WD-HTTP-NG-wire-19980710 61.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
<!-- This HTML file has been created by timdif2html 1.11
from wire-encoding.dif on 7 July 1998 -->
<HTML>
<HEAD>
  <TITLE>HTTP-NG Binary Wire Protocol</TITLE>
</HEAD>
<BODY TEXT=#000000 BGCOLOR=#ffffff>
<H3 align='right'>
  <A HREF='http://www.w3.org/'><IMG border='0' align='left' alt='W3C' src='http://www.w3.org/Icons/WWW/w3c_home'></A>WD-HTTP-NG-wire-19980710
</H3>
<H1 align='center'>
  HTTP-NG Binary Wire Protocol
</H1>
<H3 ALIGN=Center>
  W3C Working Draft 10 July 1998
</H3>
<DL>
  <DT>
    This version:
  <DD>
    <A HREF="http://www.w3.org/TR/1998/WD-HTTP-NG-wire-19980710">http://www.w3.org/TR/1998/WD-HTTP-NG-wire-19980710</A>
  <DT>
    Latest version:
  <DD>
    <A HREF="http://www.w3.org/TR/WD-HTTP-NG-wire">http://www.w3.org/TR/WD-HTTP-NG-wire</A>
  <DT>
    Authors:
  <DD>
    Bill Janssen, Xerox PARC,
    &lt;<A HREF="mailto:&lt;janssen@parc.xerox.com&gt;">janssen@parc.xerox.com</A>&gt;
</DL>
<p><small><A href='http://www.w3.org/Consortium/Legal/ipr-notice.html#Copyright'>Copyright</A>
 &nbsp;&copy;&nbsp; 1998 <A href='http://www.w3.org'>W3C</A> (<A href='http://www.lcs.mit.edu'>MIT</A>,
 <A href='http://www.inria.fr/'>INRIA</A>, <A href='http://www.keio.ac.jp/'>Keio</A> ),
 All Rights Reserved. W3C <A href='http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal Disclaimer'>liability,</A>
 <A href='http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C Trademarks'>trademark</A>,
 <A href='http://www.w3.org/Consortium/Legal/copyright-documents.html'>document use
 </A>and <A href='http://www.w3.org/Consortium/Legal/copyright-software.html'>software licensing </A>rules apply.
</small></p>
<H1>
  1. Status of this Document
</H1>
<P>
This is a W3C Working Draft for review by W3C members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted
by other documents at any time. It is inappropriate to use W3C Working Drafts
as reference material or to cite them as other than "work in progress". A
list of current W3C technical reports can be found at
<A HREF="http://www.w3.org/TR/">http://www.w3.org/TR</A>.
<P>
This document has been produced as part of the W3C HTTP-ng Activity. This
is work in progress and does not imply endorsement by, or the consensus of,
either W3C or members of the HTTP-ng Protocol Design Working Group. We expect
the document to evolve as we get more data from the Web Characterization
Group describing the current state of the Web.
<P>
This document describes a binary `on-the-wire' protocol to be used when sending
HTTP-ng operation invocations or terminations across a network connection.
It is part of a suite of documents describing the HTTP-NG design and prototype
implementation:
<UL>
  <LI>
    <A HREF="http://www.w3.org/TR/1998/WD-HTTP-NG-goals">HTTP-NG Short- and Longterm Goals</A>, WD
  <LI>
    <A HREF="http://www.w3.org/TR/WD-HTTP-NG-architecture">HTTP-NG Architectural Model</A>, WD
  <LI>
    <A HREF="http://www.w3.org/TR/WD-HTTP-NG-wire">HTTP-NG Wire Protocol</A>, WD
  <LI>
    <A HREF="http://www.w3.org/TR/WD-HTTP-NG-interfaces">The Classic Web Interfaces in HTTP-NG</A>,
    WD
  <LI>
    <A HREF="http://www.w3.org/TR/WD-mux">The MUX Protocol</A>, WD
  <LI>
    <A HREF="http://www.w3.org/TR/NOTE-HTTP-NG-testbed">Description of the HTTP-NG Testbed</A>, Note
</UL>
<P>
Please send comments on this specification to
&lt;<A HREF="mailto:www-http-ng-comments@w3.org">www-http-ng-comments@w3.org</A>&gt;.
<H1>
  2. Syntax Used in this Document
</H1>
<P>
<A NAME="IDX1"></A> <A NAME="IDX2"></A>
<P>
Two data description languages are used in this document. The first, called
ISL, is an abstract language for defining data types and interfaces. It is
described in
<A HREF="ftp://ftp.parc.xerox.com/pub/ilu/2.0a12/manual-html/manual_2.html">the
ILU manual</A>. The second is a pseudo-C syntax. It should be interpreted
as C data structure layouts without any automatic padding to size boundaries,
and allowing arbitrary bit-size limits on structs and unions as well as on
ints and enums. Each use of ISL and pseudo-C is marked as to which language
is being used.
<P>
<A NAME="IDX3"></A> <A NAME="IDX4"></A>
<H1>
  3. Model of Operation
</H1>
<P>
This protocol assumes a particular model of operation based on conventional
RPC technology, with certain variations. The basic idea is that clients make
use of services exported from a server by invoking operations on objects
resident in that server. The client is connected to the server by a
<DFN>connection</DFN>, which carries operation invocation requests from the
client (known as the <DFN>caller</DFN>) to the server (known as the
<DFN>callee</DFN>), and operation results from the callee back to the caller.
Multiple connections can exist simultaneously between the same client and
server. The connection has state associated with it, which allows the caller
and callee to use shorthand notations for some of the data passed to the
other party.
<P>
Two RPC messages are defined by this protocol: the Request, which is used
by the caller to invoke an operation on the callee, and the Reply, which
is used to transfer operation results from the callee to the caller. Every
Reply message is associated with a particular Request message, but not every
Request message has a Reply message associated with it. Connections are
directional; operation invocation Requests always flow from the caller to
the callee; Replies always flow from the callee to the caller. In addition
to the RPC messages, several control messages are defined for this protocol.
These control messages are used to improve the efficiency and robustness
of the connection. They are intended to be generated and consumed by the
implementation of the wire protocol, and should have no direct effect on
the applications using the protocol. <A NAME="IDX5"></A> <A NAME="IDX6"></A>
<A NAME="IDX7"></A> <A NAME="IDX8"></A> <A NAME="IDX9"></A>
<P>
A Request message indicates two important elements, the <DFN>operation</DFN>
and the <DFN>discriminant object</DFN>, or discriminant; it also contains
data values which are the input parameters to the operation. The model used
here assumes that operations are grouped into sets, the elements of which
have a well-defined ordering; each operation set is called an
<DFN>interface</DFN>. It further assumes that an interface can be identified
by a URN which also a UUID; and that each operation in an interface can be
identified with the ordinal number of the operation within the ordering of
the elements of the interface. It assumes that every discriminant object
can be identified with an <DFN>object ID</DFN>, also a URN and UUID. It provides
for the fact that, with most distributed object systems, all of the discriminants
available at a particular server share a common prefix to their object ID;
this is called the <DFN>server ID</DFN>. Note that this characteristic is
not required, but the protocol provides an efficiency optimization for the
case where it is true. In such a case, we call the portion of the object
ID <EM>not</EM> contained in the server ID the <DFN>instance handle</DFN>.
Each request has an implicit connection-specific serial number associated
with it; serial numbers begin with the value one (1), and have a maximum
value of 16777215. When the maximum serial number of a connection has been
reached, the connection must be terminated, and further operations must be
invoked over a new connection.
<P>
A Reply message indicates the termination status of the operation, provides
information about synchronization, and may contain data values which are
output parameters or `return values' from the operation. It contains an explicit
serial number to indicate which Request it is a reply to. Replies may either
indicate successful completion of the operation, or several different kinds
of exceptional termination; if an exception is signalled, additional information
is passed to indicate which of the possible exceptions for the operation
was raised. <A NAME="IDX10"></A> <A NAME="IDX11"></A> <A NAME="IDX12"></A>
<A NAME="IDX13"></A>
<P>
The model assumes that the messages are carried back and forth between the
two parties by a <DFN>transport</DFN> subsystem. It requires that the transport
subsystem be <DFN>reliable</DFN>, <DFN>sequenced</DFN>, and
<DFN>message-oriented</DFN>. By reliable, we mean that after a message is
handed to the transport, the transport will either deliver it to the other
party, or will signal an error if its reliable delivery cannot be ascertained.
By sequenced, we mean that the transport will deliver messages to the other
party in the same order in which the sender handed them to the transport.
By message-oriented, we mean that the transport will provide indication of
the beginning and ending of the messages, without reference to any data encoded
inside the message. An example of this type of transport would be the record
marking defined in
<A HREF="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1831.txt">Internet
RFC 1831</A> used with TCP/IP.
<P>
<H1>
  4. Global Issues
</H1>
<P>
<A NAME="IDX14"></A> <A NAME="IDX15"></A>
<P>
<H2>
  4.1. Byte Order
</H2>
<P>
All values use `network standard' byte order, i.e. big-endian, because all
Internet protocols use it. If in the future this becomes a problem for the
Internet, this protocol will be affected by whatever solution is used to
solve the problem in the wider Internet context. Note that the data marshalling
format defined in Internet RFC 1832, which this protocol incorporates by
reference, is also defined to be a big-endian protocol. <A NAME="IDX16"></A>
<A NAME="IDX17"></A>
<P>
<H2>
  4.2. Alignment and Padding
</H2>
<P>
The marshalled form of each value begins on a 32-bit boundary. The marshalled
form of each value is padded-after, if necessary, to the next 32-bit boundary.
The padding bits may be either 0 or 1 in any combination.
<A NAME="IDX18"></A>
<P>
<H2>
  4.3. Marshalling Format
</H2>
<P>
Marshalling is via the XDR format specified in
<A HREF="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1832.txt">Internet
RFC 1832</A>. It could be argued that this format is inexcusably wasteful
with certain value types, such as boolean (32 bits) or byte (32 bits), and
that a 16-bit or 8-bit oriented format should be designed and used in its
place. However, the argument of using an existing Internet standard for this
purpose, rather than inventing a new one, is a strong one; a new format should
only be defined if measurement of the overhead shows gross waste.
<A NAME="IDX19"></A>
<P>
<H2>
  4.4. Security
</H2>
<P>
This protocol assumes that security provisions are made either at some level
above it, typically in the application interfaces, or at some level below
it, typically by use of a secure transport mechanism. It contains no
protocol-level mechanisms for providing or assuring any of the concerns normally
related to security. <A NAME="IDX20"></A>
<P>
<H2>
  4.5. Session Context
</H2>
<P>
Unlike some previous protocols, this protocol is <DFN>session-oriented</DFN>.
That means that individual messages are sent in the context of a session,
and are context-sensitive. This context-sensitivity allows session-wide
compression. However, to support various kinds of marshalling architectures
in implementations of this system, all marshalling can be done in a
context-insensitive fashion, at the expense of sending additional bytes across
the wire. However, unmarshalling implementations must always be capable of
tracking and using context-sensitive information.
<P>
<H1>
  5. Utility types
</H1>
<P>
The following data structures are defined in pseudo-C: <A NAME="IDX21"></A>
<PRE>
typedef enum {
 False = 0,
 True = 1
} Boolean;

