index.html 311 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
<!DOCTYPE html PUBLIC '-//W3C//DTD HTML 4.01 Transitional//EN' 'http://www.w3.org/TR/html4/loose.dtd'>
<html lang="en" dir="ltr">
<head>
    <title>XML Encryption Syntax and Processing Version 1.1</title>
    <meta http-equiv="Content-Type" content="text/html;charset=utf-8">
     
    
    <!--     <script src='../../../dap-dev/ReSpec.js/js/respec.js' class='remove'></script> -->
    
    
  <style type="text/css">
/*****************************************************************
 * ReSpec CSS
 * Robin Berjon (robin at berjon dot com)
 * v0.05 - 2009-07-31
 *****************************************************************/


/* --- INLINES --- */
em.rfc2119 { 
    text-transform:     lowercase;
    font-variant:       small-caps;
    font-style:         normal;
    color:              #900;
}

h1 acronym, h2 acronym, h3 acronym, h4 acronym, h5 acronym, h6 acronym, a acronym,
h1 abbr, h2 abbr, h3 abbr, h4 abbr, h5 abbr, h6 abbr, a abbr {
    border: none;
}

dfn {
    font-weight:    bold;
}

a.internalDFN {
    color:  inherit;
    border-bottom:  1px solid #99c;
    text-decoration:    none;
}

a.externalDFN {
    color:  inherit;
    border-bottom:  1px dotted #ccc;
    text-decoration:    none;
}

a.bibref {
    text-decoration:    none;
}

code {
    color:  #ff4500;
}


/* --- WEB IDL --- */
pre.idl {
    border-top: 1px solid #90b8de;
    border-bottom: 1px solid #90b8de;
    padding:    1em;
    line-height:    120%;
}

pre.idl::before {
    content:    "WebIDL";
    display:    block;
    width:      150px;
    background: #90b8de;
    color:  #fff;
    font-family:    initial;
    padding:    3px;
    font-weight:    bold;
    margin: -1em 0 1em -1em;
}

.idlType {
    color:  #ff4500;
    font-weight:    bold;
    text-decoration:    none;
}

/*.idlModule*/
/*.idlModuleID*/
/*.idlInterface*/
.idlInterfaceID, .idlDictionaryID {
    font-weight:    bold;
    color:  #005a9c;
}

.idlSuperclass {
    font-style: italic;
    color:  #005a9c;
}

/*.idlAttribute*/
.idlAttrType, .idlFieldType, .idlMemberType {
    color:  #005a9c;
}
.idlAttrName, .idlFieldName, .idlMemberName {
    color:  #ff4500;
}
.idlAttrName a, .idlFieldName a, .idlMemberName a {
    color:  #ff4500;
    border-bottom:  1px dotted #ff4500;
    text-decoration: none;
}

/*.idlMethod*/
.idlMethType {
    color:  #005a9c;
}
.idlMethName {
    color:  #ff4500;
}
.idlMethName a {
    color:  #ff4500;
    border-bottom:  1px dotted #ff4500;
    text-decoration: none;
}

/*.idlParam*/
.idlParamType {
    color:  #005a9c;
}
.idlParamName {
    font-style: italic;
}

.extAttr {
    color:  #666;
}

/*.idlConst*/
.idlConstType {
    color:  #005a9c;
}
.idlConstName {
    color:  #ff4500;
}
.idlConstName a {
    color:  #ff4500;
    border-bottom:  1px dotted #ff4500;
    text-decoration: none;
}

/*.idlException*/
.idlExceptionID {
    font-weight:    bold;
    color:  #c00;
}

.idlTypedefID, .idlTypedefType {
    color:  #005a9c;
}

.idlRaises, .idlRaises a.idlType, .idlRaises a.idlType code, .excName a, .excName a code {
    color:  #c00;
    font-weight:    normal;
}

.excName a {
    font-family:    monospace;
}

.idlRaises a.idlType, .excName a.idlType {
    border-bottom:  1px dotted #c00;
}

.excGetSetTrue, .excGetSetFalse, .prmNullTrue, .prmNullFalse, .prmOptTrue, .prmOptFalse {
    width:  45px;
    text-align: center;
}
.excGetSetTrue, .prmNullTrue, .prmOptTrue { color:  #0c0; }
.excGetSetFalse, .prmNullFalse, .prmOptFalse { color:  #c00; }

.idlImplements a {
    font-weight:    bold;
}

dl.attributes, dl.methods, dl.constants, dl.fields, dl.dictionary-members {
    margin-left:    2em;
}

.attributes dt, .methods dt, .constants dt, .fields dt, .dictionary-members dt {
    font-weight:    normal;
}

.attributes dt code, .methods dt code, .constants dt code, .fields dt code, .dictionary-members dt code {
    font-weight:    bold;
    color:  #000;
    font-family:    monospace;
}

.attributes dt code, .fields dt code, .dictionary-members dt code {
    background:  #ffffd2;
}

.attributes dt .idlAttrType code, .fields dt .idlFieldType code, .dictionary-members dt .idlMemberType code {
    color:  #005a9c;
    background:  transparent;
    font-family:    inherit;
    font-weight:    normal;
    font-style: italic;
}

.methods dt code {
    background:  #d9e6f8;
}

.constants dt code {
    background:  #ddffd2;
}

.attributes dd, .methods dd, .constants dd, .fields dd, .dictionary-members dd {
    margin-bottom:  1em;
}

table.parameters, table.exceptions {
    border-spacing: 0;
    border-collapse:    collapse;
    margin: 0.5em 0;
    width:  100%;
}
table.parameters { border-bottom:  1px solid #90b8de; }
table.exceptions { border-bottom:  1px solid #deb890; }

.parameters th, .exceptions th {
    color:  #fff;
    padding:    3px 5px;
    text-align: left;
    font-family:    initial;
    font-weight:    normal;
    text-shadow:    #666 1px 1px 0;
}
.parameters th { background: #90b8de; }
.exceptions th { background: #deb890; }

.parameters td, .exceptions td {
    padding:    3px 10px;
    border-top: 1px solid #ddd;
    vertical-align: top;
}

.parameters tr:first-child td, .exceptions tr:first-child td {
    border-top: none;
}

.parameters td.prmName, .exceptions td.excName, .exceptions td.excCodeName {
    width:  100px;
}

.parameters td.prmType {
    width:  120px;
}

table.exceptions table {
    border-spacing: 0;
    border-collapse:    collapse;
    width:  100%;
}

/* --- TOC --- */
.toc a {
    text-decoration:    none;
}

a .secno {
    color:  #000;
}

/* --- TABLE --- */
table.simple {
    border-spacing: 0;
    border-collapse:    collapse;
    border-bottom:  3px solid #005a9c;
}

.simple th {
    background: #005a9c;
    color:  #fff;
    padding:    3px 5px;
    text-align: left;
}

.simple th[scope="row"] {
    background: inherit;
    color:  inherit;
    border-top: 1px solid #ddd;
}

.simple td {
    padding:    3px 10px;
    border-top: 1px solid #ddd;
}

.simple tr:nth-child(even) {
    background: #f0f6ff;
}

/* --- DL --- */
.section dd > p:first-child {
    margin-top: 0;
}

.section dd > p:last-child {
    margin-bottom: 0;
}

.section dd {
    margin-bottom:  1em;
}

.section dl.attrs dd, .section dl.eldef dd {
    margin-bottom:  0;
}

/* --- EXAMPLES --- */
pre.example {
    border-top: 1px solid #ff4500;
    border-bottom: 1px solid #ff4500;
    padding:    1em;
    margin-top: 1em;
}

pre.example::before {
    content:    "Example";
    display:    block;
    width:      150px;
    background: #ff4500;
    color:  #fff;
    font-family:    initial;
    padding:    3px;
    font-weight:    bold;
    margin: -1em 0 1em -1em;
}

/* --- EDITORIAL NOTES --- */
.issue {
    padding:    1em;
    margin: 1em 0em 0em;
    border: 1px solid #f00;
    background: #ffc;
}

.issue::before {
    content:    "Issue";
    display:    block;
    width:  150px;
    margin: -1.5em 0 0.5em 0;
    font-weight:    bold;
    border: 1px solid #f00;
    background: #fff;
    padding:    3px 1em;
}

.note {
    margin: 1em 0em 0em;
    padding:    1em;
    border: 2px solid #cff6d9;
    background: #e2fff0;
}

.note::before {
    content:    "Note";
    display:    block;
    width:  150px;
    margin: -1.5em 0 0.5em 0;
    font-weight:    bold;
    border: 1px solid #cff6d9;
    background: #fff;
    padding:    3px 1em;
}

/* --- Best Practices --- */
div.practice {
    border: solid #bebebe 1px;
    margin: 2em 1em 1em 2em;
}

span.practicelab {
    margin: 1.5em 0.5em 1em 1em;
    font-weight: bold;
    font-style: italic;
}

span.practicelab   { background: #dfffff; }

span.practicelab {
    position: relative;
    padding: 0 0.5em;
    top: -1.5em;
}

p.practicedesc {
    margin: 1.5em 0.5em 1em 1em;
}

@media screen {
    p.practicedesc {
        position: relative;
        top: -2em;
        padding: 0;
        margin: 1.5em 0.5em -1em 1em;
    }
}

/* --- SYNTAX HIGHLIGHTING --- */
pre.sh_sourceCode {
  background-color: white;
  color: black;
  font-style: normal;
  font-weight: normal;
}

pre.sh_sourceCode .sh_keyword { color: #005a9c; font-weight: bold; }           /* language keywords */
pre.sh_sourceCode .sh_type { color: #666; }                            /* basic types */
pre.sh_sourceCode .sh_usertype { color: teal; }                             /* user defined types */
pre.sh_sourceCode .sh_string { color: red; font-family: monospace; }        /* strings and chars */
pre.sh_sourceCode .sh_regexp { color: orange; font-family: monospace; }     /* regular expressions */
pre.sh_sourceCode .sh_specialchar { color: 	#ffc0cb; font-family: monospace; }  /* e.g., \n, \t, \\ */
pre.sh_sourceCode .sh_comment { color: #A52A2A; font-style: italic; }         /* comments */
pre.sh_sourceCode .sh_number { color: purple; }                             /* literal numbers */
pre.sh_sourceCode .sh_preproc { color: #00008B; font-weight: bold; }       /* e.g., #include, import */
pre.sh_sourceCode .sh_symbol { color: blue; }                            /* e.g., *, + */
pre.sh_sourceCode .sh_function { color: black; font-weight: bold; }         /* function calls and declarations */
pre.sh_sourceCode .sh_cbracket { color: red; }                              /* block brackets (e.g., {, }) */
pre.sh_sourceCode .sh_todo { font-weight: bold; background-color: #00FFFF; }   /* TODO and FIXME */

/* Predefined variables and functions (for instance glsl) */
pre.sh_sourceCode .sh_predef_var { color: #00008B; }
pre.sh_sourceCode .sh_predef_func { color: #00008B; font-weight: bold; }

/* for OOP */
pre.sh_sourceCode .sh_classname { color: teal; }

/* line numbers (not yet implemented) */
pre.sh_sourceCode .sh_linenum { display: none; }

