethod</code> algorithm discards them.
(This is true for any signed XML content.) All of the
<code>CanonicalizationMethod</code>s identified within this specification retain
PIs. When a PI is part of content that is signed (e.g., within
<code>SignedInfo</code> or referenced XML documents) any change to the PI will
obviously result in a signature failure.
</p>
<h3>
5.4 <a id="sec-comments" name="sec-comments">Comments</a> in Signature Elements
</h3>
<p>
XML comments are not used by this specification.
</p>
<p>
Note that unless <code>CanonicalizationMethod</code> removes comments within
<code>SignedInfo</code> or any other referenced XML (which [<a
href="#ref-XML-C14N">XML-C14N</a>] does), they will be signed. Consequently, if
they are retained, a change to the comment will cause a signature failure.
Similarly, the XML signature over any XML data will be sensitive to comment
changes unless a comment-ignoring canonicalization/transform method, such as the
Canonical XML [<a href="#ref-XML-C14N">XML-C14N</a>], is specified.
</p>
<h2>
6.0 <a id="sec-Algorithms" name="sec-Algorithms">Algorithms</a>
</h2>
<p>
This section identifies algorithms used with the XML digital signature
specification. Entries contain the identifier to be used in
<code>Signature</code> elements, a reference to the formal specification, and
definitions, where applicable, for the representation of keys and the results of
cryptographic operations.
</p>
<h3>
6.1 <a id="sec-AlgID" name="sec-AlgID">Algorithm</a> Identifiers and
Implementation Requirements
</h3>
<p>
Algorithms are identified by URIs that appear as an attribute to the element that
identifies the algorithms' role (<code>DigestMethod</code>,
<code>Transform</code>, <code>SignatureMethod</code>, or
<code>CanonicalizationMethod</code>). All algorithms used herein take parameters
but in many cases the parameters are implicit. For example, a
<code>SignatureMethod</code> is implicitly given two parameters: the keying info
and the output of <code>CanonicalizationMethod</code>. Explicit additional
parameters to an algorithm appear as content elements within the algorithm role
element. Such parameter elements have a descriptive element name, which is
frequently algorithm specific, and MUST be in the XML Signature namespace or an
algorithm specific namespace.
</p>
<p>
This specification defines a set of algorithms, their URIs, and requirements for
implementation. Requirements are specified over implementation, not over
requirements for signature use. Furthermore, the mechanism is extensible;
alternative algorithms may be used by signature applications.
</p>
<dl>
<dt>
Digest
</dt>
<dd>
<ol>
<li>
Required SHA1<br />
<a
href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a>
</li>
</ol>
</dd>
<dt>
Encoding
</dt>
<dd>
<ol>
<li>
Required base64<br />
<a href="http://www.w3.org/2000/09/xmldsig#base64"><span
style="font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span>base64</a>
</li>
</ol>
</dd>
<dt>
MAC
</dt>
<dd>
<ol>
<li>
Required HMAC-SHA1<br />
<a
href="http://www.w3.org/2000/09/xmldsig#hmac-sha1">http://www.w3.org/2000/09/xmldsig#hmac-sha1</a>
</li>
</ol>
</dd>
<dt>
Signature
</dt>
<dd>
<ol>
<li>
Required DSAwithSHA1 (DSS)<br />
<a href="http://www.w3.org/2000/09/xmldsig#dsa-sha1"><span
style="font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span>dsa-sha1</a>
</li>
<li>
Recommended RSAwithSHA1<br />
<a href="http://www.w3.org/2000/09/xmldsig#rsa-sha1"><span
style="font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span>rsa-sha1</a>
</li>
</ol>
</dd>
<dt>
Canonicalization
</dt>
<dd>
<ol>
<li>
Required Canonical XML (omits comments)<br />
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a>
</li>
<li>
Recommended Canonical XML with Comments<br />
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a>
</li>
</ol>
</dd>
<dt>
Transform
</dt>
<dd>
<ol>
<li>
Optional XSLT<br />
<a
href="http://www.w3.org/TR/1999/REC-xslt-19991116">http://www.w3.org/TR/1999/REC-xslt-19991116</a>
</li>
<li>
Recommended XPath<br />
<a
href="http://www.w3.org/TR/1999/REC-xpath-19991116">http://www.w3.org/TR/1999/REC-xpath-19991116</a>
</li>
<li>
Required Enveloped Signature*<br />
<a
href="http://www.w3.org/2000/09/xmldsig#enveloped-signature">http://www.w3.org/2000/09/xmldsig#enveloped-signature</a>
</li>
</ol>
</dd>
</dl>
<p>
* The Enveloped Signature transform removes the <code>Signature</code> element
from the calculation of the signature when the signature is within the content
that it is being signed. This MAY be implemented via the RECOMMENDED XPath
specification specified in 6.6.4: <a href="#sec-EnvelopedSignature">Enveloped
Signature Transform</a>; it MUST have the same effect as that specified by the <a
href="#sec-XPath">XPath Transform</a>.
</p>
<h3>
6.2 <a id="sec-MessageDigests" name="sec-MessageDigests">Message Digests</a>
</h3>
<p>
Only one digest algorithm is defined herein. However, it is expected that one or
more additional strong digest algorithms will be developed in connection with the
US Advanced Encryption Standard effort. Use of <a
href="http://www.ietf.org/rfc/rfc1321.txt">MD5</a> [<a href="#ref-MD5">MD5</a>]
is NOT RECOMMENDED because recent advances in cryptanalysis have cast doubt on
its strength.
</p>
<h4>
6.2.1 <a id="sec-SHA-1" name="sec-SHA-1">SHA-1</a>
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a id="sha1" href="http://www.w3.org/2000/09/xmldsig#sha1"
name="sha1">http://www.w3.org/2000/09/xmldsig#sha1</a>
</dd>
</dl>
<p>
The <a
href="http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt">SHA-1</a>
algorithm [<a href="#ref-SHA-1">SHA-1</a>] takes no explicit parameters. An
example of an SHA-1 DigestAlg element is:
</p>
<pre class="xml-example">
<code><DigestMethod Algorithm="</code><span
style="font-weight: normal">http://www.w3.org/2000/09/xmldsig#</span><code>sha1"/></code>
</pre>
<p>
A SHA-1 digest is a 160-bit string. The content of the DigestValue element shall
be the base64 encoding of this bit string viewed as a 20-octet octet stream. For
example, the DigestValue element for the message digest:
</p>
<pre class="xml-example">
A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
</pre>
<p>
from Appendix A of the SHA-1 standard would be:
</p>
<pre class="xml-example">
<DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue>
</pre>
<h3>
6.3 <a id="sec-MACs" name="sec-MACs">Message Authentication Codes</a>
</h3>
<p>
MAC algorithms take two implicit parameters, their keying material determined
from <code>KeyInfo</code> and the octet stream output by
<code>CanonicalizationMethod</code>. MACs and signature algorithms are
syntactically identical but a MAC implies a shared secret key.
</p>
<h4>
6.3.1 <a id="sec-HMAC" name="sec-HMAC">HMAC</a>
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a id="hmac-sha1" name="hmac-sha1"
href="http://www.w3.org/2000/09/xmldsig#hmac-sha1">http://www.w3.org/2000/09/xmldsig#hmac-sha1</a>
</dd>
</dl>
<p>
The <a href="http://www.ietf.org/rfc/rfc2104.txt">HMAC</a> algorithm (RFC2104 [<a
href="#ref-HMAC">HMAC</a>]) takes the truncation length in bits as a parameter;
if the parameter is not specified then all the bits of the hash are output. An
example of an HMAC <code>SignatureMethod</code> element:
</p>
<pre class="xml-example">
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1">
<HMACOutputLength>128</HMACOutputLength>
</SignatureMethod>
</pre>
<p>
The output of the HMAC algorithm is ultimately the output (possibly truncated) of
the chosen digest algorithm. This value shall be base64 encoded in the same
straightforward fashion as the output of the digest algorithms. Example: the
SignatureValue element for the HMAC-SHA1 digest
</p>
<pre class="xml-example">
9294727A 3638BB1C 13F48EF8 158BFC9D
</pre>
<p>
from the test vectors in [<a href="#ref-HMAC">HMAC</a>] would be
</p>
<pre class="xml-example">
<SignatureValue>kpRyejY4uxwT9I74FYv8nQ==</SignatureValue>
</pre>
<pre class="xml-dtd">
Schema Definition:
<simpleType name="HMACOutputLengthType">
<restriction base="integer"/>
</simpleType>
</pre>
<pre class="xml-dtd">
DTD:
<!ELEMENT HMACOutputLength (#PCDATA)>
</pre>
<h3>
6.4 <a id="sec-SignatureAlg" name="sec-SignatureAlg">Signature Algorithms</a>
</h3>
<p>
Signature algorithms take two implicit parameters, their keying material
determined from <code>KeyInfo</code> and the octet stream output by
<code>CanonicalizationMethod</code>. Signature and MAC algorithms are
syntactically identical but a signature implies public key cryptography.