<A NAME="IDX22"></A>typedef enum {
 InitializeConnection = 0,
 TerminateConnection = 1,
 DefaultCharset = 2
} ControlMsgType;

<A NAME="IDX23"></A>typedef enum {
 Success = 0,
 UserException = 1,             /* occurred during operation */
 SystemExceptionBefore = 2,     /* occurred before beginning operation */
 SystemExceptionAfter = 3       /* occurred after beginning operation */
} ReplyStatus;

<A NAME="IDX24"></A>typedef struct {
 Boolean cached_disc : 1;       /* True if cached object key */
 union {
  struct {
   Boolean cache_key : 1;       /* True if both sides cache it */
   unsigned key_len : 13;       /* length of key bytes */
  } uncached_key;
  unsigned cache_index : 14;    /* cache index if cached */
 } v;
} DiscriminantID;

<A NAME="IDX25"></A>typedef struct {
 Boolean cached_op : 1;         /* True if cached id */
 union {
  struct {
   Boolean cache_operation : 1; /* True if should be cached */
   unsigned method_id : 13;     /* method index */
  } uncached_op_info;
  unsigned cache_index : 14;    /* cache index if "cached_op" set */
 } v;
} OperationID;

<A NAME="IDX26"></A>typedef enum {
 MangledMessage = 0,            /* bad protocol synchronization */
 ProcessFinished = 1,           /* sending party has `exitted' */
 ResourceManagement = 2,        /* transient close */
 WrongCallee = 3,               /* bad server ID received */
 MaxSerialNumber = 4            /* the maximum serial number was used */
} TerminationCause;

<A NAME="IDX27"></A>typedef struct {
 unsigned major : 4;     
 unsigned minor : 4;
} ProtocolVersion;