/* Internet related */
pre.sh_sourceCode .sh_url { color: blue; text-decoration: underline; font-family: monospace; }

/* for ChangeLog and Log files */
pre.sh_sourceCode .sh_date { color: blue; font-weight: bold; }
pre.sh_sourceCode .sh_time, pre.sh_sourceCode .sh_file { color: #00008B; font-weight: bold; }
pre.sh_sourceCode .sh_ip, pre.sh_sourceCode .sh_name { color: #006400; }

/* for Prolog, Perl... */
pre.sh_sourceCode .sh_variable { color: #006400; }

/* for LaTeX */
pre.sh_sourceCode .sh_italics { color: #006400; font-style: italic; }
pre.sh_sourceCode .sh_bold { color: #006400; font-weight: bold; }
pre.sh_sourceCode .sh_underline { color: #006400; text-decoration: underline; }
pre.sh_sourceCode .sh_fixed { color: green; font-family: monospace; }
pre.sh_sourceCode .sh_argument { color: #006400; }
pre.sh_sourceCode .sh_optionalargument { color: purple; }
pre.sh_sourceCode .sh_math { color: orange; }
pre.sh_sourceCode .sh_bibtex { color: blue; }

/* for diffs */
pre.sh_sourceCode .sh_oldfile { color: orange; }
pre.sh_sourceCode .sh_newfile { color: #006400; }
pre.sh_sourceCode .sh_difflines { color: blue; }

/* for css */
pre.sh_sourceCode .sh_selector { color: purple; }
pre.sh_sourceCode .sh_property { color: blue; }
pre.sh_sourceCode .sh_value { color: #006400; font-style: italic; }

/* other */
pre.sh_sourceCode .sh_section { color: black; font-weight: bold; }
pre.sh_sourceCode .sh_paren { color: red; }
pre.sh_sourceCode .sh_attribute { color: #006400; }

</style><link href="http://www.w3.org/StyleSheets/TR/W3C-WD" rel="stylesheet" type="text/css" charset="utf-8"></head><body style="display: inherit; "><div class="head"><p><a href="http://www.w3.org/"><img width="72" height="48" src="http://www.w3.org/Icons/w3c_home" alt="W3C"></a></p><h1 class="title" id="title">XML Encryption Syntax and Processing Version 1.1</h1><h2 id="w3c-working-draft-05-january-2012"><acronym title="World Wide Web Consortium">W3C</acronym> Working Draft 05 January 2012</h2><dl><dt>This version:</dt><dd><a href="http://www.w3.org/TR/2012/WD-xmlenc-core1-20120105/">http://www.w3.org/TR/2012/WD-xmlenc-core1-20120105/</a></dd><dt>Latest published version:</dt><dd><a href="http://www.w3.org/TR/xmlenc-core1/">http://www.w3.org/TR/xmlenc-core1/</a></dd><dt>Latest editor's draft:</dt><dd><a href="http://www.w3.org/2008/xmlsec/Drafts/xmlenc-core-11/">http://www.w3.org/2008/xmlsec/Drafts/xmlenc-core-11/</a></dd><dt>Previous version:</dt><dd><a href="http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303/">http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303/</a></dd><dt>Latest recommendation:</dt><dd><a href="http://www.w3.org/TR/xmlenc-core/">http://www.w3.org/TR/xmlenc-core/</a></dd><dt>Editors:</dt><dd><span>Donald Eastlake</span>,  <span class="ed_mailto"><a href="mailto:d3e3e3@gmail.com">d3e3e3@gmail.com</a></span> </dd>
<dd><span>Joseph Reagle</span>,  <span class="ed_mailto"><a href="mailto:reagle@mit.edu">reagle@mit.edu</a></span> </dd>
<dd><span>Frederick Hirsch</span>,  <span class="ed_mailto"><a href="mailto:frederick.hirsch@nokia.com">frederick.hirsch@nokia.com</a></span>  ( 1.1 )</dd>
<dd><span>Thomas Roessler</span>,  <span class="ed_mailto"><a href="mailto:tlr@w3.org">tlr@w3.org</a></span>  ( 1.1 )</dd>
<dt>Authors:</dt><dd><span>Takeshi Imamura</span>,  <span class="ed_mailto"><a href="mailto:IMAMU@jp.ibm.com">IMAMU@jp.ibm.com</a></span> </dd>
<dd><span>Blair Dillaway</span>,  <span class="ed_mailto"><a href="mailto:blaird@microsoft.com">blaird@microsoft.com</a></span> </dd>
<dd><span>Ed Simon</span>,  <span class="ed_mailto"><a href="mailto:edsimon@xmlsec.com">edsimon@xmlsec.com</a></span> </dd>
<dd><span>Kelvin Yiu</span>,  <span class="ed_mailto"><a href="mailto:kelviny@microsoft.com">kelviny@microsoft.com</a></span>  ( 1.1 )</dd>
<dd><span>Magnus Nyström</span>,  <span class="ed_mailto"><a href="mailto:mnystrom@microsoft.com">mnystrom@microsoft.com</a></span>  ( 1.1 )</dd>
</dl><p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a> © 2012 <a href="http://www.w3.org/"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>®</sup> (<a href="http://www.csail.mit.edu/"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.eu/"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. <acronym title="World Wide Web Consortium">W3C</acronym> <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">trademark</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-documents">document use</a> rules apply.</p><hr></div>
    <div id="abstract" class="introductory section"><h2>Abstract</h2>
      <p>This document specifies a process for encrypting data and
        representing the result in XML. The data may be in a variety
        of formats, including octet streams and other unstructured
        data, or structured data formats such as  XML documents, an
        XML element, or XML element content. The result of 
        encrypting data is an XML Encryption element that contains or
        references the cipher data.</p>
    </div><div id="sotd" class="introductory section"><h2>Status of This Document</h2><p><em>This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current <acronym title="World Wide Web Consortium">W3C</acronym> publications and the latest revision of this technical report can be found in the <a href="http://www.w3.org/TR/"><acronym title="World Wide Web Consortium">W3C</acronym> technical reports index</a> at http://www.w3.org/TR/.</em></p>
      <p>At the time of this publication, the most recent <acronym title="World Wide Web Consortium">W3C</acronym>
      Recommendation of XML Encryption 1 is the 
        <a href="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/">10
        December 2002 XML Encryption  Recommendation</a>.  Please
        review <a href="Overview-diff-rec.html">differences between the
        previous XML Encryption Recommendation and this Working
        Draft</a>; a detailed <a href="explain.html">explanation of
        changes</a> is also available. 
      </p>
  <p>Conformance-affecting changes against this previous
  recommendation mainly affect the set of 
  mandatory to implement cryptographic algorithms, by adding Elliptic
  Curve Diffie-Hellman Key  Agreement, making AES-128 GCM
  mandatory and adding optional RSA-OEAP algorithm variants. </p>
      <p>The most recent publication of this draft is the 
<a href="http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303/">CR draft of
      March 2011</a>. Changes since that publication include the
      following substantive changes:
</p><ul>
<li> Added type='anyURI' to Algorithm for AlgorithmIdentifierType.</li> 
<li> Made AES-128-GCM mandatory and added warnings for CBC block
  encryption algorithms and the related reference.</li> 
<li> Added a new algorithm for RSA-OAEP that allows definition of mask generation function, with new URI.</li>
<li> Added URI definitions for MGF1 with SHA*, add RFC 4055 reference.</li>
<li> Revised the security considerations section.</li>
</ul>
Editorial changes include:
<ul>
<li>Changed "[XMLENC-CORE1]" to "(XMLENC-CORE1, this document)" in the
  media type section to avoid generating normative self reference, to
  resolve LC-2541.</li> 
<li>Revised the base64 note in algorithms section, and added an item for
  Encoding in 3.1. Clarifications to resolve LC-2542.</li> 
<li> Namespace denoting ("&amp;xenc;") related edits.</li>
<li> Added a Note re ConcatKDF nonce in section 5.4.1.</li>
<li> Added clarification on PBKDF2 key length.</li>
<li> Minor spelling and formatting fixes.</li>
</ul>
Please review <a href="Overview_diff.html">differences between the
  previous CR draft  and this Working Draft</a>.
<p><strong>Patent disclosures on this specification.</strong> <acronym title="World Wide Web Consortium">W3C</acronym>
has received several patent disclosures regarding this
specification and its use of Elliptic Curve cryptography. In accordance with <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Exception">section
7 of the <acronym title="World Wide Web Consortium">W3C</acronym> Patent Policy</a>, the staff has launched a <a href="http://www.w3.org/2011/xmlsec-pag/Overview.html">Patent
Advisory Group (PAG)</a> to address them. Please refer to the 
<a href="http://www.w3.org/2011/02/xmlsec-pag-charter.html">PAG charter</a> for more details.</p>