</p>
<h4>
6.4.1 <a id="sec-DSA" name="sec-DSA">DSA</a>
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a id="dsa-sha1" name="dsa-sha1"
href="http://www.w3.org/2000/09/xmldsig#dsa-sha1">http://www.w3.org/2000/09/xmldsig#dsa-sha1</a>
</dd>
</dl>
<p>
The DSA algorithm [<a href="#ref-DSS">DSS</a>] takes no explicit parameters. An
example of a DSA <code>SignatureMethod</code> element is:
</p>
<pre class="xml-example">
<code><SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/></code>
</pre>
<p>
The output of the DSA algorithm consists of a pair of integers usually referred
by the pair (r, s). The signature value consists of the base64 encoding of the
concatenation of two octet-streams that respectively result from the
octet-encoding of the values r and s in that order. Integer to octet-stream
conversion must be done according to the I2OSP operation defined in the <a
href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437</a> [<a
href="#ref-PKCS1">PKCS1</a>] specification with a <code>l</code> parameter equal
to 20. For example, the SignatureValue element for a DSA signature
(<code>r</code>, <code>s</code>) with values specified in hexadecimal:
</p>
<pre class="xml-example">
<code>r = 8BAC1AB6 6410435C B7181F95 B16AB97C 92B341C0</code>
<code>s = 41E2345F 1F56DF24 58F426D1 55B4BA2D B6DCD8C8</code>
</pre>
<p>
from the example in Appendix 5 of the DSS standard would be
</p>
<pre class="xml-example">
<code><SignatureValue></code>
<code>i6watmQQQ1y3GB+VsWq5fJKzQcBB4jRfH1bfJFj0JtFVtLotttzYyA==</SignatureValue></code>
</pre>
<h4>
6.4.2 <a id="sec-PKCS1" name="sec-PKCS1">PKCS1</a> (RSA-SHA1)
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a id="rsa-sha1" href="http://www.w3.org/2000/09/xmldsig#rsa-sha1"
name="rsa-sha1">http://www.w3.org/2000/09/xmldsig#rsa-sha1</a>
</dd>
</dl>
<p>
The expression "RSA algorithm" as used in this draft refers to the
RSASSA-PKCS1-v1_5 algorithm described in <a
href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437</a> [<a
href="#ref-PKCS1">PKCS1</a>]. The RSA algorithm takes no explicit parameters. An
example of an RSA SignatureMethod element is:
</p>
<pre class="xml-example">
<code><SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/></code>
</pre>
<p>
The <code>SignatureValue</code> content for an RSA signature is the base64 [<a
href="#ref-MIME">MIME</a>] encoding of the octet string computed as per <a
href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437</a> [<a
href="#ref-PKCS1">PKCS1</a>, section 8.1.1: Signature generation for the
RSASSA-PKCS1-v1_5 signature scheme]. As specified in the EMSA-PKCS1-V1_5-ENCODE
function <a href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437</a> [<a
href="#ref-PKCS1">PKCS1</a>, section 9.2.1], the value input to the signature
function MUST contain a pre-pended algorithm object identifier for the hash
function, but the availability of an ASN.1 parser and recognition of OIDs is not
required of a signature verifier. The PKCS#1 v1.5 representation appears as:
</p>
<pre class="xml-example">
CRYPT (PAD (ASN.1 (OID, DIGEST (data))))
</pre>
<p>
Note that the padded ASN.1 will be of the following form:
</p>
<pre class="xml-example">
01 | FF* | 00 | prefix | hash
</pre>
<p>
where "|" is concatenation, "01", "FF", and "00" are fixed octets of the
corresponding hexadecimal value, "hash" is the SHA1 digest of the data, and
"prefix" is the ASN.1 BER SHA1 algorithm designator prefix required in PKCS1 [RFC
2437], that is,
</p>
<pre class="xml-example">
hex 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14
</pre>
<p>
This prefix is included to make it easier to use standard cryptographic
libraries. The FF octet MUST be repeated the maximum number of times such that
the value of the quantity being CRYPTed is one octet shorter than the RSA
modulus.
</p>
<p>
The resulting base64 [<a href="#ref-MIME">MIME</a>] string is the value of the
child text node of the SignatureValue element, e.g.
</p>
<pre class="xml-example">
<SignatureValue>
IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
</SignatureValue>
</pre>
<h3>
6.5 <a id="sec-c14nAlg" name="sec-c14nAlg">Canonicalization Algorithms</a>
</h3>
<p>
If canonicalization is performed over octets, the canonicalization algorithms
take two implicit parameters: the content and its charset. The charset is derived
according to the rules of the transport protocols and media types (e.g, RFC2376
[<a href="#ref-XML-MT">XML-MT</a>] defines the media types for XML). This
information is necessary to correctly sign and verify documents and often
requires careful server side configuration.
</p>
<p>
Various canonicalization algorithms require conversion to [<a
href="#ref-UTF-8">UTF-8</a>].The two algorithms below understand at least [<a
href="#ref-UTF-8">UTF-8</a>] and [<a href="#ref-UTF-16">UTF-16</a>] as input
encodings. We RECOMMEND that externally specified algorithms do the same.
Knowledge of other encodings is OPTIONAL.
</p>
<p>
Various canonicalization algorithms transcode from a non-Unicode encoding to
Unicode. The two algorithms below perform text normalization during transcoding
[<a href="#ref-NFC">NFC</a>, <a href="#ref-NFC-Corrigendum">NFC-Corrigendum</a>].
We RECOMMEND that externally specified canonicalization algorithms do the same.
(Note, there can be ambiguities in converting existing charsets to Unicode, for
an example see the XML Japanese Profile [<a
href="#ref-XML-Japanese">XML-Japanese</a>] Note.)
</p>
<h4>
6.5.1 <a id="sec-Canonical" name="sec-Canonical">Canonical</a> XML
</h4>
<dl>
<dt>
Identifier for REQUIRED Canonical XML (omits comments):
</dt>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a>
</dd>
</dl>
<dl>
<dt>
Identifier for Canonical XML with Comments:
</dt>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a>
</dd>
</dl>
<p>
An example of an XML canonicalization element is:
</p>
<pre class="xml-example">
<code><CanonicalizationMethod Algorithm="</code>http://www.w3.org/TR/2001/REC-xml-c14n-20010315<code>"/></code>
</pre>
<p>
The normative specification of Canonical XML is [<a
href="#ref-XML-C14N">XML-C14N</a>]. The algorithm is capable of taking as input
either an octet stream or an XPath node-set (or sufficiently functional
alternative). The algorithm produces an octet stream as output. Canonical XML is
easily parameterized (via an additional URI) to omit or retain comments.
</p>
<h3>
6.6 <a id="sec-TransformAlg" name="sec-TransformAlg"><code>Transform</code></a>
Algorithms
</h3>
<p>
A <code>Transform</code> algorithm has a single implicit parameter: an octet
stream from the <code>Reference</code> or the output of an earlier
<code>Transform</code>.
</p>
<p>
Application developers are strongly encouraged to support all transforms listed
in this section as RECOMMENDED unless the application environment has resource
constraints that would make such support impractical. Compliance with this
recommendation will maximize application interoperability and libraries should be
available to enable support of these transforms in applications without extensive
development.
</p>
<h4>
6.6.1 <a id="sec-Canonicalization"
name="sec-Canonicalization">Canonicalization</a>
</h4>
<p>
Any canonicalization algorithm that can be used for
<code>CanonicalizationMethod</code> (such as those in <a
href="#sec-c14nAlg">Canonicalization Algorithms</a> (section 6.5)) can be used as
a <code>Transform</code>.
</p>
<h4>
6.6.2 <a id="sec-Base-64" name="sec-Base-64">Base64</a>
</h4>
<dl>
<dt>
Identifiers:
</dt>
<dd>
<a id="base64" href="http://www.w3.org/2000/09/xmldsig#base64"
name="base64">http://www.w3.org/2000/09/xmldsig#base64</a>
</dd>
</dl>
<p>
The normative specification for base64 decoding transforms is [<a
href="#ref-MIME">MIME</a>]. The base64 <code>Transform</code> element has no
content. The input is decoded by the algorithms. This transform is useful if an
application needs to sign the raw data associated with the encoded content of an
element.
</p>
<p>
This transform requires an octet stream for input. If an XPath node-set (or
sufficiently functional alternative) is given as input, then it is converted to
an octet stream by performing operations logically equivalent to 1) applying an
XPath transform with expression <code>self::text()</code>, then 2) taking the
string-value of the node-set. Thus, if an XML element is identified by a barename
XPointer in the <code>Reference</code> URI, and its content consists solely of
base64 encoded character data, then this transform automatically strips away the
start and end tags of the identified element and any of its descendant elements
as well as any descendant comments and processing instructions. The output of
this transform is an octet stream.
</p>
<h4>
6.6.3 <a name="sec-XPath" id="sec-XPath">XPath</a> Filtering
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a
href="http://www.w3.org/TR/1999/REC-xpath-19991116">http://www.w3.org/TR/1999/REC-xpath-19991116</a>
</dd>
</dl>
<p>
The normative specification for XPath expression evaluation is [<a
href="#ref-XPath">XPath</a>]. The XPath expression to be evaluated appears as the
character content of a transform parameter child element named
<code>XPath</code>.