<A NAME="IDX28"></A>typedef unsigned Unused;
</PRE>
<H1>
  6. Messages
</H1>
<P>
<A NAME="IDX29"></A> <A NAME="IDX30"></A> <A NAME="IDX31"></A>
<A NAME="IDX32"></A>
<P>
Only a few messages are defined. The <CODE>InitializeConnection</CODE> message
is used by the caller to verify that it has connected to the right server,
and that it is using the correct version of the wire protocol. The
<CODE>DefaultCharset</CODE> message allows both sides to independently define
a default value for string charsets. The <CODE>Request</CODE> message causes
an operation to be started on the remote server. The <CODE>Reply</CODE> message
is sent from the server to the client to inform it of the completion status
of the operation, and to convey any result values. The
<CODE>TerminateConnection</CODE> message allows either side to indicate graceful
shutdown of a connection.
<P>
<A NAME="IDX33"></A>
<H2>
  6.1. Extension Headers
</H2>
<P>
This protocol uses a feature called an <DFN>extension header</DFN> to provide
for extensibility and tailorability. Features such as serialization contexts
or global thread identifiers may be implemented via this feature. An extension
header is an encapsulated value of the ISL type <CODE>ExtensionHeader</CODE>.
Each request message and reply message may contain a value of type
<CODE>ExtensionHeaderList</CODE>, which contains a number of extension headers.
The following ISL fragment decribes the types
<CODE>ExtensionHeaderList</CODE> and <CODE>ExtensionHeader</CODE>:
<A NAME="IDX35"></A> <A NAME="IDX36"></A> <A NAME="IDX34"></A>
<PRE>
INTERFACE HTTP-ng-w3ng IMPORTS HTTP-ng END BRAND "http-ng.w3.org";
...
TYPE SimpleString = STRING LANGUAGE "i-default" LIMIT 0xFFFF;
TYPE CinfoString = STRING LANGUAGE "i-httpngcinfo" LIMIT 0xFFFF;
TYPE ExtensionHeader = RECORD
     name : HTTP-ng.UUIDString,
     value : PICKLE
END;
TYPE ExtensionHeaderList = SEQUENCE OF ExtensionHeader;
...
</PRE>
<P>
<H2>
  6.2. <CODE>Request</CODE> Message
</H2>
<P>
<A NAME="IDX37"></A>
<P>
Request header (pseudo-C):
<P>
<A NAME="IDX38"></A>
<PRE>
typedef struct {
  Boolean control_msg : 1;        /* == FALSE */
  Boolean ext_hdr_present : 1;    /* True if ext hdr list present */
  OperationID operation_id : 15;  /* identifies operation */
  DiscriminantID object_key : 15; /* identifies discriminant */
} RequestMsgHeader                /* 4 bytes total */
</PRE>
<P>
The actual message consists of the following sections:
<P>
[ <CODE>RequestMsgHeader</CODE> ]<BR>
[ extension header list, if any ]<BR>
[ XDR <CODE>string</CODE> containing object type ID of object type defining
operation, if not cached ]<BR>
[ bytes of <VAR>object_key</VAR>, if not cached, padded to 4 byte boundary
]<BR>
[ explicit input parameter values, if any, padded to a 4 byte boundary ]<BR>
<A NAME="IDX39"></A>
<P>
The <VAR>operation_id</VAR> contains either a connection-specific 14-bit
cache index, or a 13-bit method id (the zero-based ordinal position of the
method in the ISL declaration of the object type in which the operation is
defined) of the operation. If the method id is given, an additional value,
an XDR <CODE>string</CODE> value containing the object type ID of the object
type in which the operation is defined, is also passed. This means that this
protocol will not support interfaces in which object types have more than
8192 methods directly defined. <A NAME="IDX40"></A>
<P>
The <VAR>object_key</VAR> is either a 14-bit connection-specific cache index,
or the length of a variable length octet sequence of 8192 or fewer bytes
containing the service-point-relative name for the object (the
<VAR>instance-handle</VAR> of the URL). The object key value of <CODE>{ False,
False, 0 }</CODE>, normally a zero byte variable length object key, is reserved
for use by the protocol. The <VAR>object_key</VAR> is marshalled onto the
transport as an XDR value of type <CODE>fixed-length opaque data</CODE>,
where the length is that specified in the <CODE>v.key_len</CODE> field of
the <VAR>object_key</VAR>.
<P>
<A NAME="IDX41"></A> <A NAME="IDX42"></A> <A NAME="IDX43"></A>
<H3>
  6.2.1 Operation and Object Memoizing
</H3>
<P>
Callers may reduce the size of messages by memoizing operation IDs and object
IDs that are passed in the connection. This is done by the caller setting
the <CODE>cache_key</CODE> (for object IDs) or <CODE>cache_operation</CODE>
(for operation IDs) bit in the <CODE>DiscriminantID</CODE> or
<CODE>OperationID</CODE> struct when the object key or operation ID is first
sent. Each side must then assign the next available index to that object
or operation. The space of operations is separate from the space of object
ids, so that a total of 16383 possible values is available for memoizing
of discriminant objects, and 16383 different possible values for memoizing
of operations.
<P>
Note that the index is passed implicitly, so both sides of the connection
must synchronize their use of indices.
<P>
A shared set of indices may be loaded into the connection by some mechanism
before any messages are sent. This specification does not define a mechanism
for doing so.
<P>
<H2>
  6.3. <CODE>Reply</CODE> Message
</H2>
<P>
<A NAME="IDX44"></A>
<P>
Reply header (pseudo-C):
<P>
<A NAME="IDX45"></A>
<PRE>
typedef struct {
  Boolean control_msg : 1;        /* == FALSE */
  Boolean ext_hdr_present : 1;    /* True if ext hdr list present */
  ReplyStatus : 2;
  Unused reply_1 : 4;
  unsigned serial_no : 24;        /* serial # from Request */
} ReplyMsgHeader;                 /* 4 bytes total */
</PRE>
<P>
The actual message consists of the following fields:
<P>
[ <CODE>ReplyMsgHeader</CODE> ]<BR>
[ extension header list, if any ]<BR>
[ exception ID (32-bit unsigned), if any ]<BR>
[ explicit output parameter values, if any, padded to 4 byte boundary ]<BR>
<P>
<H2>
  6.4. <CODE>InitializeConnection</CODE> Message
</H2>
<P>
<A NAME="IDX46"></A>
<P>
InitializeConnection header (pseudo-C): <A NAME="IDX47"></A>
<P>
<PRE>
typedef struct {
  Boolean control_msg : 1;        /* == TRUE */
  ControlMsgType msg_type : 3;    /* == InitializeConnection */
  Unused verify_1 : 4;
  ProtocolVersion version : 8;    /* what version of the protocol? */
  unsigned server_id_len : 16;    /* length of server ID */
} InitializeConnectionMsgHeader;
</PRE>
<P>
The actual message consists of the following fields:
<P>
[ <CODE>InitializeConnectionMsgHeader</CODE> ]<BR>
[ <CODE>server_id_len</CODE>-length server ID for supposed callee, padded
to 4-byte boundary ]<BR>
<P>
This message is sent from caller to callee as the first message of the
connection. It is used to pass the server ID of the connection from client
to server, so that both sides understand what the omitted prefix portion
of discriminant IDs is. If the server ID received by the callee is not the
correct server ID for the callee (i.e., the callee has objects which do not
have that prefix in their object IDs), the callee should terminate the
connection, with the appropriate reason. The server ID is passed as an XDR
<CODE>fixed-length opaque data</CODE> value of the length specified in
<CODE>server_id_len</CODE>.
<P>
<H2>
  6.5. <CODE>TerminateConnection</CODE> Message
</H2>
<P>
<A NAME="IDX48"></A>
<P>
TerminateConnection header (pseudo-C):
<P>
<A NAME="IDX49"></A>
<PRE>
typedef struct {
  Boolean control_msg : 1;        /* == TRUE */
  ControlMsgType msg_type : 3;    /* == TerminateConnection */
  TerminationCause cause: 4;      /* why connection terminated */
  unsigned serial_no : 24;        /* last request processed/sent */
} TerminateConnectionMsgHeader;
</PRE>
<P>
<A NAME="IDX50"></A>
<P>
The actual message consists simply of the header; it provides for graceful
connection shutdown. It is sent either from the caller to the callee, or
from the callee to the caller, and informs the other party that it is cancelling
the connection, for one of these reasons:
<OL>
  <LI>
    A badly formatted message has arrived from the other party, and protocol
    sychronization is believe lost, or, the caller has sent a
    <CODE>InitializeConnection</CODE> message with the wrong major version for
    the protocol;
  <LI>
    This party (process, thread, whatever) is going away, and the other party
    should not attempt to reconnect to it;
  <LI>
    This connection is being terminated due to active resource management; the
    other party should attempt to reconnect if it needs to -- this reason is
    typically only useful from callee to caller;
  <LI>
    The caller has sent a <CODE>InitializeConnection</CODE> message with the
    wrong server ID;
  <LI>
    The caller has used the maximum serial number available for this connection.
</OL>
<P>
The <CODE>serial_no</CODE> field contains the serial number of the last message
completely processed by the caller (when <CODE>TerminateConnection</CODE>
is sent from caller to callee), or the serial number of the last message
sent by the callee (when sent from callee to caller). No further messages
should be sent on the connection by a sender of a
<CODE>TerminateConnection</CODE> message after it has been sent, or by a
receiver of <CODE>TerminateConnection</CODE> messsage after it has been received.
<P>
<H2>
  6.6. <CODE>DefaultCharset</CODE> Message
</H2>
<P>
<A NAME="IDX51"></A>
<P>
DefaultCharset header (pseudo-C):
<P>
<A NAME="IDX52"></A>
<PRE>
typedef struct {
  Boolean control_msg : 1;        /* == TRUE */