    <p>This document was published by the <a href="http://www.w3.org/2008/xmlsec/">XML Security Working Group</a> as a Last Call Working Draft. This document is intended to become a <acronym title="World Wide Web Consortium">W3C</acronym> Recommendation. If you wish to make comments regarding this document, please send them to <a href="mailto:public-xmlsec@w3.org">public-xmlsec@w3.org</a> (<a href="mailto:public-xmlsec-request@w3.org?subject=subscribe">subscribe</a>, <a href="http://lists.w3.org/Archives/Public/public-xmlsec/">archives</a>). The Last Call period ends 16 February 2012. All feedback is welcome.</p><p>Publication as a Working Draft does not imply endorsement by the <acronym title="World Wide Web Consortium">W3C</acronym> Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.</p><p>This is a Last Call Working Draft and thus the Working Group has determined that this document has satisfied the relevant technical requirements and is sufficiently stable to advance through the Technical Recommendation process.</p><p>This document was produced by a group operating under the <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/">5 February 2004 <acronym title="World Wide Web Consortium">W3C</acronym> Patent Policy</a>. <acronym title="World Wide Web Consortium">W3C</acronym> maintains a <a href="http://www.w3.org/2004/01/pp-impl/42458/status" rel="disclosure">public list of any patent disclosures</a> made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential">Essential Claim(s)</a> must disclose the information in accordance with <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure">section 6 of the <acronym title="World Wide Web Consortium">W3C</acronym> Patent Policy</a>.</p><p><a href="http://www.w3.org/2011/02/09-xmlsec-status.html">Additional information related to the IPR  status of XML Signature 1.1</a> is available.</p></div><div id="toc" class="section"><h2 class="introductory">Table of Contents</h2><ul class="toc"><li class="tocline"><a href="#sec-Introduction" class="tocxref"><span class="secno">1. </span>Introduction</a><ul class="toc"><li class="tocline"><a href="#sec-Editorial" class="tocxref"><span class="secno">1.1 </span>Editorial and Conformance Conventions</a></li><li class="tocline"><a href="#sec-Design" class="tocxref"><span class="secno">1.2 </span>Design Philosophy</a></li><li class="tocline"><a href="#sec-Versions" class="tocxref"><span class="secno">1.3 </span>Versions, Namespaces, URIs, and Identifiers</a></li><li class="tocline"><a href="#sec-Acknowledgements" class="tocxref"><span class="secno">1.4 </span>Acknowledgements</a></li></ul></li><li class="tocline"><a href="#sec-Overview" class="tocxref"><span class="secno">2. </span>Encryption Overview and Examples</a><ul class="toc"><li class="tocline"><a href="#sec-eg-Granularity" class="tocxref"><span class="secno">2.1 </span>Encryption Granularity</a><ul class="toc"><li class="tocline"><a href="#sec-eg-Element" class="tocxref"><span class="secno">2.1.1 </span>Encrypting an XML Element</a></li><li class="tocline"><a href="#sec-eg-Element-Content" class="tocxref"><span class="secno">2.1.2 </span>Encrypting XML Element Content (Elements)</a></li><li class="tocline"><a href="#sec-eg-Element-Content-Character" class="tocxref"><span class="secno">2.1.3 </span>Encrypting XML Element Content (Character
            Data)</a></li><li class="tocline"><a href="#sec-eg-Arbitrary-Data" class="tocxref"><span class="secno">2.1.4 </span>Encrypting Arbitrary Data and XML Documents</a></li><li class="tocline"><a href="#sec-eg-Super-Encryption" class="tocxref"><span class="secno">2.1.5 </span>Super-Encryption: Encrypting EncryptedData</a></li></ul></li><li class="tocline"><a href="#sec-Usage" class="tocxref"><span class="secno">2.2 </span><code>EncryptedData</code> and <code>EncryptedKey</code> Usage</a><ul class="toc"><li class="tocline"><a href="#sec-eg-Symmetric-Key" class="tocxref"><span class="secno">2.2.1 </span><code>EncryptedData</code> with Symmetric Key (<code>KeyName</code>)</a></li><li class="tocline"><a href="#sec-eg-EncryptedKey" class="tocxref"><span class="secno">2.2.2 </span><code>EncryptedKey</code>
            (<code>ReferenceList</code>, <code>ds:RetrievalMethod</code>,
            <code>CarriedKeyName</code>)</a></li></ul></li></ul></li><li class="tocline"><a href="#sec-Encryption-Syntax" class="tocxref"><span class="secno">3. </span>Encryption Syntax</a><ul class="toc"><li class="tocline"><a href="#sec-EncryptedType" class="tocxref"><span class="secno">3.1 </span>The <code>EncryptedType</code> Element</a></li><li class="tocline"><a href="#sec-EncryptionMethod" class="tocxref"><span class="secno">3.2 </span>The <code>EncryptionMethod</code> Element</a></li><li class="tocline"><a href="#sec-CipherData" class="tocxref"><span class="secno">3.3 </span>The <code>CipherData</code> Element</a><ul class="toc"><li class="tocline"><a href="#sec-CipherReference" class="tocxref"><span class="secno">3.3.1 </span>The <code>CipherReference</code> Element</a></li></ul></li><li class="tocline"><a href="#sec-EncryptedData" class="tocxref"><span class="secno">3.4 </span>The <code>EncryptedData</code> Element</a></li><li class="tocline"><a href="#sec-Extensions-to-KeyInfo" class="tocxref"><span class="secno">3.5 </span>Extensions to <code>ds:KeyInfo</code> Element</a><ul class="toc"><li class="tocline"><a href="#sec-EncryptedKey" class="tocxref"><span class="secno">3.5.1 </span>The <code>EncryptedKey</code> Element</a></li><li class="tocline"><a href="#sec-DerivedKey" class="tocxref"><span class="secno">3.5.2 </span>The <code>DerivedKey</code> Element</a></li><li class="tocline"><a href="#sec-ds-RetrievalMethod" class="tocxref"><span class="secno">3.5.3 </span>The <code>ds:RetrievalMethod</code> Element</a></li></ul></li><li class="tocline"><a href="#sec-ReferenceList" class="tocxref"><span class="secno">3.6 </span>The <code>ReferenceList</code> Element</a></li><li class="tocline"><a href="#sec-EncryptionProperties" class="tocxref"><span class="secno">3.7 </span>The <code>EncryptionProperties</code> Element</a></li></ul></li><li class="tocline"><a href="#sec-Processing" class="tocxref"><span class="secno">4. </span>Processing Rules</a><ul class="toc"><li class="tocline"><a href="#sec-Intended-Processing" class="tocxref"><span class="secno">4.1 </span>Intended Application Model</a></li><li class="tocline"><a href="#sec-Type-Parameters" class="tocxref"><span class="secno">4.2 </span>Well-known <code>Type</code> parameter values</a></li><li class="tocline"><a href="#sec-Processing-Encryption" class="tocxref"><span class="secno">4.3 </span>Encryption</a></li><li class="tocline"><a href="#sec-Processing-Decryption" class="tocxref"><span class="secno">4.4 </span>Decryption</a></li><li class="tocline"><a href="#sec-Processing-XML" class="tocxref"><span class="secno">4.5 </span>XML Encryption</a><ul class="toc"><li class="tocline"><a href="#sec-Decrypt-Imp" class="tocxref"><span class="secno">4.5.1 </span>A Decrypt
            Implementation (Non-normative)</a></li><li class="tocline"><a href="#sec-Decrypt-Replace-Imp" class="tocxref"><span class="secno">4.5.2 </span>A Decrypt and Replace Implementation (Non-normative)</a></li><li class="tocline"><a href="#sec-Serializing-XML" class="tocxref"><span class="secno">4.5.3 </span>Serializing XML (Non-normative)</a><ul class="toc"><li class="tocline"><a href="#sec-Default-Namespace-Considerations" class="tocxref"><span class="secno">4.5.3.1 </span>Default Namespace Considerations</a></li><li class="tocline"><a href="#sec-XML-Attribute-Considerations" class="tocxref"><span class="secno">4.5.3.2 </span>XML Attribute Considerations</a></li></ul></li><li class="tocline"><a href="#sec-Text-Wrapping" class="tocxref"><span class="secno">4.5.4 </span>Text Wrapping</a></li></ul></li></ul></li><li class="tocline"><a href="#sec-Algorithms" class="tocxref"><span class="secno">5. </span>Algorithms</a><ul class="toc"><li class="tocline"><a href="#sec-AlgID" class="tocxref"><span class="secno">5.1 </span>Algorithm Identifiers and Implementation Requirements</a><ul class="toc"><li class="tocline"><a href="#sec-Table-of-Algorithms" class="tocxref"><span class="secno">5.1.1 </span>Table of Algorithms</a></li></ul></li><li class="tocline"><a href="#sec-Alg-Block" class="tocxref"><span class="secno">5.2 </span>Block Encryption Algorithms</a><ul class="toc"><li class="tocline"><a href="#sec-Padding" class="tocxref"><span class="secno">5.2.1 </span>Padding</a></li><li class="tocline"><a href="#sec-tripledes-cbc" class="tocxref"><span class="secno">5.2.2 </span>Triple DES</a></li><li class="tocline"><a href="#sec-AES" class="tocxref"><span class="secno">5.2.3 </span>AES</a></li><li class="tocline"><a href="#sec-AES-GCM" class="tocxref"><span class="secno">5.2.4 </span>AES-GCM</a></li></ul></li><li class="tocline"><a href="#sec-Alg-Stream" class="tocxref"><span class="secno">5.3 </span>Stream Encryption Algorithms</a></li><li class="tocline"><a href="#sec-Alg-KeyDerivation" class="tocxref"><span class="secno">5.4 </span>Key Derivation</a><ul class="toc"><li class="tocline"><a href="#sec-ConcatKDF" class="tocxref"><span class="secno">5.4.1 </span>ConcatKDF</a></li><li class="tocline"><a href="#sec-PBKDF2" class="tocxref"><span class="secno">5.4.2 </span>PBKDF2</a></li></ul></li><li class="tocline"><a href="#sec-Alg-KeyTransport" class="tocxref"><span class="secno">5.5 </span>Key Transport</a><ul class="toc"><li class="tocline"><a href="#sec-RSA-1_5" class="tocxref"><span class="secno">5.5.1 </span>RSA Version 1.5</a></li><li class="tocline"><a href="#sec-RSA-OAEP" class="tocxref"><span class="secno">5.5.2 </span>RSA-OAEP</a></li></ul></li><li class="tocline"><a href="#sec-Alg-KeyAgreement" class="tocxref"><span class="secno">5.6 </span>Key Agreement</a><ul class="toc"><li class="tocline"><a href="#sec-DHKeyValue" class="tocxref"><span class="secno">5.6.1 </span>Diffie-Hellman Key
            Values</a></li><li class="tocline"><a href="#sec-DHKeyAgreement" class="tocxref"><span class="secno">5.6.2 </span>Diffie-Hellman
            Key Agreement</a><ul class="toc"><li class="tocline"><a href="#sec-DHKeyAgreementExplicitKDF" class="tocxref"><span class="secno">5.6.2.1 </span>Diffie-Hellman Key Agreement with Explicit Key Derivation Functions</a></li><li class="tocline"><a href="#sec-DHKeyAgreementLegacyKDF" class="tocxref"><span class="secno">5.6.2.2 </span>Diffie-Hellman
              Key Agreement with Legacy Key Derivation Function</a></li></ul></li><li class="tocline"><a href="#sec-ECCKeyValue" class="tocxref"><span class="secno">5.6.3 </span>Elliptic Curve Diffie-Hellman (ECDH) Key
            Values</a></li><li class="tocline"><a href="#sec-ECDH-ES" class="tocxref"><span class="secno">5.6.4 </span>Elliptic Curve Diffie-Hellman (ECDH)
            Key Agreement (Ephemeral-Static Mode)</a></li></ul></li><li class="tocline"><a href="#sec-Alg-SymmetricKeyWrap" class="tocxref"><span class="secno">5.7 </span>Symmetric Key Wrap</a><ul class="toc"><li class="tocline"><a href="#sec-kw-tripledes" class="tocxref"><span class="secno">5.7.1 </span>CMS Triple DES Key
            Wrap</a></li><li class="tocline"><a href="#sec-kw-aes" class="tocxref"><span class="secno">5.7.2 </span>AES KeyWrap</a></li><li class="tocline"><a href="#sec-kw-aes-with-pad" class="tocxref"><span class="secno">5.7.3 </span>AES KeyWrap with Padding</a></li></ul></li><li class="tocline"><a href="#sec-Alg-MessageDigest" class="tocxref"><span class="secno">5.8 </span>Message Digest</a><ul class="toc"><li class="tocline"><a href="#sec-SHA1" class="tocxref"><span class="secno">5.8.1 </span>SHA1</a></li><li class="tocline"><a href="#sec-SHA256" class="tocxref"><span class="secno">5.8.2 </span>SHA256</a></li><li class="tocline"><a href="#sec-SHA384" class="tocxref"><span class="secno">5.8.3 </span>SHA384</a></li><li class="tocline"><a href="#sec-SHA512" class="tocxref"><span class="secno">5.8.4 </span>SHA512</a></li><li class="tocline"><a href="#sec-RIPEMD-160" class="tocxref"><span class="secno">5.8.5 </span>RIPEMD-160</a></li></ul></li><li class="tocline"><a href="#sec-Alg-Canonicalition" class="tocxref"><span class="secno">5.9 </span>Canonicalization</a><ul class="toc"><li class="tocline"><a href="#sec-Inclusive-Canonicalization" class="tocxref"><span class="secno">5.9.1 </span>Inclusive
            Canonicalization</a></li><li class="tocline"><a href="#sec-Exclusive-Canonicalization" class="tocxref"><span class="secno">5.9.2 </span>Exclusive
            Canonicalization</a></li></ul></li></ul></li><li class="tocline"><a href="#sec-Security" class="tocxref"><span class="secno">6. </span>Security Considerations</a><ul class="toc"><li class="tocline"><a href="#sec-chosen-ciphertext-attacks" class="tocxref"><span class="secno">6.1 </span>Chosen-Ciphertext Attacks</a><ul class="toc"><li class="tocline"><a href="#sec-edata-attacks" class="tocxref"><span class="secno">6.1.1 </span> Attacks against the encrypted data (<code>&lt;EncryptedData&gt;</code> part)</a></li><li class="tocline"><a href="#sec-bleichenbacher-attack" class="tocxref"><span class="secno">6.1.2 </span>Attacks against the encrypted key (Bleichenbacher's Million
          question attack on PKCS#1.5)</a></li></ul></li><li class="tocline"><a href="#sec-Sign-with-Encrypt" class="tocxref"><span class="secno">6.2 </span>Relationship to XML Digital Signatures</a></li><li class="tocline"><a href="#sec-InformationRevealed" class="tocxref"><span class="secno">6.3 </span>Information Revealed</a></li><li class="tocline"><a href="#sec-Nonce" class="tocxref"><span class="secno">6.4 </span>Nonce and IV (Initialization Value or Vector)</a></li><li class="tocline"><a href="#sec-Denial" class="tocxref"><span class="secno">6.5 </span>Denial of Service</a></li><li class="tocline"><a href="#sec-Unsafe-Content" class="tocxref"><span class="secno">6.6 </span>Unsafe Content</a></li><li class="tocline"><a href="#sec-Errors" class="tocxref"><span class="secno">6.7 </span>Error Messages</a></li><li class="tocline"><a href="#sec-TimingAttacks" class="tocxref"><span class="secno">6.8 </span>Timing Attacks</a></li><li class="tocline"><a href="#sec-cbcBlockEncryptionAttacks" class="tocxref"><span class="secno">6.9 </span>CBC Block Encryption Vulnerability</a></li></ul></li><li class="tocline"><a href="#sec-Conformance" class="tocxref"><span class="secno">7. </span>Conformance</a></li><li class="tocline"><a href="#sec-MediaType" class="tocxref"><span class="secno">8. </span>XML Encryption Media Type</a><ul class="toc"><li class="tocline"><a href="#sec-MediaType-Introduction" class="tocxref"><span class="secno">8.1 </span>Introduction</a></li><li class="tocline"><a href="#sec-MediaType-Registration" class="tocxref"><span class="secno">8.2 </span>application/xenc+xml Registration</a></li></ul></li><li class="tocline"><a href="#sec-Schema" class="tocxref"><span class="secno">9. </span>Schema</a><ul class="toc"><li class="tocline"><a href="#sec-xsdSchema" class="tocxref"><span class="secno">9.1 </span>XSD Schema</a></li><li class="tocline"><a href="#sec-rngSchema" class="tocxref"><span class="secno">9.2 </span>RNG Schema</a></li></ul></li><li class="tocline"><a href="#references" class="tocxref"><span class="secno">A. </span>References</a><ul class="toc"><li class="tocline"><a href="#normative-references" class="tocxref"><span class="secno">A.1 </span>Normative references</a></li><li class="tocline"><a href="#informative-references" class="tocxref"><span class="secno">A.2 </span>Informative references</a></li></ul></li></ul></div>
    