</p>
<p>
The input required by this transform is an XPath node-set. Note that if the
actual input is an XPath node-set resulting from a null URI or barename XPointer
dereference, then comment nodes will have been omitted. If the actual input is an
octet stream, then the application MUST convert the octet stream to an XPath
node-set suitable for use by Canonical XML with Comments. (A subsequent
application of the REQUIRED Canonical XML algorithm would strip away these
comments.) In other words, the input node-set should be equivalent to the one
that would be created by the following process:
</p>
<ol>
<li>
Initialize an XPath evaluation context by setting the initial node equal to the
input XML document's root node, and set the context position and size to 1.
</li>
<li>
Evaluate the XPath expression <code>(//. | //@* | //namespace::*)</code>
</li>
</ol>
<p>
The evaluation of this expression includes all of the document's nodes (including
comments) in the node-set representing the octet stream.
</p>
<p>
The transform output is also an XPath node-set. The XPath expression appearing in
the <code>XPath</code> parameter is evaluated once for each node in the input
node-set. The result is converted to a boolean. If the boolean is true, then the
node is included in the output node-set. If the boolean is false, then the node
is omitted from the output node-set.
</p>
<p>
<strong>Note:</strong> Even if the input node-set has had comments removed, the
comment nodes still exist in the underlying parse tree and can separate text
nodes. For example, the markup <code><e>Hello, <!-- comment
-->world!</e></code> contains two text nodes. Therefore, the expression
<code>self::text()[string()="Hello, world!"]</code> would fail. Should this
problem arise in the application, it can be solved by either canonicalizing the
document before the XPath transform to physically remove the comments or by
matching the node based on the parent element's string value (e.g. by using the
expression <code>self::text()[string(parent::e)="Hello, world!"]</code>).
</p>
<p>
The primary purpose of this transform is to ensure that only specifically defined
changes to the input XML document are permitted after the signature is affixed.
This is done by omitting precisely those nodes that are allowed to change once
the signature is affixed, and including all other input nodes in the output. It
is the responsibility of the XPath expression author to include all nodes whose
change could affect the interpretation of the transform output in the application
context.
</p>
<p>
An important scenario would be a document requiring two enveloped signatures.
Each signature must omit itself from its own digest calculations, but it is also
necessary to exclude the second signature element from the digest calculations of
the first signature so that adding the second signature does not break the first
signature.
</p>
<p>
The XPath transform establishes the following evaluation context for each node of
the input node-set:
</p>
<ul>
<li>
A <strong>context node</strong> equal to a node of the input node-set.
</li>
<li>
A <strong>context position</strong>, initialized to 1.
</li>
<li>
A <strong>context size</strong>, initialized to 1.
</li>
<li>
A <strong>library of functions</strong> equal to the function set defined in
[<a href="#ref-XPath">XPath]</a> plus a function named <strong><a
href="#function-here">here</a></strong>.
</li>
<li>
A set of variable bindings. No means for initializing these is defined. Thus,
the set of variable bindings used when evaluating the XPath expression is
empty, and use of a variable reference in the XPath expression results in an
error.
</li>
<li>
The set of namespace declarations in scope for the XPath expression.
</li>
</ul>
<p>
As a result of the context node setting, the XPath expressions appearing in this
transform will be quite similar to those used in used in [<a
href="#ref-XSLT">XSLT</a>], except that the size and position are always 1 to
reflect the fact that the transform is automatically visiting every node (in
XSLT, one recursively calls the command <code>apply-templates</code> to visit the
nodes of the input tree).
</p>
<p>
<strong>The function <code>here()</code> is defined as follows:</strong>
</p>
<p>
<a name="function-here" id="function-here"><strong>Function:</strong>
<em>node-set</em> <strong>here</strong>()</a>
</p>
<p>
The <strong><a href="#function-here">here</a></strong> function returns a
node-set containing the attribute or processing instruction node or the parent
element of the text node that directly bears the XPath expression. This
expression results in an error if the containing XPath expression does not appear
in the same XML document against which the XPath expression is being evaluated.
</p>
<p>
As an example, consider creating an enveloped signature (a <code>Signature</code>
element that is a descendant of an element being signed). Although the signed
content should not be changed after signing, the elements within the
<code>Signature</code> element are changing (e.g. the digest value must be put
inside the <code>DigestValue</code> and the <code>SignatureValue</code> must be
subsequently calculated). One way to prevent these changes from invalidating the
digest value in <code>DigestValue</code> is to add an XPath
<code>Transform</code> that omits all <code>Signature</code> elements and their
descendants. For example,
</p>
<pre class="xml-example">
<Document>
...
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
...
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<XPath xmlns:dsig="&dsig;">
not(ancestor-or-self::dsig:Signature)
</XPath>
</Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue></DigestValue>
</Reference>
</SignedInfo>
<SignatureValue></SignatureValue>
</Signature>
...
</Document>
</pre>
<p>
Due to the null <code>Reference</code> URI in this example, the XPath transform
input node-set contains all nodes in the entire parse tree starting at the root
node (except the comment nodes). For each node in this node-set, the node is
included in the output node-set except if the node or one of its ancestors has a
tag of <code>Signature</code> that is in the namespace given by the replacement
text for the entity <code>&dsig;</code>.
</p>
<p>
A more elegant solution uses the <strong><a
href="#function-here">here</a></strong> function to omit only the
<code>Signature</code> containing the XPath Transform, thus allowing enveloped
signatures to sign other signatures. In the example above, use the
<code>XPath</code> element:
</p>
<pre class="xml-example">
<XPath xmlns:dsig="&dsig;">
count(ancestor-or-self::dsig:Signature |
here()/ancestor::dsig:Signature[1]) >
count(ancestor-or-self::dsig:Signature)</XPath>
</pre>
<p>
Since the XPath equality operator converts node sets to string values before
comparison, we must instead use the XPath union operator (|). For each node of
the document, the predicate expression is true if and only if the node-set
containing the node and its <code>Signature</code> element ancestors does not
include the enveloped <code>Signature</code> element containing the XPath
expression (the union does not produce a larger set if the enveloped
<code>Signature</code> element is in the node-set given by
<code>ancestor-or-self::Signature</code>).
</p>
<h4>
6.6.4 <a name="sec-EnvelopedSignature" id="sec-EnvelopedSignature">Enveloped
Signature</a> Transform
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a href="http://www.w3.org/2000/09/xmldsig#enveloped-signature"
name="enveloped-signature"
id="enveloped-signature">http://www.w3.org/2000/09/xmldsig#enveloped-signature</a>
</dd>
</dl>
<p>
An enveloped signature transform <strong><em>T</em></strong> removes the whole
<code>Signature</code> element containing <strong><em>T</em></strong> from the
digest calculation of the <code>Reference</code> element containing
<strong><em>T</em></strong>. The entire string of characters used by an XML
processor to match the <code>Signature</code> with the XML production
<code>element</code> is removed. The output of the transform is equivalent to the
output that would result from replacing <strong><em>T</em></strong> with an XPath
transform containing the following <code>XPath</code> parameter element:
</p>
<pre class="xml-example">
<XPath xmlns:dsig="&dsig;">
count(ancestor-or-self::dsig:Signature |
here()/ancestor::dsig:Signature[1]) >
count(ancestor-or-self::dsig:Signature)</XPath>
</pre>
<p>
The input and output requirements of this transform are identical to those of the
XPath transform, but may only be applied to a node-set from its parent XML
document. Note that it is not necessary to use an XPath expression evaluator to
create this transform. However, this transform MUST produce output in exactly the
same manner as the XPath transform parameterized by the XPath expression above.
</p>
<h4>
6.6.5 <a name="sec-XSLT" id="sec-XSLT">XSLT</a> Transform
</h4>
<dl>
<dt>
Identifier:
</dt>
<dd>
<a
href="http://www.w3.org/TR/1999/REC-xslt-19991116">http://www.w3.org/TR/1999/REC-xslt-19991116</a>
</dd>
</dl>
<p>
The normative specification for XSL Transformations is [<a
href="#ref-XSLT">XSLT</a>]. Specification of a namespace-qualified stylesheet
element, which MUST be the sole child of the <code>Transform</code> element,
indicates that the specified style sheet should be used. Whether this
instantiates in-line processing of local XSLT declarations within the resource is
determined by the XSLT processing model; the ordered application of multiple
stylesheet may require multiple <code>Transforms</code>. No special provision is
made for the identification of a remote stylesheet at a given URI because it can
be communicated via an <a
href="http://www.w3.org/TR/1999/REC-xslt-19991116#section-Combining-Stylesheets"><code>
xsl:include</code></a> or <a
href="http://www.w3.org/TR/1999/REC-xslt-19991116#section-Combining-Stylesheets"><code>
xsl:import</code></a> within the <code>stylesheet</code> child of the
<code>Transform</code>.
</p>
<p>
This transform requires an octet stream as input. If the actual input is an XPath
node-set, then the signature application should attempt to convert it to octets
(apply <a href="#sec-Canonical">Canonical XML</a>]) as described in <a
href="#sec-ReferenceProcessingModel">the Reference Processing Model</a> (section
4.3.3.2).
</p>
<p>
The output of this transform is an octet stream. The processing rules for the XSL
style sheet or transform element are stated in the XSLT specification [<a
href="#ref-XSLT">XSLT</a>]. We RECOMMEND that XSLT transform authors use an
output method of <code>xml</code> for XML and HTML. As XSLT implementations do
not produce consistent serializations of their output, we further RECOMMEND
inserting a transform after the XSLT transform to canonicalize the output. These
steps will help to ensure interoperability of the resulting signatures among
applications that support the XSLT transform. Note that if the output is actually
HTML, then the result of these steps is logically equivalent [<a
href="#ref-XHTML">XHTML</a>].