  ControlMsgType msg_type : 3;    /* == DefaultCharset */
  Unused bits_12: 12;             /* unused */
  unsigned charset_mibenum : 16;  /* default charset */
} DefaultCharsetMsgHeader;
</PRE>
<P>
This message is sent by either side of a connection to establish a default
charset for subsequent messages sent by that side of the connection. The
charset defines how string values are marshalled as octet sequences. The
default charset defines the default marshalling, unless overridden by an
explicit charset in a string value. Each side of the connection may establish
a default charset independently of the other side of the connection; the
default charset only applies to string values in messages coming from that
side. A new value of the default charset may be established at any time by
sending another <CODE>DefaultCharset</CODE> message.
<P>
<H1>
  7. Data Marshalling
</H1>
<P>
<A NAME="IDX53"></A> <A NAME="IDX54"></A> <A NAME="IDX55"></A>
<P>
The data value format used for parameters is the XDR format specified in
<A HREF="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1832.txt">Internet
RFC 1832</A>. However, we extend the XDR specification with one additional
type, called <DFN>flagged variable-length opaque data</DFN>. It is similar
to XDR's regular variable-length opaque data, except that the high-order
bit of the length field is used as a flag bit, instead of being part of the
length. This means that flagged variable-length opaque data can only carry
opaque data of lengths less than or equal to (2**31)-1.
<PRE>
            0     1     2     3     4     5   ...
         ++----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
 flag --&gt;||       length n       |byte0|byte1|...| n-1 |  0  |...|  0  |
  bit    ++----+-----+-----+-----+-----+-----+...+-----+-----+...+-----+
         ||&lt;------31 bits-------&gt;|&lt;------n bytes------&gt;|&lt;---r bytes---&gt;|
                                 |&lt;----n+r (where (n+r) mod 4 = 0)----&gt;|
                                          FLAGGED VARIABLE-LENGTH OPAQUE
</PRE>
<P>
<H2>
  7.1. Boolean Type
</H2>
<P>
<A NAME="IDX56"></A>
<P>
Values of type <CODE>BOOLEAN</CODE> are passed as XDR <CODE>bool</CODE>.
<A NAME="IDX57"></A>
<P>
<H2>
  7.2. Enumeration Types
</H2>
<P>
Values of enumeration types are passed as XDR <CODE>enum</CODE>. Each enumeration
value is assigned its ordinal value as it appears in the declaration of the
enumeration type, starting with the value `one'. <A NAME="IDX58"></A>
<P>
<H2>
  7.3. Numeric Types
</H2>
<P>
<A NAME="IDX59"></A> <A NAME="IDX60"></A>
<H3>
  7.3.1. Fixed-point Types
</H3>
<P>
Values of fixed-point types are passed by passing the value of the numerator.
We define a number of special cases for efficient marshalling of common integer
types, as well as a general case for passing values of fixed-point types
that are not covered by the special cases.
<P>
Special cases:<BR>
<UL>
  <LI>
    <B>32-bit integer</B>: Fixed-point values with a minimum-numerator value
    greater than or equal to -2147483648 and with a minimum numerator value less
    than or equal to 2147483647 are passed as XDR <CODE>integer</CODE>.
  <LI>
    <B>32-bit unsigned integer</B>: Fixed-point values with a minimum-numerator
    value greater than or equal to 0 and with a maximum numerator less than or
    equal to 4294967295 are passed as XDR <CODE>unsigned integer</CODE>.
  <LI>
    <B>64-bit integer</B>: Fixed-point values with a with a minimum numerator
    value greater than or equal to -9223372036854775808 and with a maximum numerator
    less than or equal to 9223372036854775807are passed as XDR <CODE>hyper
    integer</CODE>.
  <LI>
    <B>64-bit unsigned integer</B>: Fixed-point values with a minimum-numerator
    value greater than or equal to 0 and with a maximum numerator value less
    than or equal to 18446744073709551615 are passed as XDR <CODE>unsigned hyper
    integer</CODE>.
</UL>
<P>
General case:
<P>
The numerator of the value is passed as XDR <CODE>flagged variable-length
opaque data</CODE>, with the bytes of the data containing the value expressed
as a base-256 number, in big-endian order; that is, with the most significant
digit of the value first. The flag bit is used to carry the sign; the flag
bit is 0 for a positive number or zero, and 1 for a negative number.
<P>
<H3>
  7.3.2. Floating-point Types
</H3>
<P>
We define a number of special cases for efficient marshalling of common
floating-point types, as well as a general case for passing values of
floating-point types that are not covered by the special cases.
<P>
Special cases:<BR>
<UL>
  <LI>
    <B>IEEE single</B>: floating point types matching the IEEE 32-bit floating-point
    format (that is, with the parameters significand-size=24, exponent-base=2,
    maximum-exponent-value=127, minimum-exponent-value=-126, has-Not-A-Number=TRUE,
    has-Infinity=TRUE, denormalized-value-allowed=TRUE, and has-signed-zero=TRUE)
    are passed as XDR <CODE>floating-point</CODE>.
  <LI>
    <B>IEEE double</B>: floating point types matching the IEEE 64-bit floating-point
    format (that is, with the parameters significand-size=53, exponent-base=2,
    maximum-exponent-value=1023, minimum-exponent-value=-1022, has-Not-A-Number=TRUE,
    has-Infinity=TRUE, denormalized-value-allowed=TRUE, and has-signed-zero=TRUE)
    are passed as XDR <CODE>double-precision floating-point</CODE>.
  <LI>
    <B>Intel extended double</B>: floating point types matching the Intel IEEE
    floating-point-compliant extended double floating-point format (that is,
    with the parameters significand-size=64, exponent-base=2,
    maximum-exponent-value=16383, minimum-exponent-value=--16382,
    has-Not-A-Number=TRUE, has-Infinity=TRUE, denormalized-value-allowed=TRUE,
    and has-signed-zero=TRUE), are passed as a 12-byte value of XDR
    <CODE>fixed-length opaque data</CODE>, containing the floating-point value
    in the format specified in the UNIX System V Application Binary Interface
    Intel 386 Processor Supplement (Intel ABI) document: the 63 bits of the fraction
    occupy the first 7 bytes in little-endian order plus the low seven bits of
    the eighth byte; the 1 bit explicit leading significand bit occupies the
    high-order bit of the eighth byte; the 15 bits of the exponent occupy the
    ninth byte and the low-order bits of the tenth byte, in little-endian order;
    the sign bit occupies the high-order bit of the tenth byte; the eleventh
    and twelfth bytes are unused, and should contain zero values.
  <LI>
    <B>SPARC &amp; PowerPC extended double</B>: floating point types matching
    the XDR quadruple-precision floating-point format (that is, with the parameters
    significand-size=113, exponent-base=2, maximum-exponent-value=16383,
    minimum-exponent-value=-16382, has-Not-A-Number=TRUE, has-Infinity=TRUE,
    denormalized-value-allowed=TRUE, and has-signed-zero=TRUE), which is the
    form of extended double floating-point used by PowerPC and SPARC processors,
    are passed as XDR <CODE>quadruple-precision floating-point</CODE>.
</UL>
<P>
General case:
<P>
Values of floating-point types not matching the special cases identified
above are passed as a value of the XDR struct type
<CODE>GeneralFloatingPointValue</CODE>, which has the following definition:
<A NAME="IDX62"></A> <A NAME="IDX63"></A> <A NAME="IDX61"></A>
<PRE>
/* XDR */
enum { Normal = 1, NotANumber = 2, Infinity = 3 } FloatingPointValueType;
struct {
  flagged opaque FixedPointSignAndSignificand&lt;&gt;;
  flagged opaque FixedPointExponent&lt;&gt;;
} NormalFloatingPointValue;
union switch (FloatingPointValueType disc) {
  case Normal: NormalFloatingPointValue value;
  case NotANumber: void;
  case Infinity: void;
} GeneralFloatingPointValue;
</PRE>
<P>
The two fields of the <CODE>NormalFloatingPointValue</CODE> struct each contain
an on-the-wire representation of a fixed-point value of the fixed-point type
(denominator=1, no-mininum-numerator, no-maximum-numerator). The
<CODE>FixedPointSignAndSignificand</CODE> field contains the sign of the
floating-point value as the sign, and the actual significand as the absolute
value of the fixed-point value. The <CODE>FixedPointExponent</CODE> field
contains the exponent of the floating-point value.
<P>
<H2>
  7.4. String Types
</H2>
<P>
<A NAME="IDX64"></A>
<P>
Each string value sent in this protocol has a <DFN>charset</DFN> [RFC 2278]
associated with it, identified by the charset's IANA-assigned MIBEnum value.
Each side of a session may establish a <DFN>default charset</DFN> by sending
the <CODE>DefaultCharset</CODE> message. String values that use the default
character set do not contain explicit charset information; string values
that use a charset other than the default charset contain the MIBEnum value
for the charset, along with the bytes of the string.
<P>
We send a string value as a value of XDR <CODE>flagged variable-length opaque
data</CODE>. If the flag bit is 1, the first two bytes of the string value
are the MIBEnum of the charset, high-order byte first; the remaining bytes
are the bytes of the string. If the flag bit is 0, the bytes of opaque data
simply contain the bytes of the string; the charset is the default charset
for the session. It is a marshalling error to send a string value with a
flag bit of 0 over a session for which no default charset has been established.