    <div id="sec-Introduction" class="section">
      <!--OddPage--><h2><span class="secno">1. </span>Introduction</h2>

      <p>This document specifies a process for encrypting data and representing the
        result in XML. The data may be arbitrary data (including an XML document), an
        XML element, or XML element content. The result of encrypting data is an XML
        Encryption <code>EncryptedData</code> element that contains (via one of its
        children's content) or identifies (via a URI reference) the cipher data.</p>

      <p>When encrypting an XML element or element content the
        <code>EncryptedData</code> element replaces the element or content
        (respectively) in the encrypted version of the XML document.</p>

      <p>When encrypting arbitrary data (including entire XML documents), the
        <code>EncryptedData</code> element may become the root of a new XML document
        or become a child element in an application-chosen XML document.</p>

      <div id="sec-Editorial" class="section">
        <h3><span class="secno">1.1 </span>Editorial and Conformance Conventions</h3>

        <p>This specification uses XML schemas [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-1">XMLSCHEMA-1</a></cite>],
          [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-2">XMLSCHEMA-2</a></cite>] to describe the content model.
          The full normative grammar is defined by the XSD schema
          and the normative text in this specification. The standalone XSD
          schema file is authoritative in case there is any disagreement between
          it and the XSD schema portions. 
        </p>

        <p>The key words "<em class="rfc2119" title="must">must</em>", "<em class="rfc2119" title="must not">must not</em>", "<em class="rfc2119" title="required">required</em>", "<em class="rfc2119" title="shall">shall</em>", "<em class="rfc2119" title="shall not">shall not</em>",
          "<em class="rfc2119" title="should">should</em>", "<em class="rfc2119" title="should not">should not</em>", "<em class="rfc2119" title="recommended">recommended</em>", "<em class="rfc2119" title="may">may</em>", and "<em class="rfc2119" title="optional">optional</em>" in this
          specification are to be interpreted as described in [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC2119">RFC2119</a></cite>]:</p>

        <blockquote>
          <p>"They <em class="rfc2119" title="must">must</em> only be used where it is actually required for interoperation
            or to limit behavior which has potential for causing harm (e.g., limiting
            retransmissions)"</p>
        </blockquote>

        <p>Consequently, we use these capitalized keywords to unambiguously specify
          requirements over protocol and application features and behavior that affect
          the interoperability and security of implementations. These key words are not
          used (capitalized) to describe XML grammar; schema definitions unambiguously
          describe such requirements and we wish to reserve the prominence of these
          terms for the natural language descriptions of protocols and features. For
          instance, an XML attribute might be described as being "optional." Compliance
          with the XML-namespace specification [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-NAMES">XML-NAMES</a></cite>] is
          described as "<em class="rfc2119" title="required">required</em>."</p>
      </div>
      <div id="sec-Design" class="section">
        <h3><span class="secno">1.2 </span>Design Philosophy</h3>

        <p>The design philosophy and requirements of this specification (including
          the limitations related to instance validity) are addressed in the
          original <a href="http://www.w3.org/TR/xml-encryption-req">XML Encryption
            Requirements</a> [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-ENCRYPTION-REQ">XML-ENCRYPTION-REQ</a></cite>]
          and the XML Security 1.1 Requirements document [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSEC11-REQS">XMLSEC11-REQS</a></cite>].
        </p>
      </div>
      <div id="sec-Versions" class="section">
        <h3><span class="secno">1.3 </span>Versions, Namespaces, URIs, and Identifiers</h3>

        <p>This specification makes use of XML namespaces, and uses Uniform
          Resource Identifiers [<cite><a class="bibref" rel="biblioentry" href="#bib-URI">URI</a></cite>] to identify resources, algorithms, and
          semantics.</p> 

        <p>Implementations of this specification <em class="rfc2119" title="must">must</em> use the following XML
          namespace URIs:</p> 

        <table class="namespaces">
          <thead>
            <tr><th>URI</th><th>namespace prefix</th><th>XML internal entity</th></tr>
          </thead>
          <tbody>
            <tr><td><code>http://www.w3.org/2001/04/xmlenc#</code></td><td><i>default namespace</i>,
                <code>xenc:</code></td><td><code>&lt;!ENTITY xenc "http://www.w3.org/2001/04/xmlenc#"&gt;</code></td></tr>
            <tr><td><code>http://www.w3.org/2009/xmlenc11#</code></td><td><code>xenc11:</code></td><td><code>&lt;!ENTITY xenc11 "http://www.w3.org/2009/xmlenc11#"&gt;</code></td></tr>
          </tbody>
        </table>

        <p>The <code>http://www.w3.org/2001/04/xmlenc#</code> (<code>xenc:</code>) namespace was
          introduced in version 1.0 of this specification.  The present version does not coin any new
          elements or algorithm identifiers in that namespace; instead, the
          <code>http://www.w3.org/2009/xmlenc11#</code> (<code>xenc11:</code>)
          namespace 
          is used.</p>

        <p>No provision is made for an explicit version number in this syntax.  If a future version of
          this specification requires explicit versioning of the document format, a different namespace will
          be used.</p>


        <p>Additionally, this specification uses elements and algorithm identifiers from the XML Signature name spaces [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>]:</p>

        <table class="namespaces">
          <thead>
            <tr><th>URI</th><th>namespace prefix</th><th>XML internal entity</th></tr>
          </thead>
          <tbody>
            <tr><td><code>http://www.w3.org/2000/09/xmldsig#</code></td><td><i>default namespace</i>,
                <code>ds:</code>, <code>dsig:</code></td><td><code>&lt;!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#"&gt;</code></td></tr>
            <tr><td><code>http://www.w3.org/2009/xmldsig11#</code></td><td><code>dsig11:</code></td><td><code>&lt;!ENTITY dsig11 "http://www.w3.org/2009/xmldsig11#"&gt;</code></td></tr>
          </tbody>
        </table>


      </div>

      <div id="sec-Acknowledgements" class="section">
        <h3><span class="secno">1.4 </span>Acknowledgements</h3>

        <p>The contributions of the following Working Group members to this specification are gratefully
          acknowledged in accordance with the <a href="http://www.w3.org/Encryption/2001/Contributor.html">contributor policies</a> and the active <a href="http://www.w3.org/Encryption/2001/Participants.html">WG roster</a>: Joseph Ashwood, Simon
          Blake-Wilson, Certicom, Frank D. Cavallito, BEA Systems, Eric Cohen, PricewaterhouseCoopers, Blair
          Dillaway, Microsoft (Author), Blake Dournaee, RSA Security, Donald Eastlake, Motorola (Editor), Barb
          Fox, Microsoft, Christian Geuer-Pollmann, University of Siegen, Tom Gindin, IBM, Jiandong Guo,
          Phaos, Phillip Hallam-Baker, Verisign, Amir Herzberg, NewGenPay, Merlin Hughes, Baltimore, Frederick
          Hirsch, Maryann Hondo, IBM, Takeshi Imamura, IBM (Author), Mike Just, Entrust, Inc., Brian
          LaMacchia, Microsoft, Hiroshi Maruyama, IBM, John Messing, Law-on-Line, Shivaram Mysore, Sun
          Microsystems, Thane Plambeck, Verisign, Joseph Reagle, <acronym title="World Wide Web Consortium">W3C</acronym> (Chair, Editor), Aleksey Sanin, Jim
          Schaad, Soaring Hawk Consulting, Ed Simon, XMLsec (Author), Daniel Toth, Ford, Yongge Wang,
          Certicom, Steve Wiley, myProof.
        </p>