</p>
<h2>
7.0 <a id="sec-XML-Canonicalization" name="sec-XML-Canonicalization">XML
Canonicalization</a> and Syntax Constraint Considerations
</h2>
<p>
Digital signatures only work if the verification calculations are performed on
exactly the same bits as the signing calculations. If the surface representation
of the signed data can change between signing and verification, then some way to
standardize the changeable aspect must be used before signing and verification.
For example, even for simple ASCII text there are at least three widely used line
ending sequences. If it is possible for signed text to be modified from one line
ending convention to another between the time of signing and signature
verification, then the line endings need to be canonicalized to a standard form
before signing and verification or the signatures will break.
</p>
<p>
XML is subject to surface representation changes and to processing which discards
some surface information. For this reason, XML digital signatures have a
provision for indicating canonicalization methods in the signature so that a
verifier can use the same canonicalization as the signer.
</p>
<p>
Throughout this specification we distinguish between the canonicalization of a
<code>Signature</code> element and other signed XML data objects. It is possible
for an isolated XML document to be treated as if it were binary data so that no
changes can occur. In that case, the digest of the document will not change and
it need not be canonicalized if it is signed and verified as such. However, XML
that is read and processed using standard XML parsing and processing techniques
is frequently changed such that some of its surface representation information is
lost or modified. In particular, this will occur in many cases for the
<code>Signature</code> and enclosed <code>SignedInfo</code> elements since they,
and possibly an encompassing XML document, will be processed as XML.
</p>
<p>
Similarly, these considerations apply to <code>Manifest</code>,
<code>Object</code>, and <code>SignatureProperties</code> elements if those
elements have been digested, their <code>DigestValue</code> is to be checked, and
they are being processed as XML.
</p>
<p>
The kinds of changes in XML that may need to be canonicalized can be divided into
four categories. There are those related to the basic [<a
href="#ref-XML">XML</a>], as described in 7.1 below. There are those related to
[<a href="#ref-DOM">DOM</a>], [<a href="#ref-SAX">SAX</a>], or similar processing
as described in 7.2 below. Third, there is the possibility of coded character set
conversion, such as between UTF-8 and UTF-16, both of which all [<a
href="#ref-XML">XML</a>] compliant processors are required to support, which is
described in the paragraph immediately below. And, fourth, there are changes that
related to namespace declaration and XML namespace attribute context as described
in 7.3 below.
</p>
<p>
Any canonicalization algorithm should yield output in a specific fixed coded
character set. All canonicalization <a href="#sec-c14nAlg">algorithms</a>
identified in this document use UTF-8 (without a byte order mark (BOM)) and do
not provide character normalization. We RECOMMEND that signature applications
create XML content (<code>Signature</code> elements and their
descendents/content) in Normalization Form C [<a href="#ref-NFC">NFC</a>, <a
href="#ref-NFC-Corrigendum">NFC-Corrigendum</a>] and check that any XML being
consumed is in that form as well; (if not, signatures may consequently fail to
validate). Additionally, none of these algorithms provide data type
normalization. Applications that normalize data types in varying formats (e.g.,
(true, false) or (1,0)) may not be able to validate each other's signatures.
</p>
<h3>
7.1 <a id="sec-XML-1" name="sec-XML-1">XML 1.0</a>, Syntax Constraints, and
Canonicalization
</h3>
<p>
XML 1.0 [<a href="#ref-XML">XML</a>] defines an interface where a conformant
application reading XML is given certain information from that XML and not other
information. In particular,
</p>
<ol>
<li>
line endings are normalized to the single character #xA by dropping #xD
characters if they are immediately followed by a #xA and replacing them with
#xA in all other cases,
</li>
<li>
missing attributes declared to have default values are provided to the
application as if present with the default value,
</li>
<li>
character references are replaced with the corresponding character,
</li>
<li>
entity references are replaced with the corresponding declared entity,
</li>
<li>
attribute values are normalized by
<ol>
<li>
replacing character and entity references as above,
</li>
<li>
replacing occurrences of #x9, #xA, and #xD with #x20 (space) except that
the sequence #xD#xA is replaced by a single space, and
</li>
<li>
if the attribute is not declared to be CDATA, stripping all leading and
trailing spaces and replacing all interior runs of spaces with a single
space.
</li>
</ol>
</li>
</ol>
<p>
Note that items (2), (4), and (5.3) depend on the presence of a schema, DTD or
similar declarations. The <code>Signature</code> element type is <a
href="http://www.w3.org/TR/2000/WD-xmlschema-1-20000407/#cvc-elt-lax">laxly
schema valid</a> [<a href="#ref-XML-schema">XML-schema</a>], consequently
external XML or even XML within the same document as the signature may be (only)
well-formed or from another namespace (where permitted by the signature schema);
the noted items may not be present. Thus, a signature with such content will only
be verifiable by other signature applications if the following syntax constraints
are observed when generating any signed material including the
<code>SignedInfo</code> element:
</p>
<ol>
<li>
attributes having default values be explicitly present,
</li>
<li>
all entity references (except "amp", "lt", "gt", "apos", "quot", and other
character entities not representable in the encoding chosen) be expanded,
</li>
<li>
attribute value white space be normalized
</li>
</ol>
<h3>
7.2 <a id="sec-DOM-SAX" name="sec-DOM-SAX">DOM/SAX</a> Processing and
Canonicalization
</h3>
<p>
In addition to the canonicalization and syntax constraints discussed above, many
XML applications use the Document Object Model [<a href="#ref-DOM">DOM</a>] or
the Simple API for XML [<a href="#ref-SAX">SAX</a>]. DOM maps XML into a
tree structure of nodes and typically assumes it will be used on an entire
document with subsequent processing being done on this tree. SAX converts XML
into a series of events such as a start tag, content, etc. In either case, many
surface characteristics such as the ordering of attributes and insignificant
white space within start/end tags is lost. In addition, namespace declarations
are mapped over the nodes to which they apply, losing the namespace prefixes in
the source text and, in most cases, losing where namespace declarations appeared
in the original instance.
</p>
<p>
If an XML Signature is to be produced or verified on a system using the DOM or
SAX processing, a canonical method is needed to serialize the relevant part of a
DOM tree or sequence of SAX events. XML canonicalization specifications, such as
[<a href="#ref-XML-C14N">XML-C14N</a>], are based only on information which is
preserved by DOM and SAX. For an XML Signature to be verifiable by an
implementation using DOM or SAX, not only must the <a href="#sec-XML-1">XML 1.0
syntax constraints given in the previous section</a> be followed but an
appropriate XML canonicalization MUST be specified so that the verifier can
re-serialize DOM/SAX mediated input into the same octet stream that was signed.
</p>
<h3>
7.3 <a name="sec-NamespaceContext" id="sec-NamespaceContext">Namespace
Context</a> and Portable Signatures
</h3>
<p>
In [<a href="#ref-XPath">XPath</a>] and consequently the Canonical XML data model
an element has namespace nodes that correspond to those declarations within the
element and its ancestors:
</p>
<blockquote>
<p>
"<strong>Note:</strong> An element <strong><em>E</em></strong> has namespace
nodes that represent its namespace declarations <em>as well as</em> any
namespace declarations made by its ancestors that have not been overridden in
<strong><em>E</em></strong>'s declarations, the default namespace if it is
non-empty, and the declaration of the prefix <code>xml</code>." [<a
href="#ref-XML-C14N">XML-C14N</a>]
</p>
</blockquote>
<p>
When serializing a <code>Signature</code> element or signed XML data that's the
child of other elements using these data models, that <code>Signature</code>
element and its children, may contain namespace declarations from its ancestor
context. In addition, the Canonical XML and Canonical XML with Comments
algorithms import all xml namespace attributes (such as <code>xml:lang</code>)
from the nearest ancestor in which they are declared to the apex node of
canonicalized XML unless they are already declared at that node. This may
frustrate the intent of the signer to create a signature in one context which
remains valid in another. For example, given a signature which is a child of
<code>B</code> and a grandchild of <code>A</code>:
</p>
<pre class="xml-example,">
<A xmlns:n1="&foo;">
<B xmlns:n2="&bar;">
<Signature xmlns="&dsig;"> ...
<Reference URI="#signme"/> ...
</Signature>
<C ID="signme" xmlns="&baz;"/>
</B>
</A>
</pre>
<p>
when either the element <code>B</code> or the signed element <code>C</code> is
moved into a [<a href="#ref-SOAP">SOAP</a>] envelope for transport:
</p>
<pre class="xml-example,">
<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
...
<SOAP:Body>
<B xmlns:n2="&bar;">
<Signature xmlns="&dsig;">
...
</Signature>
<C ID="signme" xmlns="&baz;"/>
</B>
</SOAP:Body>
</SOAP:Envelope>
</pre>
<p>
The canonical form of the signature in this context will contain new namespace
declarations from the <code>SOAP:Envelope</code> context, invalidating the
signature. Also, the canonical form will lack namespace declarations it may have
originally had from element <code>A</code>'s context, also invalidating the
signature. To avoid these problems, the application may:
</p>
<ol>
<li>
Rely upon the enveloping application to properly divorce its body (the
signature payload) from the context (the envelope) before the signature is
validated. Or,
</li>
<li>
Use a canonicalization method that "repels/excludes" instead of "attracts"
ancestor context. [<a href="#ref-XML-C14N">XML-C14N</a>] purposefully attracts
such context.