To avoid context-sensitivity in marshalling a string, it is always valid
to marshal a string with an explicit charset value, even if the charset value
is the same as the default charset for the session. When marshalling a string
into a pickle, the charset should always be explicitly included.
<P>
<H2>
  7.5. Sequence Types
</H2>
<P>
<A NAME="IDX65"></A> <A NAME="IDX66"></A>
<P>
Values of sequence types are passed as XDR <CODE>variable-length arrays</CODE>,
with one exception: Sequences of any fixed-point type with a minimum numerator
greater than or equal to 0, and a maximum numerator less than or equal to
255, are passed as XDR <CODE>variable-length opaque data</CODE>, with one
numerator value per octet.
<P>
<H2>
  7.6. Array Types
</H2>
<P>
<A NAME="IDX67"></A> <A NAME="IDX68"></A>
<P>
Values of array types are passed as XDR <CODE>fixed-length arrays</CODE>,
with one exception: Arrays of any fixed-point type with a minimum numerator
greater than or equal to 0, and a maximum numerator less than or equal to
255, are passed as XDR <CODE>fixed-length opaque data</CODE>, with one numerator
value per octet. Values of array types are passed as XDR <CODE>fixed-length
arrays</CODE>, with one exception:
<P>
<H2>
  7.7. Record Types
</H2>
<P>
<A NAME="IDX69"></A>
<P>
Values of record types are passed as XDR <CODE>struct</CODE>.
<P>
<H2>
  7.8. Union Types
</H2>
<P>
<A NAME="IDX70"></A>
<P>
Values of union types are passed as XDR <CODE>union</CODE>, with the union
discriminant being the zero-based ordinal value for the encapsulated value's
type.
<P>
<H2>
  7.9. Pickle Type
</H2>
<P>
<A NAME="IDX71"></A>
<P>
A pickle is passed as an XDR <CODE>variable-length opaque data</CODE>, containing
the type ID of the pickled value's type, followed by the XDR-marshalled pickled
value. To save pickle space for common value types used in metadata, we define
a packed format for the type ID marshalling. A type ID is marshalled into
a pickle as a 32-bit header, in an XDR <CODE>unsigned integer</CODE>, possibly
followed by an XDR <CODE>fixed-length opaque data</CODE>, containing the
string form of the type ID of the pickled type. The header has the following
internal structure:
<PRE>
/* Pseudo-C */
typedef struct {
  unsigned              version : 8;
  PickleTypeKind        type_kind : 8;
  unsigned              type_id_len : 16;
} TypeIDHeader;
</PRE>
<P>
The <CODE>version</CODE> field gives the version number of the pickle format;
the <CODE>type_kind</CODE> field contains a value from the enum
<PRE>
/* Pseudo-C */
typedef enum {
  TypeKind_unconstrained = 0,   /* anything not covered by other type kinds... */
  TypeKind_boolean = 1, /* BOOLEAN */
  TypeKind_s8 = 2,	/* FIXED-POINT DENOM=1 MIN-NUM=-128 MAX-NUM=127 */
  TypeKind_s16 = 3,	/* FIXED-POINT DENOM=1 MIN-NUM=-32768 MAX-NUM=32767 */
  TypeKind_s32 = 4,     /* FIXED-POINT DENOM=1 MIN-NUM=-2147483648 MAX-NUM=2147483647 */
  TypeKind_s64 = 5,	/* FIXED-POINT DENOM=1 MIN-NUM=-9223372036854775808
			   MAX-NUM=9223372036854775807 */
  TypeKind_u8 = 6,      /* FIXED-POINT DENOM=1 MIN-NUM=0 MAX-NUM=255 */
  TypeKind_u16 = 7,	/* FIXED-POINT DENOM=1 MIN-NUM=0 MAX-NUM=65535 */
  TypeKind_u32 = 8,	/* FIXED-POINT DENOM=1 MIN-NUM=0 MAX-NUM=4294967296 */
  TypeKind_u64 = 9,	/* FIXED-POINT DENOM=1 MIN-NUM=0 MAX-NUM=18446744073709551616 */
  TypeKind_ieee_float32 = 10,   /* FLOATING-POINT SIGNIFICAND-SIZE=24 EXPONENT-BASE=2
				   MAXIMUM-EXPONENT-VALUE=127 MINIMUM-EXPONENT-VALUE=-126
				   HAS-NOT-A-NUMBER=TRUE HAS-INFINITY=TRUE
				   DENORMALIZED-VALUE-ALLOWED=TRUE HAS-SIGNED-ZERO=TRUE */
  TypeKind_ieee_float64 = 11,   /* FLOATING-POINT SIGNIFICAND-SIZE=53 EXPONENT-BASE=2
                                   MAXIMUM-EXPONENT-VALUE=1023 MINIMUM-EXPONENT-VALUE=-1022,
                                   HAS-NOT-A-NUMBER=TRUE HAS-INFINITY=TRUE
                                   DENORMALIZED-VALUE-ALLOWED=TRUE HAS-SIGNED-ZERO=TRUE */
  TypeKind_i_default_str = 12,  /* STRING LANGUAGE="i-default" */
  TypeKind_object = 13,         /* local or remote object */
  ...
  /* other types like Date, etc, should be added here... */
  ...
} PickleTypeKind;
</PRE>
<P>
If the value of <CODE>type_kind</CODE> is
<CODE>TypeKind_unconstrained</CODE>, the value of <CODE>type_kind_len</CODE>
is the length of a value of XDR type <CODE>fixed-length opaque data</CODE>,
containing the full string type ID of the type, which immediately follows
the header. Otherwise, no <CODE>opaque data</CODE> is marshalled.
<P>
For the purposes of marshalling, pickles have no default charset; this means
that strings marshalled into a pickle should always contain an explicit charset.
Pickles should be considered a single "message" for the purposes of marshalling
aliased reference types.
<P>
<H2>
  7.10. Reference Types
</H2>
<P>
<H3>
  7.10.1. Optional Types
</H3>
<P>
<A NAME="IDX72"></A>
<P>
Optional types are passed as XDR <CODE>optional-data</CODE>.
<P>
<H3>
  7.10.2. Aliased Types
</H3>
<P>
<A NAME="IDX73"></A>
<P>
The scope of aliasing in this protocol is the message, as in Java RMI, rather
than the call, as in DCE RPC. That is, aliasing occurs only within the context
of a single invocation or result, rather than across a full invocation-result
pair. For the purposes of marshalling, a pickle scope should be considered
a single message scope.
<P>
Each unique value of an aliased type that is marshalled is assigned a 32-bit
unsigned integer value, unique in the scope of aliasing, called its
<DFN>aliased identifier</DFN>. This identifier is marshalled as an XDR
<CODE>unsigned integer</CODE>. If the aliased value has not previously been
sent in this scope, its value is then marshalled as a value of its base type
would be. Note that this means that the full value of every aliased type
is sent only once in a scope; subsequent occurrences send only the aliased
identifier.
<P>
[ XXX - how to handle overflow of aliased value cache? ]
<P>
<H2>
  7.11. Object Types
</H2>
<P>
<A NAME="IDX74"></A>
<P>
An instance of an object type is passed as the state of the object type,
which also contains information about the actual type of the value. For remote
object types, this state is followed by the object identifier, and optionally
information about how the instance may be contacted.
<P>
<H3>
  7.11.1. Parameter Type Versus Actual Type
</H3>
<P>
<A NAME="IDX75"></A>
<P>
When marshalling the state of an object, it's important to distinguish two
important types of the value: the <DFN>parameter type</DFN>, which is the
type that both sides of the session expect the value to have, and the
<DFN>actual type</DFN> of the value, which is the most-derived type of the
object, and may be a subtype of the parameter type. If the actual type is
different from the parameter type, extra information must be passed along
with the value to allow the receiver to properly distinguish the type and
its associated data. However, if the actual type is the same as the parameter
type, some of this information can be omitted.
<P>
<H3>
  7.11.2. Passing the Actual Type ID
</H3>
<P>
We pass the state of the object type as the type ID of the most-derived-type
of the object, followed by the state attributes of each type of the object.
The type ID is passed as one of three values, depending on the following
conditions:<BR>
<OL>
  <LI>
    If the parameter type of the object is sealed, both sides already know the
    most-derived-type ID of the instance, and know that the actual type must
    be the same as the parameter type. In this case, the type ID is passed as
    XDR <CODE>void</CODE>.
  <LI>
    If the actual type of the object is the same as the parameter type, this
    is indicated by passing a zero-length value of XDR <CODE>variable-length
    opaque data</CODE>.
  <LI>
    Otherwise, the type ID is passed as a value of XDR <CODE>variable-length
    opaque data</CODE> containing the type ID.
</OL>
<P>
<H3>
  7.11.3. Passing the State Attributes
</H3>
<P>
The state attributes are marshalled in one of two ways:<BR>
<OL>
  <LI>
    If the actual type of the instance is the same as the parameter type, the
    state of each of the types of the object are passed by walking the supertype
    inheritance tree of the instance in a depth-first order, passing the value
    of each attribute of any particular state in the order in which they are
    defined, as if each state formed an XDR <CODE>structure</CODE> with the
    attributes as the components of the structure. The value of each attribute
    is marshalled directly according to the type of the attribute.
  <LI>
    If the actual type of the instance is a subtype of the parameter type, the
    receiver has to be able to handle state for types it has no knowledge of.
    To allow for this, the state of each type is passed as an encapsulation.
    That is, the state of the instance is passed as a sequence of XDR
    <CODE>structure</CODE> values, each containing the state for one of the types
    of the instance. Types of the instance which have no associated state do
    not appear in this sequence. An XDR expression of the sequence would be the
    following: <A NAME="IDX77"></A> <A NAME="IDX76"></A>
    <PRE>
/* XDR */
struct {
  opaque type_id&lt;0xFFFF&gt;;
  opaque state&lt;&gt;;
} TypeState;
typedef TypeState StateSequence&lt;&gt;;
</PRE>
    <P>
    The <I>type_id</I> field contains the type ID for that type of the the object