        <p>Additionally, we thank the following for their comments during and subsequent to Last Call:
          Martin Dürst, <acronym title="World Wide Web Consortium">W3C</acronym>, Dan Lanz, Zolera, Susan Lesch, <acronym title="World Wide Web Consortium">W3C</acronym>, David Orchard, BEA Systems, Ronald
          Rivest, <acronym title="Massachusetts Institute of Technology">MIT</acronym>.</p>

        <p>Contributions for version 1.1 were received from the members of the XML Security Working Group:
          Scott Cantor, Juan Carlos Cruellas, Pratik Datta, Gerald Edgar, Ken Graf, Phillip Hallam-Baker, Brad
          Hill, Frederick Hirsch, Brian LaMacchia, Konrad Lanz, Hal Lockhart, Cynthia Martin, Rob Miller, Sean
          Mullan, Shivaram Mysore, Magnus Nyström, Bruce Rich, Thomas Roessler, Ed Simon, Chris Solc, John
          Wray, Kelvin Yiu.</p>
<p>The working group also acknowledges the contribution of Juraj
  Somorovsky  raising the issue of the CBC chosen ciphertext attack
  and contributions to revising the security considerations of XML
  Encryption 1.1.</p>  
      </div>
    </div>
    <div id="sec-Overview" class="informative section">
      <!--OddPage--><h2><span class="secno">2. </span>Encryption Overview and Examples</h2><p><em>This section is non-normative.</em></p>

      <p>This section provides an overview and examples of XML Encryption syntax.
        The formal syntax is found in <a class="sectionRef" href="#sec-Encryption-Syntax">section 3. Encryption Syntax</a> ; the specific
        processing is given in <a class="link-sec" href="http://www.w3.org/TR/2000/WD-xmldsig-core-20000104/#sec-Processing">Processing 
          Rules</a> (section 4).</p>

      <p>Expressed in shorthand form, the <code><a href="#sec-EncryptedData">EncryptedData</a></code> element has the following
        structure (where "?" denotes zero or one occurrence; "+" denotes one or more
        occurrences; "*" denotes zero or more occurrences; "|" denotes a choice; and the empty element tag
        means the element must be empty ):</p>
      <pre class="sh_xml sh_sourceCode">  <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">Id?</span><span class="sh_normal"> </span><span class="sh_type">Type?</span><span class="sh_normal"> </span><span class="sh_type">MimeType?</span><span class="sh_normal"> </span><span class="sh_type">Encoding?</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;EncryptionMethod/&gt;</span>?
    <span class="sh_keyword">&lt;ds:KeyInfo&gt;</span>
      <span class="sh_keyword">&lt;EncryptedKey&gt;</span>?
      <span class="sh_keyword">&lt;AgreementMethod&gt;</span>?
      <span class="sh_keyword">&lt;ds:KeyName&gt;</span>?
      <span class="sh_keyword">&lt;ds:RetrievalMethod&gt;</span>?
      <span class="sh_keyword">&lt;ds:</span><span class="sh_type">*</span><span class="sh_keyword">&gt;</span>?
    <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>?
    <span class="sh_keyword">&lt;CipherData&gt;</span>
      <span class="sh_keyword">&lt;CipherValue&gt;</span> | <span class="sh_keyword">&lt;CipherReference</span> <span class="sh_type">URI?</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;/CipherData&gt;</span>
    <span class="sh_keyword">&lt;EncryptionProperties&gt;</span>?
  <span class="sh_keyword">&lt;/EncryptedData&gt;</span></pre>

      <p>The <code>CipherData</code> element envelopes or references the raw
        encrypted data. A <code>CipherData</code> element must have either a <code>CipherValue</code> or <code>CipherReference</code> child element. If enveloping, the raw encrypted data is the
        <code>CipherValue</code> element's content; if referencing, the
        <code>CipherReference</code> element's <code>URI</code> attribute points to
        the location of the raw encrypted data</p>

      <div id="sec-eg-Granularity" class="section">
        <h3><span class="secno">2.1 </span>Encryption Granularity</h3>

        <p>Note: Examples in this document do not consider plaintext guessing
          attacks or other risks, and are only for illustrative purposes.</p> 

        <p>Consider the following fictitious payment information, which includes
          identification information and information appropriate to a payment method
          (e.g., credit card, money transfer, or electronic check):</p>
        <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span><span class="sh_preproc">?&gt;</span>
<span class="sh_keyword">&lt;PaymentInfo</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/paymentv2"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;Name&gt;</span>John Smith<span class="sh_keyword">&lt;/Name&gt;</span>
  <span class="sh_keyword">&lt;CreditCard</span> <span class="sh_type">Limit</span><span class="sh_symbol">=</span><span class="sh_string">"5,000"</span> <span class="sh_type">Currency</span><span class="sh_symbol">=</span><span class="sh_string">"USD"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;Number&gt;</span>4019 2445 0277 5567<span class="sh_keyword">&lt;/Number&gt;</span>
    <span class="sh_keyword">&lt;Issuer&gt;</span>Example Bank<span class="sh_keyword">&lt;/Issuer&gt;</span>
    <span class="sh_keyword">&lt;Expiration&gt;</span>04/02<span class="sh_keyword">&lt;/Expiration&gt;</span>
  <span class="sh_keyword">&lt;/CreditCard&gt;</span>
<span class="sh_keyword">&lt;/PaymentInfo&gt;</span></pre>

        <p>This markup represents that John Smith is using his credit card with a
          limit of $5,000USD.</p>

        <div id="sec-eg-Element" class="section">
          <h4><span class="secno">2.1.1 </span>Encrypting an XML Element</h4>

          <p>Smith's credit card number is sensitive information! If the application
            wishes to keep that information confidential, it can encrypt the
            <code>CreditCard</code> element:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span><span class="sh_preproc">?&gt;</span>
<span class="sh_keyword">&lt;PaymentInfo</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/paymentv2"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;Name&gt;</span>John Smith<span class="sh_keyword">&lt;/Name&gt;</span>
  <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Element"</span>
    <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;CipherData&gt;</span>
      <span class="sh_keyword">&lt;CipherValue&gt;</span>A23B45C56<span class="sh_keyword">&lt;/CipherValue&gt;</span>
    <span class="sh_keyword">&lt;/CipherData&gt;</span>
  <span class="sh_keyword">&lt;/EncryptedData&gt;</span>
<span class="sh_keyword">&lt;/PaymentInfo&gt;</span></pre>

          <p>By encrypting the entire <code>CreditCard</code> element from its start to
            end tags, the identity of the element itself is hidden. (An eavesdropper
            doesn't know whether he used a credit card or money transfer.) The
            <code>CipherData</code> element contains the encrypted serialization of the
            <code>CreditCard</code> element.</p>
        </div>
        <div id="sec-eg-Element-Content" class="section">
          <h4><span class="secno">2.1.2 </span>Encrypting XML Element Content (Elements)</h4>

          <p>As an alternative scenario, it may be useful for intermediate agents to
            know that John used a credit card with a particular limit, but not the card's
            number, issuer, and expiration date. In this case, the content (character
            data or children elements) of the <code>CreditCard</code> element can be
            encrypted:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span><span class="sh_preproc">?&gt;</span>
<span class="sh_keyword">&lt;PaymentInfo</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/paymentv2"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;Name&gt;</span>John Smith<span class="sh_keyword">&lt;/Name&gt;</span>
  <span class="sh_keyword">&lt;CreditCard</span> <span class="sh_type">Limit</span><span class="sh_symbol">=</span><span class="sh_string">"5,000"</span> <span class="sh_type">Currency</span><span class="sh_symbol">=</span><span class="sh_string">"USD"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
      <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Content"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;CipherData&gt;</span>
        <span class="sh_keyword">&lt;CipherValue&gt;</span>A23B45C56<span class="sh_keyword">&lt;/CipherValue&gt;</span>
      <span class="sh_keyword">&lt;/CipherData&gt;</span>
    <span class="sh_keyword">&lt;/EncryptedData&gt;</span>
  <span class="sh_keyword">&lt;/CreditCard&gt;</span>
<span class="sh_keyword">&lt;/PaymentInfo&gt;</span></pre>

        </div>
        <div id="sec-eg-Element-Content-Character" class="section">
          <h4><span class="secno">2.1.3 </span>Encrypting XML Element Content (Character
            Data)</h4>

          <p>Alternatively, consider the scenario in which all the information <em>except</em> the
            actual credit card number can be in the clear, including the fact that the
            Number element exists:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span><span class="sh_preproc">?&gt;</span>
<span class="sh_keyword">&lt;PaymentInfo</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/paymentv2"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;Name&gt;</span>John Smith<span class="sh_keyword">&lt;/Name&gt;</span>
  <span class="sh_keyword">&lt;CreditCard</span> <span class="sh_type">Limit</span><span class="sh_symbol">=</span><span class="sh_string">"5,000"</span> <span class="sh_type">Currency</span><span class="sh_symbol">=</span><span class="sh_string">"USD"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;Number&gt;</span>
    <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
      <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Content"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;CipherData&gt;</span>
        <span class="sh_keyword">&lt;CipherValue&gt;</span>A23B45C56<span class="sh_keyword">&lt;/CipherValue&gt;</span>
      <span class="sh_keyword">&lt;/CipherData&gt;</span>
    <span class="sh_keyword">&lt;/EncryptedData&gt;</span>
    <span class="sh_keyword">&lt;/Number&gt;</span>
    <span class="sh_keyword">&lt;Issuer&gt;</span>Example Bank<span class="sh_keyword">&lt;/Issuer&gt;</span>
    <span class="sh_keyword">&lt;Expiration&gt;</span>04/02<span class="sh_keyword">&lt;/Expiration&gt;</span>
  <span class="sh_keyword">&lt;/CreditCard&gt;</span>
<span class="sh_keyword">&lt;/PaymentInfo&gt;</span></pre>

          <p>Both <code>CreditCard</code> and <code>Number</code> are in the clear, but
            the character data content of <code>Number</code> is encrypted.</p>

        </div>
        <div id="sec-eg-Arbitrary-Data" class="section">
          <h4><span class="secno">2.1.4 </span>Encrypting Arbitrary Data and XML Documents</h4>

          <p>If the application scenario requires all of the information to be
            encrypted, the whole document is encrypted as an octet sequence. This applies
            to arbitrary data including XML documents.</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span><span class="sh_preproc">?&gt;</span>
<span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
  <span class="sh_type">MimeType</span><span class="sh_symbol">=</span><span class="sh_string">"text/xml"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;CipherData&gt;</span>
    <span class="sh_keyword">&lt;CipherValue&gt;</span>A23B45C56<span class="sh_keyword">&lt;/CipherValue&gt;</span>
  <span class="sh_keyword">&lt;/CipherData&gt;</span>
<span class="sh_keyword">&lt;/EncryptedData&gt;</span></pre>
          <p>
            Where appropriate, such as in the case of encrypting an entire EXI
            stream, the Type attribute <em class="rfc2119" title="should">should</em> be provided 
            and indicate the use of EXI. The optional MimeType <em class="rfc2119" title="may">may</em> be used to
            record the actual (non-EXI-encoded) type, but is not necessary and may
            be omitted, as in the following EXI encryption example: 
          </p>