</li>
</ol>
<h2>
8.0 <a id="sec-Security" name="sec-Security">Security Considerations</a>
</h2>
<p>
The XML Signature specification provides a very flexible digital signature
mechanism. Implementors must give consideration to their application threat
models and to the following factors.
</p>
<h3>
8.1 <a name="sec-Security-Transofrms" id="sec-Security-Transofrms">Transforms</a>
</h3>
<p>
A requirement of this specification is to permit signatures to "apply to a
part or totality of a XML document." (See [<a
href="#ref-XML-Signature-RD">XML-Signature-RD</a>, section 3.1.3].) The
<code>Transforms</code> mechanism meets this requirement by permitting one to
sign data derived from processing the content of the identified resource. For
instance, applications that wish to sign a form, but permit users to enter
limited field data without invalidating a previous signature on the form might
use [<a href="#ref-XPath">XPath</a>] to exclude those portions the user needs to
change. <code>Transforms</code> may be arbitrarily specified and may include
encoding transforms, canonicalization instructions or even XSLT transformations.
Three cautions are raised with respect to this feature in the following sections.
</p>
<p>
Note, <a class="link-def" href="#def-ValidationCore">core validation</a> behavior
does not confirm that the signed data was obtained by applying each step of the
indicated transforms. (Though it does check that the digest of the resulting
content matches that specified in the signature.) For example, some
applications may be satisfied with verifying an XML signature over a cached copy
of already transformed data. Other applications might require that content be
freshly dereferenced and transformed.
</p>
<h4>
8.1.1 <strong><a id="sec-Secure" name="sec-Secure">Only What is Signed is
Secure</a></strong>
</h4>
<p>
First, obviously, signatures over a transformed document do not secure any
information discarded by transforms: only what is signed is secure.
</p>
<p>
Note that the use of Canonical XML [<a href="#ref-XML-C14N">XML-C14N</a>]
ensures that all internal entities and XML namespaces are expanded within the
content being signed. All entities are replaced with their definitions and the
canonical form explicitly represents the namespace that an element would
otherwise inherit. Applications that do not canonicalize XML content (especially
the <code>SignedInfo</code> element) SHOULD NOT use internal entities and SHOULD
represent the namespace explicitly within the content being signed since they can
not rely upon canonicalization to do this for them. Also, users concerned with
the integrity of the element type definitions associated with the XML instance
being signed may wish to sign those definitions as well (i.e., the schema, DTD,
or natural language description associated with the namespace/identifier).
</p>
<p>
Second, an envelope containing signed information is not secured by the
signature. For instance, when an encrypted envelope contains a signature, the
signature does not protect the authenticity or integrity of unsigned envelope
headers nor its ciphertext form, it only secures the plaintext actually signed.
</p>
<h4>
8.1.2 <a id="sec-Seen" name="sec-Seen">Only What is "Seen" Should be Signed</a>
</h4>
<p>
Additionally, the signature secures any information introduced by the transform:
only what is "seen" (that which is represented to the user via visual, auditory
or other media) should be signed. If signing is intended to convey the judgment
or consent of a user (an automated mechanism or person), then it is normally
necessary to secure as exactly as practical the information that was presented to
that user. Note that this can be accomplished by literally signing what was
presented, such as the screen images shown a user. However, this may result in
data which is difficult for subsequent software to manipulate. Instead, one can
sign the data along with whatever filters, style sheets, client profile or other
information that affects its presentation.
</p>
<h4>
8.1.3 <a name="sec-See" id="sec-See">"See" What is Signed</a>
</h4>
<p>
Just as a user should only sign what he or she "sees," persons and automated
mechanism that trust the validity of a transformed document on the basis of a
valid signature should operate over the data that was transformed (including
canonicalization) and signed, not the original pre-transformed data. This
recommendation applies to transforms specified within the signature as well as
those included as part of the document itself. For instance, if an XML document
includes an <a
href="http://www.w3.org/TR/xslt#section-Creating-Processing-Instructions">embedded
style sheet</a> [<a href="#ref-XSLT">XSLT</a>] it is the transformed document
that should be represented to the user and signed. To meet this recommendation
where a document references an external style sheet, the content of that external
resource should also be signed as via a signature <code>Reference</code>
otherwise the content of that external content might change which alters the
resulting document without invalidating the signature.
</p>
<p>
Some applications might operate over the original or intermediary data but should
be extremely careful about potential weaknesses introduced between the original
and transformed data. This is a trust decision about the character and meaning of
the transforms that an application needs to make with caution. Consider a
canonicalization algorithm that normalizes character case (lower to upper) or
character composition ('e and accent' to 'accented-e'). An adversary could
introduce changes that are normalized and consequently inconsequential to
signature validity but material to a DOM processor. For instance, by changing the
case of a character one might influence the result of an XPath selection. A
serious risk is introduced if that change is normalized for signature validation
but the processor operates over the original data and returns a different result
than intended.
</p>
<p>
As a result:
</p>
<ul>
<li>
All documents operated upon and generated by signature applications MUST be in
[<a href="#ref-NFC">NFC</a>, <a
href="#ref-NFC-Corrigendum">NFC-Corrigendum</a>] (otherwise intermediate
processors might unintentionally break the signature)
</li>
<li>
Encoding normalizations SHOULD NOT be done as part of a signature transform, or
(to state it another way) if normalization does occur, the application SHOULD
always "see" (operate over) the normalized form.
</li>
</ul>
<h3>
8.2 <a id="sec-Check" name="sec-Check">Check the Security Model</a>
</h3>
<p>
This specification uses public key signatures and keyed hash authentication
codes. These have substantially different security models. Furthermore, it
permits user specified algorithms which may have other models.
</p>
<p>
With public key signatures, any number of parties can hold the public key and
verify signatures while only the parties with the private key can create
signatures. The number of holders of the private key should be minimized and
preferably be one. Confidence by verifiers in the public key they are using and
its binding to the entity or capabilities represented by the corresponding
private key is an important issue, usually addressed by certificate or online
authority systems.
</p>
<p>
Keyed hash authentication codes, based on secret keys, are typically much more
efficient in terms of the computational effort required but have the
characteristic that all verifiers need to have possession of the same key as the
signer. Thus any verifier can forge signatures.
</p>
<p>
This specification permits user provided signature algorithms and keying
information designators. Such user provided algorithms may have different
security models. For example, methods involving biometrics usually depend on a
physical characteristic of the authorized user that can not be changed the way
public or secret keys can be and may have other security model differences.
</p>
<h3>
8.3 Algorithms, <a id="sec-KeyLength" name="sec-KeyLength">Key Lengths</a>,
Certificates, Etc.
</h3>
<p>
The strength of a particular signature depends on all links in the security
chain. This includes the signature and digest algorithms used, the strength of
the key generation [<a href="#ref-RANDOM">RANDOM</a>] and the size of the key,
the security of key and certificate authentication and distribution mechanisms,
certificate chain validation policy, protection of cryptographic processing from
hostile observation and tampering, etc.
</p>
<p>
Care must be exercised by applications in executing the various algorithms that
may be specified in an XML signature and in the processing of any "executable
content" that might be provided to such algorithms as parameters, such as XSLT
transforms. The algorithms specified in this document will usually be implemented
via a trusted library but even there perverse parameters might cause unacceptable
processing or memory demand. Even more care may be warranted with application
defined algorithms.
</p>
<p>
The security of an overall system will also depend on the security and integrity
of its operating procedures, its personnel, and on the administrative enforcement
of those procedures. All the factors listed in this section are important to the
overall security of a system; however, most are beyond the scope of this
specification.
</p>
<h2>
9.0 <a id="sec-Schema" name="sec-Schema">Schema</a>, DTD, Data Model, and Valid
Examples
</h2>
<dl>
<dt>
XML Signature Schema Instance
</dt>
<dd>
<a href="xmldsig-core-schema.xsd">xmldsig-core-schema.xsd</a>
</dd>
<dd>
Valid XML schema instance based on the 20001024 Schema/DTD [<a
href="#ref-XML-schema">XML-Schema</a>].
</dd>
<dt>
XML Signature DTD
</dt>
<dd>
<a href="xmldsig-core-schema.dtd">xmldsig-core-schema.dtd</a>
</dd>
<dt>
RDF Data Model
</dt>
<dd>
<a href="xmldsig-datamodel-20000112.gif">xmldsig-datamodel-20000112.gif</a>
</dd>
<dt>
XML Signature Object Example
</dt>
<dd>
<a href="signature-example.xml">signature-example.xml</a>
</dd>
<dd>
A cryptographical fabricated XML example that includes foreign content and
validates under the schema, it also uses <code>schemaLocation</code> to aid
automated schema fetching and validation.
</dd>
<dt>
RSA XML Signature Example
</dt>
<dd>
<a href="signature-example-rsa.xml">signature-example-rsa.xml</a>
</dd>
<dd>
An XML Signature example with generated cryptographic values by Merlin Hughes
and validated by Gregor Karlinger.