    value. The variable-length opaque data field <I>state</I> contains the values
    of the attributes of the state marshalled as an XDR <CODE>structure</CODE>,
    where the components of the structure are the attributes of the state.
</OL>
<P>
<H3>
  7.11.4. Passing the Object ID and Contact Info
</H3>
<P>
<A NAME="IDX78"></A> <A NAME="IDX79"></A> <A NAME="IDX80"></A>
<A NAME="IDX81"></A> <A NAME="IDX82"></A>
<P>
In the case of a remote object type, the server ID, instance handle and contact
info for the value are passed as a value of the following XDR structure type
<CODE>RemoteObjectInfo</CODE>:
<PRE>
/* XDR */
typedef string ContactInfo&lt;0xFFFF&gt;;
struct {
  opaque server_id&lt;&gt;;
  opaque instance_handle&lt;&gt;;
  ContactInfo cinfos&lt;&gt;;
} RemoteObjectInfo;
</PRE>
<P>
where <I>server_id</I> is a identifier for the server which supports the
desired object, and <I>instance_handle</I> is a server-relative name for
the object. The <I>cinfos</I> field contains zero or more pieces of information
about the way in which the object needs to be contacted, including information
such as whether various transport layers are involved.
<P>
<A NAME="IDX83"></A>
<H1>
  8. System Exceptions
</H1>
<P>
<A NAME="IDX84"></A>
<P>
<H2>
  8.1. <CODE>UnknownProblem</CODE>
</H2>
<P>
Exception Code: 0<BR>
ISL Values: None
<P>
An unknown problem occurred. <A NAME="IDX85"></A>
<P>
<H2>
  8.2. <CODE>ImplementationLimit</CODE>
</H2>
<P>
Exception Code: 1<BR>
ISL Values: None
<P>
The request could not be properly addressed because of some implementation
resource limit on the callee side. <A NAME="IDX86"></A>
<H2>
  8.3. <CODE>SwitchConnectionCinfo</CODE>
</H2>
<P>
Exception Code: 2<BR>
ISL Values: <VAR>NEW-CINFO</VAR> : <CODE>HTTP-ng-w3ng.CinfoString</CODE>
<P>
This exception requests the caller to upgrade the connection protocol and
transport information to the cinfo specified as the argument, and re-try
the call. This is the equivalent of the <CODE>UPGRADE</CODE> message in HTTP
1.1, and the <CODE>RELOCATE_REPLY</CODE> message in CORBA GIOP.
<A NAME="IDX87"></A>
<H2>
  8.4. <CODE>Marshal</CODE>
</H2>
<P>
Exception Code: 3<BR>
ISL Values: None
<P>
A marshalling problem was encountered. <A NAME="IDX88"></A>
<H2>
  8.5. <CODE>NoSuchObjectType</CODE>
</H2>
<P>
Exception Code: 4<BR>
ISL Values: None
<P>
The object type of the operation was unknown at the server.
<A NAME="IDX89"></A>
<H2>
  8.6. <CODE>NoSuchMethod</CODE>
</H2>
<P>
Exception Code: 5<BR>
ISL Values: None
<P>
The object type of the operation was known at the server, but did not contain
the indicated method. <A NAME="IDX90"></A>
<H2>
  8.7. <CODE>NoSuchObject</CODE>
</H2>
<P>
Exception Code: 6<BR>
ISL Values: None
<P>
The specified discriminant object was not available at the server.
<A NAME="IDX91"></A>
<H2>
  8.8. <CODE>InvalidType</CODE>
</H2>
<P>
Exception Code: 7<BR>
ISL Values: None
<P>
The object specified by the discriminant did not participate in the type
specified in the operation. <A NAME="IDX92"></A>
<H2>
  8.9. <CODE>Rejected</CODE>
</H2>
<P>
Exception Code: 8<BR>
ISL Values: <VAR>REASON</VAR> : <CODE>OPTIONAL SimpleString</CODE>
<P>
The server refused to process the request. It may return a string giving
a reason for the rejection.
<P>
<H2>
  8.10. <CODE>OperationOrDiscriminantCacheOverflow</CODE>
</H2>
<P>
Exception Code: 9<BR>
ISL Values: None
<P>
The request caused the receiver's cache of operations or discriminants to
overflow. The sender may retry the request with uncached operation and
discriminant values; subsequent requests should not cache any additional
operation or discriminant values, but may continue to use previously successfully
cached values.
<P>
<H1>
  9. Discussion
</H1>
<P>
<A NAME="IDX93"></A>
<P>
<H2>
  9.1. Serial Numbers
</H2>
<P>
Does this protocol need to assign serial numbers to requests and replies?
We do so in order to be able to cancel operations by serial number, and to
be able to return reply messages out of order. The first problem, that of
cancelling operations, could be dealt with by keeping track of serial numbers
implicitly, and using an explicit serial number only in the
<CODE>CancelRequest</CODE> message. Doing this would imply that the replies
would have to be returned in the order in which the requests were passed,
but would allow us to have 6 byte request messages (4 bytes if we count the
discriminant as part of the arguments, instead of part of the header), and
4 byte reply messages. Thus the only real purpose for serial numbers is to
allow replies to be returned out of order (and possibly to make debugging
the protocol easier). There are other deeper unanswered questions here about
the serialization semantics of the protocol. For instance, should the callee
wait until dispatching a reply to one request until beginning to process
the next one?
<P>
The current answer to these questions is that it is highly useful to allow
a threaded callee to process multiple requests in parallel, and to allow
it to return requests out of order. Thus serial numbers are useful. We assume
that higher-level protocols desiring serialization will provide a serialization
context as part of the context of the call, and that serialization will be
handled at either a higher or lower level.
<P>
<A NAME="IDX94"></A>
<H2>
  9.2. Memoizing of PICKLE and Object Types?
</H2>
<P>
A great deal of the traffic over this protocol may consist of values of type
PICKLE (the equivalent of object-by-value, or of HTTP's MIME-encapsulated
body type) or of some object type. It is tempting to introduce a form of
memoizing for these value types, similar to that used for request discriminants.
There are two reasons not to do so:
<OL>
  <LI>
    XDR provides no explicit support for memoizing, which means that we would
    have to provide a marshalling format for these types which has no clean layering
    onto XDR. For instance, it might be possible to pass an object value as an
    XDR 32-bit unsigned integer with the following (private) pseudo-C structure
    <PRE>
struct {
  boolean   use_cached_value : 1;
  boolean   cache_this_value : 1;
  union {
    unsigned int url_len : 30;
    unsigned int cache_key : 30;
  } v;
};
</PRE>
    <P>
    either by itself (if <CODE>use_cached_value</CODE> is set), or followed by
    an XDR fixed length opaque value containing the URL for the object (if
    <CODE>use_cached_value</CODE> is not set). This type of variable structure
    has no equivalent in XDR. On the other hand, it could well be argued that
    since we are marshalling an object type, something not explicitly covered
    by XDR, that we are simply providing an extension to XDR, in the spirit of
    the marshalling. We could even use a simpler construct, such as XDR union.
  <LI>
    A more powerful argument is that allowing arbitrary memoizing of large items
    can let the caller place almost arbitrary loads on the storage requirements
    of the callee. It could be argued that the callee can reset the connection
    at any time if the load becomes too onerous via
    <CODE>TerminateConnection</CODE>.
</OL>
<P>
Neither of these arguments seems overwhelmingly powerful.
<P>
<H2>
  9.3. URL Forms
</H2>
<P>
Open issues:
<UL>
  <LI>
    We need to specify a default object type (and default <VAR>CINFO</VAR>?).
  <LI>
    The exact format of <VAR>TYPEID</VAR> values and <VAR>CINFO</VAR> stacks
    must also be specified.
  <LI>
    The form of <VAR>SERVER-ID</VAR> should also be defined to allow slash characters
    internally.
  <LI>
    Should <VAR>SERVER-ID</VAR> be stylized in a way which makes it easy to use
    with DNS?
  <LI>
    How should HTTP URLs be integrated into this, if at all?
  <LI>
    Should we have multiple URL forms, with some information about the cinfo
    being integrated into some of the forms? For example, Henrik has suggested
    that a URL of the form
    <CODE>http-ng://foo.bar.com/<VAR>object-id</VAR></CODE> might be used to
    indicate that object <VAR>object-id</VAR> is available at
    <CODE>foo.bar.com</CODE>, and that the client should use some protocol
    negotiation protocol to work out the exact shape of the cinfo.
</UL>
<P>
<A NAME="IDX95"></A>
<P>
Proposed: URLs for HTTP-ng objects will be of the form
<PRE>
w3ng:<VAR>SERVER-ID</VAR>/<VAR>INSTANCE-HANDLE</VAR>[;type=<VAR>TYPE</VAR>][;cinfo=<VAR>CINFO</VAR>]
</PRE>
<P>
where <VAR>SERVER-ID</VAR> is a identifier for the server which supports
the desired object; <VAR>INSTANCE-HANDLE</VAR> is a server-relative name
for the object; <VAR>TYPE</VAR> is the type ID for the most derived type
of the object; and <VAR>CINFO</VAR> is information about the way in which
the object needs to be contacted, including information such as whether various
transport layers are involved. This form has the virtue of becoming a URN
if the optional <VAR>CINFO</VAR> and <VAR>TYPE</VAR> fields are omitted.
<P>
<H2>
  9.4. Current syntax of Cinfo strings
</H2>
<P>
The syntax of cinfo currently follows the ILU definition. Each cinfo string
has the form described below (where brackets indicate optionality, an
&lt;ALPHANUMERIC-ID&gt; is an identifier composed of ASCII lowercase alphabetic
and numeric characters, beginning with a lowercase alphabetic character,
and a &lt;NON-UNDERSCORE-STRING&gt; is any string of ASCII characters not
containing the underscore character '_'):
<P>
<PRE>
&lt;cinfo&gt; := &lt;pinfo&gt; '@' &lt;tinfo-stack&gt;