          <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span><span class="sh_preproc">?&gt;</span> 
<span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
  <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#EXI"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;CipherData&gt;</span>
    <span class="sh_keyword">&lt;CipherValue&gt;</span>A23B45C56<span class="sh_keyword">&lt;/CipherValue&gt;</span>
  <span class="sh_keyword">&lt;/CipherData&gt;</span>
<span class="sh_keyword">&lt;/EncryptedData&gt;</span></pre>


        </div>
        <div id="sec-eg-Super-Encryption" class="section">
          <h4><span class="secno">2.1.5 </span>Super-Encryption: Encrypting EncryptedData</h4>

          <p>An XML document may contain zero or more <code>EncryptedData</code>
            elements. <code>EncryptedData</code> cannot be the parent or child of another
            <code>EncryptedData</code> element. However, the actual data encrypted can be
            anything, including <code>EncryptedData</code> and <code>EncryptedKey</code>
            elements (i.e., super-encryption). During super-encryption of an
            <code>EncryptedData</code> or <code>EncryptedKey</code> element, one must
            encrypt the entire element. Encrypting only the content of these elements, or
            encrypting selected child elements is an invalid instance under the provided
            schema.<br></p>
          <p>For example, consider the following:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;pay:PaymentInfo</span> <span class="sh_type">xmlns:pay</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/paymentv2"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">Id</span><span class="sh_symbol">=</span><span class="sh_string">"ED1"</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
    <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Element"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;CipherData&gt;</span>
      <span class="sh_keyword">&lt;CipherValue&gt;</span>originalEncryptedData<span class="sh_keyword">&lt;/CipherValue&gt;</span>
    <span class="sh_keyword">&lt;/CipherData&gt;</span>
  <span class="sh_keyword">&lt;/EncryptedData&gt;</span>
<span class="sh_keyword">&lt;/pay:PaymentInfo&gt;</span></pre>

          <p>A valid super-encryption of "<code>//xenc:EncryptedData[@Id='ED1']</code>"
            would be:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;pay:PaymentInfo</span> <span class="sh_type">xmlns:pay</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/paymentv2"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">Id</span><span class="sh_symbol">=</span><span class="sh_string">"ED2"</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
    <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Element"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;CipherData&gt;</span>
      <span class="sh_keyword">&lt;CipherValue&gt;</span>newEncryptedData<span class="sh_keyword">&lt;/CipherValue&gt;</span>
    <span class="sh_keyword">&lt;/CipherData&gt;</span>
  <span class="sh_keyword">&lt;/EncryptedData&gt;</span>
<span class="sh_keyword">&lt;/pay:PaymentInfo&gt;</span></pre>

          <p>where the <code>CipherValue</code> content of
            '<code>newEncryptedData</code>' is the base64 encoding of the encrypted octet
            sequence resulting from encrypting the <code>EncryptedData</code> element
            with <code>Id='ED1'</code>.</p>
        </div>
      </div>
      <div id="sec-Usage" class="section">
        <h3><span class="secno">2.2 </span><code>EncryptedData</code> and <code>EncryptedKey</code> Usage</h3>

        <div id="sec-eg-Symmetric-Key" class="section">
          <h4><span class="secno">2.2.1 </span><code>EncryptedData</code> with Symmetric Key (<code>KeyName</code>)</h4>

          <pre class="example sh_xml sh_sourceCode">[s1] <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
        <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Element"</span><span class="sh_keyword">&gt;</span>
[s2]   <span class="sh_keyword">&lt;EncryptionMethod</span>
         <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#tripledes-cbc"</span><span class="sh_keyword">/&gt;</span>
[s3]   <span class="sh_keyword">&lt;ds:KeyInfo</span> <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_keyword">&gt;</span>
[s4]     <span class="sh_keyword">&lt;ds:KeyName&gt;</span>John Smith<span class="sh_keyword">&lt;/ds:KeyName&gt;</span>
[s5]   <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
[s6]   <span class="sh_keyword">&lt;CipherData&gt;&lt;CipherValue&gt;</span>DEADBEEF<span class="sh_keyword">&lt;/CipherValue&gt;&lt;/CipherData&gt;</span>
[s7] <span class="sh_keyword">&lt;/EncryptedData&gt;</span></pre>

          <p><code>[s1]</code> The type of data encrypted may be represented as an
            attribute value to aid in decryption and subsequent processing. In this case,
            the data encrypted was an 'element'. Other alternatives include 'content' of
            an element, or an external octet sequence which can also be identified via
            the <code>MimeType</code> and <code>Encoding</code> attributes.</p>

          <p><code>[s2]</code> This (3DES CBC) is a symmetric key cipher.</p>

          <p><code>[s4]</code> The symmetric key has an associated name "John
            Smith".</p>

          <p><code>[s6]</code> <code>CipherData</code> contains a
            <code>CipherValue</code>, which is a base64 encoded octet sequence.
            Alternately, it could contain a <code>CipherReference</code>, which is a URI
            reference along with transforms necessary to obtain the encrypted data as an
            octet sequence</p>

        </div>
        <div id="sec-eg-EncryptedKey" class="section">
          <h4><span class="secno">2.2.2 </span><code>EncryptedKey</code>
            (<code>ReferenceList</code>, <code>ds:RetrievalMethod</code>,
            <code>CarriedKeyName</code>)</h4>

          <p>The following <code>EncryptedData</code> structure is very similar to the
            one above, except this time the key is referenced using a
            <code>ds:RetrievalMethod</code>:</p>
          <pre class="example sh_xml sh_sourceCode">[t01] <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">Id</span><span class="sh_symbol">=</span><span class="sh_string">"ED"</span> 
        <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span><span class="sh_keyword">&gt;</span>
[t02]   <span class="sh_keyword">&lt;EncryptionMethod</span> 
          <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#aes128-cbc"</span><span class="sh_keyword">/&gt;</span>
[t03]   <span class="sh_keyword">&lt;ds:KeyInfo</span> <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_keyword">&gt;</span>
[t04]     <span class="sh_keyword">&lt;ds:RetrievalMethod</span> <span class="sh_type">URI</span><span class="sh_symbol">=</span><span class="sh_string">"#EK"</span>
            <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#EncryptedKey"</span><span class="sh_keyword">/&gt;</span>
[t05]     <span class="sh_keyword">&lt;ds:KeyName&gt;</span>Sally Doe<span class="sh_keyword">&lt;/ds:KeyName&gt;</span>
[t06]   <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
[t07]   <span class="sh_keyword">&lt;CipherData&gt;&lt;CipherValue&gt;</span>DEADBEEF<span class="sh_keyword">&lt;/CipherValue&gt;&lt;/CipherData&gt;</span>
[t08] <span class="sh_keyword">&lt;/EncryptedData&gt;</span></pre>

          <p><code>[t02]</code> This (AES-128-CBC) is a symmetric key cipher.</p>

          <p><code>[t04]</code> <code>ds:RetrievalMethod</code> is used to indicate the
            location of a key with type <code>xenc:EncryptedKey</code>. The (AES)
            key is located at '#EK'.</p>

          <p><code>[t05]</code> <code>ds:KeyName</code> provides an alternative method
            of identifying the key needed to decrypt the <code>CipherData</code>. Either
            or both the <code>ds:KeyName</code> and <code>ds:KeyRetrievalMethod</code>
            could be used to identify the same key.</p>

          <p>Within the same XML document, there existed an <code>EncryptedKey</code>
            structure that was referenced within <code>[t04]</code>:</p>
          <pre class="example sh_xml sh_sourceCode">[t09] <span class="sh_keyword">&lt;EncryptedKey</span> <span class="sh_type">Id</span><span class="sh_symbol">=</span><span class="sh_string">"EK"</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span><span class="sh_keyword">&gt;</span>
[t10]   <span class="sh_keyword">&lt;EncryptionMethod</span> 
          <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#rsa-1_5"</span><span class="sh_keyword">/&gt;</span>
[t11]   <span class="sh_keyword">&lt;ds:KeyInfo</span> <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_keyword">&gt;</span>
[t12]     <span class="sh_keyword">&lt;ds:KeyName&gt;</span>John Smith<span class="sh_keyword">&lt;/ds:KeyName&gt;</span>
[t13]   <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
[t14]   <span class="sh_keyword">&lt;CipherData&gt;&lt;CipherValue&gt;</span>xyzabc<span class="sh_keyword">&lt;/CipherValue&gt;&lt;/CipherData&gt;</span>
[t15]   <span class="sh_keyword">&lt;ReferenceList&gt;</span>
[t16]     <span class="sh_keyword">&lt;DataReference</span> <span class="sh_type">URI</span><span class="sh_symbol">=</span><span class="sh_string">"#ED"</span><span class="sh_keyword">/&gt;</span>
[t17]   <span class="sh_keyword">&lt;/ReferenceList&gt;</span>
[t18]   <span class="sh_keyword">&lt;CarriedKeyName&gt;</span>Sally Doe<span class="sh_keyword">&lt;/CarriedKeyName&gt;</span>
[t19] <span class="sh_keyword">&lt;/EncryptedKey&gt;</span></pre>

          <p><code>[t09]</code> The <code>EncryptedKey</code> element is similar to the
            <code>EncryptedData</code> element except that the data encrypted is always a
            key value.</p>

          <p><code>[t10]</code> The <code>EncryptionMethod</code> is the RSA public key
            algorithm.</p>

          <p><code>[t12]</code> <code>ds:KeyName</code> of "John Smith" is a property
            of the key necessary for decrypting (using RSA) the
            <code>CipherData</code>.</p>

          <p><code>[t14]</code> The <code>CipherData</code>'s <code>CipherValue</code>
            is an octet sequence that is processed (serialized, encrypted, and encoded)
            by a referring encrypted object's <code>EncryptionMethod</code>. (Note, an
            EncryptedKey's <code>EncryptionMethod</code> is the algorithm used to encrypt
            these octets and does not speak about what type of octets they are.)</p>

          <p><code>[t15-17]</code> A <code>ReferenceList</code> identifies the
            encrypted objects (<code>DataReference</code> and <code>KeyReference</code>)
            encrypted with this key. The <code>ReferenceList</code> contains a list of
            references to data encrypted by the symmetric key carried within this
            structure.</p>

          <p><code>[t18]</code> The <code>CarriedKeyName</code> element is used to
            identify the encrypted key value which may be referenced by the
            <code>KeyName</code> element in <code>ds:KeyInfo</code>. (Since ID attribute
            values must be unique to a document,<code>CarriedKeyName</code> can indicate
            that several <code>EncryptedKey</code> structures contain the same key value
            encrypted for different recipients.)</p>
        </div>
      </div>
    </div>
    <div id="sec-Encryption-Syntax" class="section">
      <!--OddPage--><h2><span class="secno">3. </span>Encryption Syntax</h2>