</dd>
<dt>
DSA XML Signature Example
</dt>
<dd>
<a href="signature-example-dsa.xml">signature-example-dsa.xml</a>
</dd>
<dd>
Similar to above but uses DSA.
</dd>
</dl>
<h2>
10.0 <a id="sec-Definitions" name="sec-Definitions">Definitions</a>
</h2>
<dl>
<dt>
<a id="def-AuthenticationCode" name="def-AuthenticationCode">Authentication
Code</a> (<a name="def-ProtectedChecksum" id="def-ProtectedChecksum">Protected
Checksum</a>)
</dt>
<dd>
A value generated from the application of a shared key to a message via a
cryptographic algorithm such that it has the properties of <a
href="#def-AuthenticationMessage" class="link-def">message authentication</a>
(and <a href="#def-Integrity" class="link-def">integrity</a>) but not <a
href="#def-AuthenticationSigner" class="link-def">signer authentication</a>.
Equivalent to <em>protected checksum</em>, "A checksum that is computed for a
data object by means that protect against active attacks that would attempt to
change the checksum to make it match changes made to the data object."
[<a href="#ref-SEC">SEC</a>]
</dd>
<dt>
<a id="def-AuthenticationMessage"
name="def-AuthenticationMessage">Authentication, Message</a>
</dt>
<dd>
The property, given an <a href="#def-AuthenticationCode"
class="link-def">authentication code</a>/<a href="#def-ProtectedChecksum"
class="link-def">protected checksum</a>, that tampering with both the data and
checksum, so as to introduce changes while seemingly preserving <a
href="#def-Integrity" class="link-def">integrity</a>, are still detected. "A
signature should identify what is signed, making it impracticable to falsify or
alter either the signed matter or the signature without detection." [<a
href="http://www.abanet.org/scitech/ec/isc/dsgfree.html">Digital Signature
Guidelines</a>, <a href="#ref-ABA">ABA</a>].
</dd>
<dt>
<a id="def-AuthenticationSigner"
name="def-AuthenticationSigner">Authentication, Signer</a>
</dt>
<dd>
The property that the identity of the signer is as claimed. "A signature should
indicate who signed a document, message or record, and should be difficult for
another person to produce without authorization." [<a
href="http://www.abanet.org/scitech/ec/isc/dsgfree.html">Digital Signature
Guidelines</a>, <a href="#ref-ABA">ABA</a>] Note, signer authentication is an
application decision (e.g., does the signing key actually correspond to a
specific identity) that is supported by, but out of scope, of this
specification.
</dd>
<dt>
<a name="def-Checksum" id="def-Checksum">Checksum</a>
</dt>
<dd>
"A value that (a) is computed by a function that is dependent on the contents
of a data object and (b) is stored or transmitted together with the object, for
the purpose of detecting changes in the data." [<a
href="#ref-SEC">SEC</a>]
</dd>
<dt>
<a id="def-Core" name="def-Core">Core</a>
</dt>
<dd>
The syntax and processing defined by this specification, including <a
href="#def-ValidationCore" class="link-def">core validation</a>. We use this
term to distinguish other markup, processing, and applications semantics from
our own.
</dd>
<dt>
<a id="def-DataObject" name="def-DataObject">Data Object</a> (Content/Document)
</dt>
<dd>
The actual binary/octet data being operated on (transformed, digested, or
signed) by an application -- frequently an <a
href="http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7">HTTP
entity</a> [<a href="#ref-HTTP">HTTP</a>]. Note that the proper noun
<code>Object</code> designates a specific XML element. Occasionally we refer to
a data object as a <em>document</em> or as a <em><a href="#def-Resource"
class="link-def">resource</a>'s content</em>. The term <em>element content</em>
is used to describe the data between XML start and end tags [<a
href="#ref-XML">XML</a>]. The term <em>XML document</em> is used to describe
data objects which conform to the XML specification [<a
href="#ref-XML">XML</a>].
</dd>
<dt>
<a id="def-Integrity" name="def-Integrity">Integrity</a>
</dt>
<dd>
"The property that data has not been changed, destroyed, or lost in an
unauthorized or accidental manner." [<a href="#ref-SEC">SEC</a>] A simple <a
href="#def-Checksum" class="link-def">checksum</a> can provide integrity from
incidental changes in the data; <a href="#def-AuthenticationMessage"
class="link-def">message authentication</a> is similar but also protects
against an active attack to alter the data whereby a change in the checksum is
introduced so as to match the change in the data.
</dd>
<dt>
<a id="def-Object" name="def-Object">Object</a>
</dt>
<dd>
An XML Signature element wherein arbitrary (non-<a href="#def-Core"
class="link-def">core</a>) data may be placed. An <code>Object</code> element
is merely one type of digital data (or document) that can be signed via a
<code>Reference</code>.
</dd>
<dt>
<a id="def-Resource" name="def-Resource">Resource</a>
</dt>
<dd>
"A resource can be anything that has identity. Familiar examples include an
electronic document, an image, a service (e.g., 'today's weather report for Los
Angeles'), and a collection of other resources.... The resource is the
conceptual mapping to an entity or set of entities, not necessarily the entity
which corresponds to that mapping at any particular instance in time. Thus, a
resource can remain constant even when its content---the entities to which it
currently corresponds---changes over time, provided that the conceptual mapping
is not changed in the process." [<a href="#ref-URI">URI</a>] In order to avoid
a collision of the term <em>entity</em> within the URI and XML specifications,
we use the term <em>data object</em>, <em>content</em> or <em>document</em> to
refer to the actual bits/octets being operated upon.
</dd>
<dt>
<a id="def-Signature" name="def-Signature">Signature</a>
</dt>
<dd>
Formally speaking, a value generated from the application of a private key to a
message via a cryptographic algorithm such that it has the properties of <a
href="#def-Integrity" class="link-def">integrity</a>, <a
href="#def-AuthenticationMessage" class="link-def">message authentication</a>
and/or <a href="#def-AuthenticationSigner" class="link-def">signer
authentication</a>. (However, we sometimes use the term signature generically
such that it encompasses <a href="#def-AuthenticationCode"
class="link-def">Authentication Code</a> values as well, but we are careful to
make the distinction when the property of <a href="#def-AuthenticationSigner"
class="link-def">signer authentication</a> is relevant to the exposition.) A
signature may be (non-exclusively) described as <a
href="#def-SignatureDetached" class="link-def">detached</a>, <a
href="#def-SignatureEnveloping" class="link-def">enveloping</a>, or <a
href="#def-SignatureEnveloped" class="link-def">enveloped</a>.
</dd>
<dt>
<a name="def-SignatureApplication" id="def-SignatureApplication">Signature,
Application</a>
</dt>
<dd>
An application that implements the MANDATORY (REQUIRED/MUST) portions of this
specification; these conformance requirements are over application behavior,
the structure of the <code>Signature</code> element type and its children
(including <code>SignatureValue</code>) and the specified algorithms.
</dd>
<dt>
<a id="def-SignatureDetached" name="def-SignatureDetached">Signature,
Detached</a>
</dt>
<dd>
The signature is over content external to the <code>Signature</code> element,
and can be identified via a <code>URI</code> or transform. Consequently, the
signature is "detached" from the content it signs. This definition typically
applies to separate data objects, but it also includes the instance where the
<code>Signature</code> and data object reside within the same XML document but
are sibling elements.
</dd>
<dt>
<a id="def-SignatureEnveloping" name="def-SignatureEnveloping">Signature,
Enveloping</a>
</dt>
<dd>
The signature is over content found within an <code>Object</code> element of
the signature itself. The <code>Object</code> (or its content) is identified
via a <code>Reference</code> (via a <code>URI</code> fragment identifier or
transform).
</dd>
<dt>
<a id="def-SignatureEnveloped" name="def-SignatureEnveloped">Signature,
Enveloped</a>
</dt>
<dd>
The signature is over the XML content that contains the signature as an
element. The content provides the root XML document element. Obviously,
enveloped signatures must take care not to include their own value in the
calculation of the <code>SignatureValue</code>.
</dd>
<dt>
<a id="def-Transform" name="def-Transform">Transform</a>
</dt>
<dd>
The processing of a data from its source to its derived form. Typical
transforms include XML Canonicalization, XPath, and XSLT.
</dd>
<dt>
<a id="def-ValidationCore" name="def-ValidationCore">Validation, Core</a>
</dt>
<dd>
The core processing requirements of this specification requiring <a
href="#def-ValidationSignature" class="link-def">signature validation</a> and
<code>SignedInfo</code> <a href="#def-ValidationReference"
class="link-def">reference validation</a>.
</dd>
<dt>
<a id="def-ValidationReference" name="def-ValidationReference">Validation,
Reference</a>
</dt>
<dd>
The hash value of the identified and transformed content, specified by
<code>Reference</code>, matches its specified <code>DigestValue</code>.
</dd>
<dt>
<a id="def-ValidationSignature" name="def-ValidationSignature">Validation,
Signature</a>
</dt>
<dd>
The <code>SignatureValue</code> matches the result of processing
<code>SignedInfo</code> with <code>CanonicalizationMethod</code> and
<code>SignatureMethod</code> as specified in <a href="#sec-CoreValidation">Core
Validation</a> (section 3.2).