&lt;pinfo&gt; := &lt;scheme&gt; [ '_' &lt;parms&gt; ]

&lt;scheme&gt; := &lt;ALPHANUMERIC-ID&gt;

&lt;parms&gt; := &lt;parm&gt; [ '_' &lt;parms&gt; ]

&lt;parm&gt; := &lt;NON-UNDERSCORE-STRING&gt; 

&lt;tinfo-stack&gt; := &lt;tinfo&gt; [ '=' &lt;tinfo-stack&gt; ]

&lt;tinfo&gt; := &lt;scheme&gt; [ '_' &lt;parms&gt; ]
</PRE>
<P>
<H3>
  9.4.1. Syntax of <CODE>w3ng</CODE> Pinfo
</H3>
<P>
The current syntax of the pinfo string for the ILU implementation of the
<CODE>w3ng</CODE> wire protocol is
<P>
<PRE>
&lt;scheme&gt; := 'w3ng'

&lt;parms&gt; := &lt;major-version&gt; [ '.' &lt;minor-version&gt; ]
</PRE>
<P>
where <CODE>&lt;major-version&gt;</CODE> and
<CODE>&lt;minor-version&gt;</CODE> are numbers between 0 and 15. If the
<CODE>&lt;minor-version&gt;</CODE> is not specified, it defaults to 0.
<P>
<H3>
  9.4.2. Syntax of <CODE>w3mux</CODE> Tinfo
</H3>
<P>
The current syntax of the tinfo string for the ILU implementation of the
<CODE>w3mux</CODE> transport layer is
<P>
<PRE>
&lt;scheme&gt; := 'w3mux'

&lt;parms&gt; := &lt;channel&gt; '_' &lt;endpoint&gt;
</PRE>
<P>
where <CODE>&lt;channel&gt;</CODE> is a protocol ID number [MUX], and
<CODE>&lt;endpoint&gt;</CODE> is a UUID string for an endpoint. The size
of the <CODE>&lt;endpoint&gt;</CODE> string must be less than 1000 bytes.
<P>
<H3>
  9.4.3. Syntax of <CODE>tcp</CODE> Tinfo
</H3>
<P>
The current syntax of the tinfo string for the ILU implementation of the
<CODE>tcp</CODE> transport layer is
<P>
<PRE>
&lt;scheme&gt; := 'tcp'