      <p>This section provides a detailed description of the syntax and features
        for XML Encryption. Features described in this section <em class="rfc2119" title="must">must</em> be implemented
        unless otherwise noted. The syntax is defined via [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-1">XMLSCHEMA-1</a></cite>], [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-2">XMLSCHEMA-2</a></cite>] with the following XML preamble,
        declaration, internal entity, and import:</p>
      <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span> <span class="sh_type">encoding</span><span class="sh_symbol">=</span><span class="sh_string">"utf-8"</span><span class="sh_preproc">?&gt;</span>
    <span class="sh_preproc">&lt;!DOCTYPE</span> <span class="sh_type">schema</span><span class="sh_normal">  </span><span class="sh_type">PUBLIC</span><span class="sh_normal"> </span><span class="sh_string">"-//</span><acronym title="World Wide Web Consortium"><span class="sh_string">W3C</span></acronym><span class="sh_string">//DTD XMLSchema 200102//EN"</span>
    <span class="sh_string">"http://www.w3.org/2001/XMLSchema.dtd"</span>
    <span class="sh_type">[</span>
      <span class="sh_type">&lt;!ATTLIST</span><span class="sh_normal"> </span><span class="sh_type">schema</span>
        <span class="sh_type">xmlns:xenc</span><span class="sh_normal"> </span><span class="sh_type">CDATA</span><span class="sh_normal"> </span><span class="sh_type">#FIXED</span><span class="sh_normal"> </span><span class="sh_type">'http://www.w3.org/2001/04/xmlenc'#</span>
        <span class="sh_type">xmlns:ds</span><span class="sh_normal"> </span><span class="sh_type">CDATA</span><span class="sh_normal"> </span><span class="sh_type">#FIXED</span><span class="sh_normal"> </span><span class="sh_type">'http://www.w3.org/2000/09/xmldsig#'</span><span class="sh_preproc">&gt;</span>
      &lt;!ENTITY xenc 'http://www.w3.org/2001/04/xmlenc#'&gt;
      &lt;!ENTITY % p ''&gt;
      &lt;!ENTITY % s ''&gt;
    ]&gt;
    
    
    <span class="sh_keyword">&lt;schema</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/XMLSchema"</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span>
            <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
            <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
            <span class="sh_type">targetNamespace</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
            <span class="sh_type">elementFormDefault</span><span class="sh_symbol">=</span><span class="sh_string">"qualified"</span><span class="sh_keyword">&gt;</span>

    <span class="sh_keyword">&lt;import</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
       <span class="sh_type">schemaLocation</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/TR/2002/</span>
<span class="sh_string">       REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"</span><span class="sh_keyword">/&gt;</span></pre>
      (Note: A newline has been added to the schemaLocation URI to fit on this page, but is not part of the URI.)

      <p>Additional markup defined in this specification uses the <code>xenc11:</code> namespace.  The syntax is defined in an XML schema with the following preamble:</p>
      <pre class="sh_xml sh_sourceCode">  Schema Definition:
	    
    <span class="sh_preproc">&lt;?xml</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span> <span class="sh_type">encoding</span><span class="sh_symbol">=</span><span class="sh_string">"utf-8"</span><span class="sh_preproc">?&gt;</span>
    <span class="sh_preproc">&lt;!DOCTYPE</span> <span class="sh_type">schema</span><span class="sh_normal">  </span><span class="sh_type">PUBLIC</span><span class="sh_normal"> </span><span class="sh_string">"-//</span><acronym title="World Wide Web Consortium"><span class="sh_string">W3C</span></acronym><span class="sh_string">//DTD XMLSchema 200102//EN"</span>
    <span class="sh_string">"http://www.w3.org/2001/XMLSchema.dtd"</span>
    <span class="sh_type">[</span>
      <span class="sh_type">&lt;!ATTLIST</span><span class="sh_normal"> </span><span class="sh_type">schema</span>
        <span class="sh_type">xmlns:xenc</span><span class="sh_normal"> </span><span class="sh_type">CDATA</span><span class="sh_normal"> </span><span class="sh_type">#FIXED</span><span class="sh_normal"> </span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
        <span class="sh_type">xmlns:ds</span><span class="sh_normal"> </span><span class="sh_type">CDATA</span><span class="sh_normal"> </span><span class="sh_type">#FIXED</span><span class="sh_normal"> </span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
        <span class="sh_type">xmlns:xenc11</span><span class="sh_normal"> </span><span class="sh_type">CDATA</span><span class="sh_normal"> </span><span class="sh_type">#FIXED</span><span class="sh_normal"> </span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#"</span><span class="sh_preproc">&gt;</span>
      &lt;!ENTITY xenc "http://www.w3.org/2001/04/xmlenc#"&gt;
      &lt;!ENTITY % p ""&gt;
      &lt;!ENTITY % s ""&gt;
    ]&gt;

    <span class="sh_keyword">&lt;schema</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/XMLSchema"</span> <span class="sh_type">version</span><span class="sh_symbol">=</span><span class="sh_string">"1.0"</span>
            <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
            <span class="sh_type">xmlns:xenc11</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#"</span>
            <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
            <span class="sh_type">targetNamespace</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#"</span>
            <span class="sh_type">elementFormDefault</span><span class="sh_symbol">=</span><span class="sh_string">"qualified"</span><span class="sh_keyword">&gt;</span>

    <span class="sh_keyword">&lt;import</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
        <span class="sh_type">schemaLocation</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/TR/2002/</span>
<span class="sh_string">        REC-xmldsig-core-20020212/xmldsig-core-schema.xsd"</span><span class="sh_keyword">/&gt;</span>

    <span class="sh_keyword">&lt;import</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
        <span class="sh_type">schemaLocation</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/TR/2002/</span>
<span class="sh_string">        REC-xmlenc-core-20021210/xenc-schema.xsd"</span><span class="sh_keyword">/&gt;</span></pre>
      (Note: A newline has been added to the schemaLocation URI to fit on this page, but is not part of the URI.)

      <div id="sec-EncryptedType" class="section">
        <h3><span class="secno">3.1 </span>The <code>EncryptedType</code> Element</h3>

        <p><code>EncryptedType</code> is the abstract type from which
          <code>EncryptedData</code> and <code>EncryptedKey</code> are derived. While
          these two latter element types are very similar with respect to their content
          models, a syntactical distinction is useful to processing. Implementations
          <em class="rfc2119" title="must">must</em> generate laxly schema valid [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-1">XMLSCHEMA-1</a></cite>], [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-2">XMLSCHEMA-2</a></cite>]
          <code>EncryptedData</code> or <code>EncryptedKey</code> elements as specified by the
          subsequent schema declarations. (Note the laxly schema valid generation means
          that the content permitted by <code>xsd:ANY</code> need not be valid.)
          Implementations <em class="rfc2119" title="should">should</em> create these XML structures
          (<code>EncryptedType</code> elements and their descendants/content) in
          Normalization Form C [<cite><a class="bibref" rel="biblioentry" href="#bib-NFC">NFC</a></cite>].</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptedType"</span> <span class="sh_type">abstract</span><span class="sh_symbol">=</span><span class="sh_string">"true"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptionMethod"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptionMethodType"</span> 
          <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"ds:KeyInfo"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:CipherData"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptionProperties"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Id"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ID"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Type"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"MimeType"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"string"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Encoding"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span> 
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        <p><code>EncryptionMethod</code> is an optional element that describes the
          encryption algorithm applied to the cipher data. If the element is absent,
          the encryption algorithm must be known by the recipient or the decryption
          will fail.</p>

        <p><code>ds:KeyInfo</code> is an optional element, defined by [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>], that carries information about the key
          used to encrypt the data. Subsequent sections of this specification define
          new elements that may appear as children of <code>ds:KeyInfo</code>.</p>

        <p><code>CipherData</code> is a mandatory element that contains the
          <code>CipherValue</code> or <code>CipherReference</code> with the encrypted
          data.</p>

        <p><code>EncryptionProperties</code> can contain additional information
          concerning the generation of the <code>EncryptedType</code> (e.g., date/time
          stamp).</p>

        <p><code>Id</code> is an optional attribute providing for the standard method
          of assigning a string id to the element within the document context.</p>

        <p><code>Type</code> is an optional attribute identifying type information
          about the plaintext form of the encrypted content. While optional, this
          specification takes advantage of it for processing described in <a class="sectionRef" href="#sec-Processing-Decryption">section 4.4 Decryption</a>. If the <code>EncryptedData</code> element
          contains data of <code>Type</code> 'element' or element 'content', and
          replaces that data in an XML document context, or contains data of
          <code>Type</code> 'EXI', it is strongly recommended the
          <code>Type</code> attribute be provided. Without this information, the
          decryptor will be unable to automatically restore the XML document to its
          original cleartext form.</p>

        <p><code>MimeType</code> is an optional (advisory) attribute which describes
          the media type of the data which has been encrypted. The value of this
          attribute is a string with values defined by [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC2045">RFC2045</a></cite>].
          For example, if the data that is encrypted is a base64 encoded PNG, the
          transfer <code>Encoding</code> may be specified as '<a href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a>'
          and the <code>MimeType</code> as 'image/png'. This attribute is purely
          advisory; no validation of the <code>MimeType</code> information is required
          and it does not indicate the encryption application must do any additional
          processing. Note, this information may not be necessary if it is already
          bound to the identifier in the <code>Type</code> attribute. For example, the
          Element and Content types defined in this specification are always UTF-8
          encoded text.
          In the case of Type EXI the MimeType attribute is not necessary, but
          if used should reflect the underlying type and not "EXI".
        </p>
        <p><code>Encoding</code> is an optional (advisory) attribute which describes
          the transfer encoding of the data that has been encrypted.
        </p>
      </div>
      <div id="sec-EncryptionMethod" class="section">
        <h3><span class="secno">3.2 </span>The <code>EncryptionMethod</code> Element</h3>

        <p>EncryptionMethod is an optional element that describes the encryption
          algorithm applied to the cipher data. If the element is absent, the
          encryption algorithm must be known to the recipient or the decryption will
          fail.</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptionMethodType"</span> <span class="sh_type">mixed</span><span class="sh_symbol">=</span><span class="sh_string">"true"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KeySize"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:KeySizeType"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"OAEPparams"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"base64Binary"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;any</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"##other"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Algorithm"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"required"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        <p>The permitted child elements of the <code>EncryptionMethod</code> are
          determined by the specific value of the <code>Algorithm</code> attribute URI,
          and the <code>KeySize</code> child element is always permitted. For example,
          the RSA-OAEP algorithm (<a href="#sec-RSA-OAEP" class="sectionRef">section 5.5.2 RSA-OAEP</a>) uses the 
          <code>ds:DigestMethod</code> and <code>OAEPparams</code> elements, and
          may use the <code>xenc11:MGF</code> element when needed. (We rely
          upon the <code>ANY</code> schema construct because it is not possible to
          specify element content based on the value of an attribute.)</p>
        <p>The presence of any child element under <code>EncryptionMethod</code>
          that is not permitted by the algorithm or the presence of a
          <code>KeySize</code> child inconsistent with the algorithm <em class="rfc2119" title="must">must</em> be treated as
          an error. (All algorithm URIs specified in this document imply a key size but
          this is not true in general. Most popular stream cipher algorithms take
          variable size keys.)</p>