</dd>
<dt>
<a id="def-ValidationTrustApplication"
name="def-ValidationTrustApplication">Validation, Trust/Application</a>
</dt>
<dd>
The application determines that the semantics associated with a signature are
valid. For example, an application may validate the time stamps or the
integrity of the signer key -- though this behavior is external to this <a
href="#def-ValidationCore" class="link-def">core</a> specification.
</dd>
</dl>
<h2>
11.0 <a id="sec-References" name="sec-References">References</a>
</h2>
<dl>
<dt>
<a id="ref-ABA" name="ref-ABA">ABA</a>
</dt>
<dd>
<a href="http://www.abanet.org/scitech/ec/isc/dsgfree.html">Digital Signature
Guidelines.</a><br />
<a
href="http://www.abanet.org/scitech/ec/isc/dsgfree.html">http://www.abanet.org/scitech/ec/isc/dsgfree.html</a>
</dd>
<dt>
<a id="ref-DOM" name="ref-DOM">DOM</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/">Document Object
Model (DOM) Level 1 Specification.</a> W3C Recommendation. V. Apparao, S.
Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R.
Sutor, C. Wilson, L. Wood. October 1998.<br />
<a
href="http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/">http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/</a>
</dd>
<dt>
<a id="ref-DSS" name="ref-DSS">DSS</a>
</dt>
<dd>
<a href="http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf">FIPS
PUB 186-2</a> . <em>Digital Signature Standard (DSS).</em> U.S. Department of
Commerce/National Institute of Standards and Technology.<br />
<a
href="http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf">http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf</a>
</dd>
<dt>
<a id="ref-HMAC" name="ref-HMAC">HMAC</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2104.txt">RFC 2104</a>. <em>HMAC:
Keyed-Hashing for Message Authentication.</em> H. Krawczyk, M. Bellare, R.
Canetti. February 1997.<br />
<a
href="http://www.ietf.org/rfc/rfc2104.txt">http://www.ietf.org/rfc/rfc2104.txt</a>
</dd>
<dt>
<a id="ref-HTTP" name="ref-HTTP">HTTP</a>
</dt>
<dd>
<a href="http://www.w3.org/Protocols/rfc2616/rfc2616.html">RFC 2616</a>.
<em>Hypertext Transfer Protocol -- HTTP/1.1</em>. J. Gettys, J. Mogul, H.
Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June 1999.<br />
<a
href="http://www.ietf.org/rfc/rfc2616.txt">http://www.ietf.org/rfc/rfc2616.txt</a>
</dd>
<dt>
<a id="ref-KEYWORDS" name="ref-KEYWORDS">KEYWORDS</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2119.txt">RFC 2119.</a> <em>Key words for
use in RFCs to Indicate Requirement Levels.</em> S. Bradner. March 1997.<br />
<a
href="http://www.ietf.org/rfc/rfc2119.txt">http://www.ietf.org/rfc/rfc2119.txt</a>
</dd>
<dt>
<a id="ref-LDAP-DN" name="ref-LDAP-DN">LDAP-DN</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2253.txt">RFC 2253</a>. <em>Lightweight
Directory Access Protocol (v3): UTF-8 String Representation of Distinguished
Names.</em> M. Wahl, S. Kille, T. Howes. December 1997.<br />
<a
href="http://www.ietf.org/rfc/rfc2253.txt">http://www.ietf.org/rfc/rfc2253.txt</a>
</dd>
<dt>
<a id="ref-MD5" name="ref-MD5">MD5</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc1321.txt">RFC 1321</a>. <em>The MD5
Message-Digest Algorithm.</em> R. Rivest. April 1992.<br />
<a
href="http://www.ietf.org/rfc/rfc1321.txt">http://www.ietf.org/rfc/rfc1321.txt</a>
</dd>
<dt>
<a id="ref-MIME" name="ref-MIME">MIME</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>. <em>Multipurpose
Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies</em>. N. Freed & N. Borenstein. November 1996.<br />
<a
href="http://www.ietf.org/rfc/rfc2045.txt">http://www.ietf.org/rfc/rfc2045.txt</a>
</dd>
<dt>
<a id="ref-NFC" name="ref-NFC">NFC</a>
</dt>
<dd>
<em>TR15, Unicode Normalization Forms.</em> M. Davis, M. Dürst. Revision
18: November 1999. <a
href="http://www.unicode.org/unicode/reports/tr15/tr15-18.html">http://www.unicode.org/unicode/reports/tr15/tr15-18.html</a>.
</dd>
<dt>
<a id="ref-NFC-Corrigendum" name="ref-NFC-Corrigendum">NFC-Corrigendum</a>
</dt>
<dd>
<em>Normalization Corrigendum</em>. The Unicode Consortium. <a
href="http://www.unicode.org/unicode/uni2errata/Normalization_Corrigendum.html">
http://www.unicode.org/unicode/uni2errata/Normalization_Corrigendum.html</a>.
</dd>
<dt>
<a id="ref-PGP" name="ref-PGP">PGP</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2440.txt">RFC 2440</a>. <em>OpenPGP Message
Format.</em> J. Callas, L. Donnerhacke, H. Finney, R. Thayer. November
1998.<br />
<a
href="http://www.ietf.org/rfc/rfc2440.txt">http://www.ietf.org/rfc/rfc2440.txt</a>
</dd>
<dt>
<a id="ref-RANDOM" name="ref-RANDOM">RANDOM</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc1750.txt">RFC 1750</a>. <em>Randomness
Recommendations for Security.</em> D. Eastlake, S. Crocker, J. Schiller.
December 1994.<br />
<a
href="http://www.ietf.org/rfc/rfc1750.txt">http://www.ietf.org/rfc/rfc1750.txt</a>
</dd>
<dt>
<a id="ref-RDF" name="ref-RDF">RDF</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2000/CR-rdf-schema-20000327/">Resource
Description Framework (RDF) Schema Specification 1.0.</a> W3C Candidate
Recommendation. D. Brickley, R.V. Guha. March 2000.<br />
<a
href="http://www.w3.org/TR/2000/CR-rdf-schema-20000327/">http://www.w3.org/TR/2000/CR-rdf-schema-20000327/</a>
</dd>
<dd>
<a href="http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/">Resource
Description Framework (RDF) Model and Syntax Specification</a>. W3C
Recommendation. O. Lassila, R. Swick. February 1999.<br />
<a
href="http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/">http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/</a>
</dd>
<dt>
<a id="ref-1363" name="ref-1363">1363</a>
</dt>
<dd>
IEEE 1363: Standard Specifications for Public Key Cryptography. August 2000.
</dd>
<dt>
<a id="ref-PKCS1" name="ref-PKCS1">PKCS1</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2437.txt">RFC 2437</a>. <em>PKCS #1: RSA
Cryptography Specifications Version 2.0.</em> B. Kaliski, J. Staddon. October
1998.<br />
<a
href="http://www.ietf.org/rfc/rfc2437.txt">http://www.ietf.org/rfc/rfc2437.txt</a>
</dd>
<dt>
<a id="ref-SAX" name="ref-SAX">SAX</a>
</dt>
<dd>
<a href="http://www.megginson.com/SAX/index.html">SAX: The Simple API for
XML</a>. D. Megginson, et al. May 1998.<br />
<a
href="http://www.megginson.com/SAX/index.html">http://www.megginson.com/SAX/index.html</a>
</dd>
<dt>
<a name="ref-SEC" id="ref-SEC">SEC</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2828.txt">RFC 2828</a>. <em>Internet
Security Glossary.</em> R. Shirey. May 2000.<br />
<a
href="http://www.faqs.org/rfcs/rfc2828.html">http://www.faqs.org/rfcs/rfc2828.html</a>
</dd>
<dt>
<a id="ref-SHA-1" name="ref-SHA-1">SHA-1</a>
</dt>
<dd>
<a href="http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt">FIPS
PUB 180-1</a>. <em>Secure Hash Standard.</em> U.S. Department of
Commerce/National Institute of Standards and Technology.<br />
<a
href="http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt">http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt</a>
</dd>
<dt class="label">
<a name="ref-SOAP" id="ref-SOAP">SOAP</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2000/NOTE-SOAP-20000508/">Simple Object Access
Protocol (SOAP) Version 1.1</a>. W3C Note. D. Box, D. Ehnebuske, G. Kakivaya,
A. Layman, N. Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Winer. May 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2000/NOTE-SOAP-20000508/">http://www.w3.org/TR/2000/NOTE-SOAP-20000508/</a>
</dd>
<dt class="label">
<a id="ref-Unicode" name="ref-Unicode">Unicode</a>
</dt>
<dd>
The Unicode Consortium. <em>The Unicode Standard.</em><br />
<a
href="http://www.unicode.org/unicode/standard/standard.html">http://www.unicode.org/unicode/standard/standard.html</a>
</dd>
<dt>
<a name="ref-UTF-16" id="ref-UTF-16">UTF-16</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2781.txt">RFC 2781</a>. <em>UTF-16, an
encoding of ISO 10646.</em> P. Hoffman , F. Yergeau. February 2000.<br />
<a
href="http://www.ietf.org/rfc/rfc2781.txt">http://www.ietf.org/rfc/rfc2781.txt</a>
</dd>
<dt>
<a id="ref-UTF-8" name="ref-UTF-8">UTF-8</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2279.txt">RFC 2279</a>. <em>UTF-8, a
transformation format of ISO 10646</em>. F. Yergeau. January 1998.<br />
<a
href="http://www.ietf.org/rfc/rfc2279.txt">http://www.ietf.org/rfc/rfc2279.txt</a>
</dd>
<dt>
<a id="ref-URI" name="ref-URI">URI</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>. <em>Uniform
Resource Identifiers (URI): Generic Syntax.</em> T. Berners-Lee, R. Fielding,
L. Masinter. August 1998.<br />
<a
href="http://www.ietf.org/rfc/rfc2396.txt">http://www.ietf.org/rfc/rfc2396.txt</a>
</dd>
<dt class="label">
<a name="ref-URI-Literal" id="ref-URI-Literal">URI-Literal</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>. <em>Format for
Literal IPv6 Addresses in URL's</em>. R. Hinden, B. Carpenter, L. Masinter.