&lt;parms&gt; := &lt;host&gt; '_' &lt;port&gt;
</PRE>
<P>
where <CODE>&lt;host&gt;</CODE> is string of less than 1000 bytes indicating
the IP address or hostname of the remote machine, and
<CODE>&lt;port&gt;</CODE> is the TCP port on which the host is listening.
<P>
<H3>
  9.4.4. Syntax of <CODE>sunrpcrm</CODE> Tinfo
</H3>
<P>
The current syntax of the tinfo string for the ILU implementation of the
<CODE>sunrpcrm</CODE> transport layer is
<P>
<PRE>
&lt;scheme&gt; := 'sunrpcrm'
</PRE>
<P>
No parameters are defined. This layer implements the ONC RPC record-marking
scheme on top of a reliable byte stream, as defined in section 10 of the
ONC RPC RFC [ONC RPC].
<P>
<H1>
  10. References
</H1>
<P>
RFC 2278:
<A HREF="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2278.txt">http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2278.txt</A>
<P>
XDR [RFC 1832]:
<A HREF="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1832.txt">http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1832.txt</A>
<P>
ONC RPC [RFC 1831]:
<A HREF="http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1831.txt">http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1831.txt</A>
<P>
ISL:
<A HREF="ftp://ftp.parc.xerox.com/pub/ilu/2.0a12/manual-html/manual_2.html">ftp://ftp.parc.xerox.com/pub/ilu/2.0a12/manual-html/manual_2.html</A>
<P>
WD-HTTP-NG-arch-model (work in progress):
<A HREF="http://www.w3.org/TR/1998/WD-HTTP-NG-architecture">http://www.w3.org/TR/1998/WD-HTTP-NG-architecture</A>
<P>
MUX (work in progress):
<A HREF="http://www.w3.org/TR/1998/WD-mux-971203">http://www.w3.org/TR/1998/WD-mux</A>
<P>
ILU:
<A HREF="ftp://ftp.parc.xerox.com/pub/ilu/2.0a12/manual-html/manual_2.html">ftp://ftp.parc.xerox.com/pub/ilu/2.0a12/manual-html/manual_2.html</A>
<H1>
  11. Address of Author
</H1>
<P>
<A NAME="IDX96"></A>
<P>
Bill Janssen<BR>
Xerox Palo Alto Research Center<BR>
3333 Coyote Hill Rd<BR>
Palo Alto, CA 94304<BR>
<P>
Phone: (650) 812-4763<BR>
FAX: (650) 812-4777<BR>
Email: janssen@parc.xerox.com<BR>
HTTP: http://www.parc.xerox.com/istl/members/janssen/<BR>
<H1>
  Index
</H1>
<UL>
  <LI>
    <H2>
      a
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX73">aliased types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX17">alignment</A>
  <LI>
    <A HREF="wire-encoding.html#IDX68">array of byte, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX67">array types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX96">author</A>
    <H2>
      b
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX15">big-endian</A>
  <LI>
    <A HREF="wire-encoding.html#IDX56"><CODE>BOOLEAN</CODE></A>
  <LI>
    <A HREF="wire-encoding.html#IDX21"><CODE>Boolean</CODE> (pseudo-C enum
    type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX57">boolean type, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX14">byte order</A>
    <H2>
      c
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX80">cinfo, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX3">connection, definition of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX81">contact info, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX22"><CODE>ControlMsgType</CODE> (pseudo-C
    enum type)</A>
    <H2>
      d
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX52"><CODE>DefaultCharsetMsgHeader</CODE> (pseudo-C
    struct type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX42">discriminant object ID memoizing</A>
  <LI>
    <A HREF="wire-encoding.html#IDX40">discriminant, identification of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX24"><CODE>DiscriminantID</CODE> (pseudo-C
    struct type)</A>
    <H2>
      e
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX58">enumeration types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX33">extension headers</A>
    <H2>
      f
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX60">fixed-point types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX55">flagged variable-length opaque data (XDR
    type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX62"><CODE>FloatingPointValueType</CODE> (XDR
    type)</A>
    <H2>
      g
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX61"><CODE>GeneralFloatingPointValue</CODE>
    (XDR type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX50">graceful connection shutdown</A>
    <H2>
      h
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX35"><CODE>HTTP-ng-w3ng.ExtensionHeader</CODE>
    (ISL type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX34"><CODE>HTTP-ng-w3ng.ExtensionHeaderList</CODE>
    (ISL type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX36"><CODE>HTTP-ng-w3ng.SimpleString</CODE>
    (ISL type)</A>
    <H2>
      i
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX85"><CODE>ImplementationLimit</CODE> (system
    exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX46"><CODE>InitializeConnection</CODE>
    message</A>
  <LI>
    <A HREF="wire-encoding.html#IDX47"><CODE>InitializeConnectionMsgHeader</CODE>
    (pseudo-C struct type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX8">instance handle</A>
  <LI>
    <A HREF="wire-encoding.html#IDX78">instance handle, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX59">integer types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX5">interface</A>
  <LI>
    <A HREF="wire-encoding.html#IDX91"><CODE>InvalidType</CODE> (system
    exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX53">ISL-&gt;XDR mapping</A>
    <H2>
      m
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX87"><CODE>Marshal</CODE> (system exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX54">marshalling of data</A>
  <LI>
    <A HREF="wire-encoding.html#IDX43">memoizing</A>
  <LI>
    <A HREF="wire-encoding.html#IDX94">memoizing of pickle and object types</A>
  <LI>
    <A HREF="wire-encoding.html#IDX13">message-oriented transport</A>
  <LI>
    <A HREF="wire-encoding.html#IDX29">messages, description of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX4">model of operation</A>
    <H2>
      n
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX63"><CODE>NormalFloatingPointValue</CODE>
    (XDR type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX89"><CODE>NoSuchMethod</CODE> (system
    exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX90"><CODE>NoSuchObject</CODE> (system
    exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX88"><CODE>NoSuchObjectType</CODE> (system
    exception)</A>
    <H2>
      o
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX7">object ID</A>
  <LI>
    <A HREF="wire-encoding.html#IDX75">object state, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX74">object types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX41">operation ID memoizing</A>
  <LI>
    <A HREF="wire-encoding.html#IDX39">operation, identification of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX25"><CODE>OperationID</CODE> (pseudo-C struct
    type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX72">optional types, marshalling of</A>
    <H2>
      p
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX16">padding</A>
  <LI>
    <A HREF="wire-encoding.html#IDX71">pickle types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX27"><CODE>ProtocolVersion</CODE> (pseudo-C
    struct type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX2">pseudo-C syntax, definition of</A>
    <H2>
      r
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX69">record types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX92"><CODE>Rejected</CODE> (system exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX10">reliable sequenced message transport</A>
  <LI>
    <A HREF="wire-encoding.html#IDX79">remote object types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX44"><CODE>Reply</CODE> message</A>
  <LI>
    <A HREF="wire-encoding.html#IDX45"><CODE>ReplyMsgHeader</CODE> (pseudo-C
    struct type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX23"><CODE>ReplyStatus</CODE> (pseudo-C enum
    type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX37"><CODE>Request</CODE> message</A>
  <LI>
    <A HREF="wire-encoding.html#IDX38"><CODE>RequestMsgHeader</CODE> (pseudo-C
    struct type)</A>
    <H2>
      s
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX19">security</A>
  <LI>
    <A HREF="wire-encoding.html#IDX66">sequence of byte, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX65">sequence types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX12">sequenced transport</A>
  <LI>
    <A HREF="wire-encoding.html#IDX93">serial numbers, discussion of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX9">serial numbers, range of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX6">server ID</A>
  <LI>
    <A HREF="wire-encoding.html#IDX20">session context</A>
  <LI>
    <A HREF="wire-encoding.html#IDX76"><CODE>StateSequence</CODE> (XDR type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX64">string types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX30"><CODE>Success</CODE> subtype of Reply</A>
  <LI>
    <A HREF="wire-encoding.html#IDX86"><CODE>SwitchConnectionCinfo</CODE> (system
    exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX1">syntax used</A>
  <LI>
    <A HREF="wire-encoding.html#IDX83">system exceptions</A>
  <LI>
    <A HREF="wire-encoding.html#IDX32"><CODE>SystemException</CODE> subtype of
    Reply</A>
    <H2>
      t
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX51"><CODE>TerminateConnection</CODE> message</A>
  <LI>
    <A HREF="wire-encoding.html#IDX49"><CODE>TerminateConnectionMsgHeader</CODE>
    (pseudo-C struct type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX26"><CODE>TerminationCause</CODE> (pseudo-C
    enum type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX11">transport requirements</A>
  <LI>
    <A HREF="wire-encoding.html#IDX77"><CODE>TypeState</CODE> (XDR type)</A>
    <H2>
      u
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX70">union types, marshalling of</A>
  <LI>
    <A HREF="wire-encoding.html#IDX84"><CODE>UnknownProblem</CODE> (system
    exception)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX28"><CODE>Unused</CODE> (pseudo-C alias
    type)</A>
  <LI>
    <A HREF="wire-encoding.html#IDX31"><CODE>UserException</CODE> subtype of
    Reply</A>
    <H2>
      w
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX95"><CODE>w3ng</CODE> URL form</A>
    <H2>
      x
    </H2>
  <LI>
    <A HREF="wire-encoding.html#IDX82">XDR type
    <CODE>RemoteObjectInfo</CODE></A>
  <LI>
    <A HREF="wire-encoding.html#IDX18">XDR, Internet RFC 1832, use of</A>
</UL>
</BODY></HTML>