December 1999.
</dd>
<dd>
<a
href="http://www.ietf.org/rfc/rfc2732.txt">http://www.ietf.org/rfc/rfc2732.txt</a>
</dd>
<dt>
<a id="ref-URL" name="ref-URL">URL</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc1738.txt">RFC 1738.</a> <em>Uniform
Resource Locators (URL).</em> T. Berners-Lee, L. Masinter, and M. McCahill.
December 1994.
</dd>
<dd>
<a
href="http://www.ietf.org/rfc/rfc1738.txt">http://www.ietf.org/rfc/rfc1738.txt</a>
</dd>
<dt>
<a id="ref-URN" name="ref-URN">URN</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2141.txt">RFC 2141</a>. <em>URN
Syntax.</em> R. Moats. May 1997.<br />
<a
href="http://www.ietf.org/rfc/rfc2141.txt">http://www.ietf.org/rfc/rfc2141.txt</a>
</dd>
<dd>
<a href="http://www.ietf.org/rfc/rfc2611.txt">RFC 2611</a>. <em>URN Namespace
Definition Mechanisms.</em> L. Daigle, D. van Gulik, R. Iannella, P. Falstrom.
June 1999.<br />
<a
href="http://www.ietf.org/rfc/rfc2611.txt">http://www.ietf.org/rfc/rfc2611.txt</a>
</dd>
<dt>
<a name="ref-X509v3" id="ref-X509v3">X509v3</a>
</dt>
<dd>
ITU-T Recommendation X.509 version 3 (1997). "Information Technology - Open
Systems Interconnection - The Directory Authentication Framework" ISO/IEC
9594-8:1997.
</dd>
<dt>
<a id="ref-XHTML" name="ref-XHTML">XHTML 1.0</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">XHTML(tm) 1.0: The
Extensible Hypertext Markup Language</a>. W3C Recommendation. S. Pemberton, D.
Raggett, et al. January 2000.<br />
<a
href="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">http://www.w3.org/TR/2000/REC-xhtml1-20000126/</a>
</dd>
<dt>
<a id="ref-XLink" name="ref-XLink">XLink</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2001/REC-xlink-20010627/">XML Linking
Language.</a> W3C Recommendation. S. DeRose, E. Maler, D. Orchard. June 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xlink-20010627/">http://www.w3.org/TR/2001/REC-xlink-20010627/</a>
</dd>
<dt>
<a id="ref-XML" name="ref-XML">XML</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2000/REC-xml-20001006">Extensible Markup Language
(XML) 1.0 (Second Edition).</a> W3C Recommendation. T. Bray, E. Maler, J.
Paoli, C. M. Sperberg-McQueen. October 2000.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2000/REC-xml-20001006">http://www.w3.org/TR/2000/REC-xml-20001006</a>
</dd>
<dt>
<a id="ref-XML-C14N" name="ref-XML-C14N">XML-C14N</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">Canonical XML.</a>
W3C Recommendation. J. Boyer. March 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a><br />
<a
href="http://www.ietf.org/rfc/rfc3076.txt">http://www.ietf.org/rfc/rfc3076.txt</a>
</dd>
<dt>
<a name="ref-XML-Japanese" id="ref-XML-Japanese">XML-Japanese</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/">XML Japanese
Profile</a>. W3C Note. <span class="author">M. <span
class="name">Murata</span></span> April 2000 <a class="loc"
href="http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/">http://www.w3.org/TR/2000/NOTE-japanese-xml-20000414/</a>
</dd>
<dt>
<a name="ref-XML-MT" id="ref-XML-MT">XML-MT</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2376.txt">RFC 2376</a> . <em>XML Media
Types</em>. E. Whitehead, M. Murata. July 1998.<br />
<a
href="http://www.ietf.org/rfc/rfc2376.txt">http://www.ietf.org/rfc/rfc2376.txt</a>
</dd>
<dt>
<a id="ref-XML-ns" name="ref-XML-ns">XML-ns</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/1999/REC-xml-names-19990114/">Namespaces in
XML</a>. W3C Recommendation. T. Bray, D. Hollander, A. Layman. January 1999.
</dd>
<dd>
<a
href="http://www.w3.org/TR/1999/REC-xml-names-19990114/">http://www.w3.org/TR/1999/REC-xml-names-19990114</a>
</dd>
<dt>
<a id="ref-XML-schema" name="ref-XML-schema">XML-schema</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/">XML Schema Part
1: Structures</a>. W3C Recommendation. D. Beech, M. Maloney, N. Mendelsohn, H.
Thompson. May 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/">http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/</a><br />
<a href="http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/">XML Schema Part
2: Datatypes</a> W3C Recommendation. P. Biron, A. Malhotra. May 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/">http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/</a>
</dd>
<dt>
<a id="ref-XML-Signature-RD" name="ref-XML-Signature-RD">XML-Signature-RD</a>
</dt>
<dd>
<a href="http://www.ietf.org/rfc/rfc2807.txt">RFC 2807</a>. <a
href="http://www.w3.org/TR/xmldsig-requirements">XML Signature
Requirements.</a> W3C Working Draft. J. Reagle, April 2000.<br />
<a
href="http://www.w3.org/TR/1999/WD-xmldsig-requirements-19991014.html">http://www.w3.org/TR/1999/WD-xmldsig-requirements-19991014</a><br />
<a
href="http://www.ietf.org/rfc/rfc2807.txt">http://www.ietf.org/rfc/rfc2807.txt</a>
</dd>
<dt>
<a id="ref-XPath" name="ref-XPath">XPath</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/1999/REC-xpath-19991116">XML Path Language
(XPath) Version 1.0</a>. W3C Recommendation. J. Clark, S. DeRose. October
1999.<br />
<a
href="http://www.w3.org/TR/1999/REC-xpath-19991116">http://www.w3.org/TR/1999/REC-xpath-19991116</a>
</dd>
<dt>
<a id="ref-XPointer" name="ref-XPointer">XPointer</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2001/CR-xptr-20010911/">XML Pointer Language
(XPointer)</a>. W3C Candidate Recommendation. S. DeRose, R. Daniel, E. Maler.
January 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2001/CR-xptr-20010911/">http://www.w3.org/TR/2001/CR-xptr-20010911/</a>
</dd>
<dt>
<a id="ref-XSL" name="ref-XSL">XSL</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/2001/REC-xsl-20011015/">Extensible Stylesheet
Language (XSL)</a>. W3C Recommendation. S. Adler, A. Berglund, J. Caruso, S.
Deach, T. Graham, P. Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Richman,
S. Zilles. October 2001.
</dd>
<dd>
<a
href="http://www.w3.org/TR/2001/REC-xsl-20011015/">http://www.w3.org/TR/2001/REC-xsl-20011015/</a>
</dd>
<dt>
<a id="ref-XSLT" name="ref-XSLT">XSLT</a>
</dt>
<dd>
<a href="http://www.w3.org/TR/1999/REC-xslt-19991116.html">XSL Transforms
(XSLT) Version 1.0</a>. W3C Recommendation. J. Clark. November 1999.
</dd>
<dd>
<a
href="http://www.w3.org/TR/1999/REC-xslt-19991116.html">http://www.w3.org/TR/1999/REC-xslt-19991116.html</a>
</dd>
</dl>
<h2>
12. <a id="sec-Authors" name="sec-Authors">Authors'</a> Address
</h2>
<p>
Donald E. Eastlake 3rd<br />
Motorola, 20 Forbes Boulevard<br />
Mansfield, MA 02048 USA<br />
Phone: 1-508-261-5434<br />
Email: <a
href="mailto:Donald.Eastlake@motorola.com">Donald.Eastlake@motorola.com</a>
</p>
<p>
Joseph M. Reagle Jr., <a href="http://www.w3.org/">W3C</a><br />
Massachusetts Institute of Technology<br />
Laboratory for Computer Science<br />
NE43-350, 545 Technology Square<br />
Cambridge, MA 02139<br />
Phone: + 1.617.258.7621<br />
Email: <a href="mailto:reagle@w3.org">reagle@w3.org</a>
</p>
<p>
David Solo<br />
Citigroup<br />
909 Third Ave, 16th Floor<br />
NY, NY 10043 USA<br />
Phone +1-212-559-2900<br />
Email: <a href="mailto:dsolo@alum.mit.edu">dsolo@alum.mit.edu</a>
</p>
</body>
</html>