      </div>
      <div id="sec-CipherData" class="section">
        <h3><span class="secno">3.3 </span>The <code>CipherData</code> Element</h3>

        <p>The <code>CipherData</code> is a mandatory element that provides the
          encrypted data. It must either contain the encrypted octet sequence as base64
          encoded text as element content of the <code>CipherValue</code> element, or provide a reference
          to an external location containing the encrypted octet sequence via the
          <code>CipherReference</code> element.</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"CipherData"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:CipherDataType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"CipherDataType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;choice&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"CipherValue"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"base64Binary"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:CipherReference"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/choice&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        <div id="sec-CipherReference" class="section">
          <h4><span class="secno">3.3.1 </span>The <code>CipherReference</code> Element</h4>

          <p>If <code>CipherValue</code> is not supplied directly, the
            <code>CipherReference</code> identifies a source which, when processed,
            yields the encrypted octet sequence.</p>

          <p>The actual value is obtained as follows. The <code>CipherReference</code>
            <code>URI</code> contains an identifier that is dereferenced. Should the
            <code>CipherReference</code> element contain an <em class="rfc2119" title="optional">optional</em> sequence of
            <code>Transform</code>s, the data resulting from dereferencing the URI is
            transformed as specified so as to yield the intended cipher value. For
            example, if the value is base64 encoded within an XML document; the
            transforms could specify an XPath expression followed by a base64 decoding so
            as to extract the octets.</p>

          <p>
            The syntax of the URI and Transforms is defined in XML Signature 
            [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>], however XML Encryption places
            the <code>Transforms</code> element in the XML Encryption namespace
            since it  is 
            used in XML Encryption to obtain an  octet stream for decryption.
            In [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>] both generation and validation processing
            start with the same source data and perform that transform in the same order.
            In encryption, the decryptor has only the cipher data and the specified
            transforms are enumerated for the decryptor, in the order necessary to obtain
            the octets. Consequently, because it has different semantics
            <code>Transforms</code> is in the <code>xenc:</code> namespace.</p>

          <p>For example, if the relevant cipher value is captured within a
            <code>CipherValue</code> element within a different XML document, the
            <code>CipherReference</code> might look as follows:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;CipherReference</span> <span class="sh_type">URI</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.example.com/CipherValues.xml"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;Transforms&gt;</span>
    <span class="sh_keyword">&lt;ds:Transform</span> 
      <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/TR/1999/REC-xpath-19991116"</span><span class="sh_keyword">&gt;</span>
        <span class="sh_keyword">&lt;ds:XPath</span> <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span><span class="sh_keyword">&gt;</span>
        self::text()[parent::enc:CipherValue[@Id="example1"]]
      <span class="sh_keyword">&lt;/ds:XPath&gt;</span>
    <span class="sh_keyword">&lt;/ds:Transform&gt;</span>
    <span class="sh_keyword">&lt;ds:Transform</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#base64"</span><span class="sh_keyword">/&gt;</span>
  <span class="sh_keyword">&lt;/Transforms&gt;</span>
<span class="sh_keyword">&lt;/CipherReference&gt;</span></pre>

          <p>Implementations <em class="rfc2119" title="must">must</em> support the <code>CipherReference</code> feature and
            the same URI encoding, dereferencing, scheme, and HTTP response codes as that
            of [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>]. The <code>Transform</code> feature
            and particular transform algorithms are <em class="rfc2119" title="optional">optional</em>.</p>
          <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"CipherReference"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:CipherReferenceType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"CipherReferenceType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Transforms"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:TransformsType"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"URI"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"required"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"TransformsType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"ds:Transform"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">/&gt;</span> 
      <span class="sh_keyword">&lt;/sequence&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        </div>
      </div>
      <div id="sec-EncryptedData" class="section">
        <h3><span class="secno">3.4 </span>The <code>EncryptedData</code> Element</h3>

        <p>The <code>EncryptedData</code> element is the core element in the syntax.
          Not only does its <code>CipherData</code> child contain the encrypted data,
          but it's also the element that replaces the encrypted element, or
          element content, or serves as 
          the new document root.</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptedData"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptedDataType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptedDataType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;complexContent&gt;</span>
        <span class="sh_keyword">&lt;extension</span> <span class="sh_type">base</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptedType"</span><span class="sh_keyword">&gt;</span>
        <span class="sh_keyword">&lt;/extension&gt;</span>
      <span class="sh_keyword">&lt;/complexContent&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

      </div>
      <div id="sec-Extensions-to-KeyInfo" class="section">
        <h3><span class="secno">3.5 </span>Extensions to <code>ds:KeyInfo</code> Element</h3>

        <p>There are three ways that the keying material needed to decrypt
          <code>CipherData</code> can be provided:</p>
        <ol>
          <li>The <code>EncryptedData</code> or <code>EncryptedKey</code> element
            specify the associated keying material via a child of
            <code>ds:KeyInfo</code>. All of the child elements of
            ds:<code>KeyInfo</code> specified in [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>] <em class="rfc2119" title="may">may</em> be used as qualified: 
            <ol>
              <li>Support for <code>ds:KeyValue</code> is <em class="rfc2119" title="optional">optional</em> and may
                be used to transport public keys, such as Diffie-Hellman Key
                Values (<a href="#sec-DHKeyValue" class="sectionRef">section 5.6.1 Diffie-Hellman Key
            Values</a>).
                (Including the plaintext decryption key, whether a private key or a
                secret key, is obviously <em class="rfc2119" title="not recommended">not recommended</em>.)</li>
              <li>Support of <code>ds:KeyName</code> to refer to an
                <code>EncryptedKey</code> <code>CarriedKeyName</code> is
                <em class="rfc2119" title="recommended">recommended</em>.</li>
              <li>Support for same document <code>ds:RetrievalMethod</code> is
                <em class="rfc2119" title="required">required</em>.</li>
            </ol>
            <p>In addition, we provide two additional child elements: applications
              <em class="rfc2119" title="must">must</em> support <code>EncryptedKey</code>
              (<a href="#sec-EncryptedKey" class="sectionRef">section 3.5.1 The EncryptedKey Element</a>) 
              and <em class="rfc2119" title="may">may</em> support <code>AgreementMethod</code>  (<a href="#sec-Alg-KeyAgreement" class="sectionRef">section 5.6 Key Agreement</a>).</p>
          </li>
          <li>A detached (not inside <code>ds:KeyInfo</code>)
            <code>EncryptedKey</code> element can specify the
            <code>EncryptedData</code> or <code>EncryptedKey</code> to which its
            decrypted key will apply via a <code>DataReference</code> or
            <code>KeyReference</code> (
            <a class="sectionRef" href="#sec-ReferenceList">section 3.6 The ReferenceList Element</a>).
          </li>
          <li>The keying material can be determined by the recipient by application
            context and thus need not be explicitly mentioned in the transmitted
            XML.</li>
        </ol>

        <div id="sec-EncryptedKey" class="section">
          <h4><span class="secno">3.5.1 </span>The <code>EncryptedKey</code> Element</h4>
          <dl>
            <dt>Identifier</dt>
            <dd><code><a id="EncryptedKey">Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"</a></code> 
              <p>(This can be used within a <code>ds:RetrievalMethod</code> element
                to identify the referent's type.)</p>
            </dd>
          </dl>

          <p>The <code>EncryptedKey</code> element is used to transport encryption keys
            from the originator to a known recipient(s). It may be used as a stand-alone
            XML document, be placed within an application document, or appear inside an
            <code>EncryptedData</code> element as a child of a <code>ds:KeyInfo</code>
            element. The key value is always encrypted to the recipient(s). When
            <code>EncryptedKey</code> is decrypted the resulting octets are made
            available to the <code>EncryptionMethod</code> algorithm without any
            additional processing.</p>
          <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptedKey"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptedKeyType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptedKeyType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;complexContent&gt;</span>
        <span class="sh_keyword">&lt;extension</span> <span class="sh_type">base</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptedType"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;sequence&gt;</span>
            <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:ReferenceList"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
            <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"CarriedKeyName"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"string"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
          <span class="sh_keyword">&lt;/sequence&gt;</span>
          <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Recipient"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"string"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/extension&gt;</span>
      <span class="sh_keyword">&lt;/complexContent&gt;</span>   
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

          <p><code>ReferenceList</code> is an optional element containing pointers to
            data and keys encrypted using this key. The reference list may contain
            multiple references to <code>EncryptedKey</code> and
            <code>EncryptedData</code> elements. This is done using
            <code>KeyReference</code> and <code>DataReference</code> elements
            respectively. These are defined below.</p>

          <p><code>CarriedKeyName</code> is an optional element for associating a user
            readable name with the key value. This may then be used to reference the key
            using the <code>ds:KeyName</code> element within <code>ds:KeyInfo</code>. The
            same <code>CarriedKeyName</code> label, unlike an ID type, may occur multiple
            times within a single document. The value of the key <em class="rfc2119" title="must">must</em> be the same in all
            <code>EncryptedKey</code> elements identified with the same
            <code>CarriedKeyName</code> label within a single XML document. Note that
            because whitespace is significant in the value of the <code>ds:KeyName</code>
            element, whitespace is also significant in the value of the
            <code>CarriedKeyName</code> element.</p>

          <p><code>Recipient</code> is an optional attribute that contains a hint as to
            which recipient this encrypted key value is intended for. Its contents are
            application dependent.</p>

          <p>The <code>Type</code> attribute inherited from <code>EncryptedType</code>
            can be used to further specify the type of the encrypted key if the
            <code>EncryptionMethod</code> <code>Algorithm</code> does not define a
            unambiguous encoding/representation. (Note, all the algorithms in this
            specification have an unambiguous representation for their associated key
            structures.)</p>
        </div>
        <div id="sec-DerivedKey" class="section">
          <h4><span class="secno">3.5.2 </span>The <code>DerivedKey</code> Element</h4>
          <dl>
            <dt>Identifier</dt>
            <dd><code><a id="DerivedKey">Type="http://www.w3.org/2009/xmlenc11#DerivedKey"</a></code> 
              <p>(This can be used within a <code>ds:RetrievalMethod</code> element
                to identify the referent's type.)</p>
            </dd>
          </dl>

          <p>
            The <code>DerivedKey</code> element is used to transport information
            about a derived key from the originator to recipient(s). It may be
            used as a stand-alone XML document, be placed within an application
            document, or appear inside an <code>EncryptedData</code> or
            <code>Signature</code> element as a child of a <code>ds:KeyInfo</code>
            element. The key value itself is never sent by the
            originator. Rather, the originator provides information to the
            recipient(s) by which the recipient(s) can derive the same key
            value. When the key has been derived the resulting octets are made
            available to the <code>EncryptionMethod</code> or
            <code>SignatureMethod</code> algorithm without any additional
            processing.
          </p>
          <pre class="sh_xml sh_sourceCode">Schema Definition:

    <span class="sh_comment">&lt;!-- targetNamespace='http://www.w3.org/2009/xmlenc11#' --&gt;</span>

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"DerivedKey"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:DerivedKeyType"</span><span class="sh_keyword">/&gt;</span> 
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"DerivedKeyType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:KeyDerivationMethod"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:ReferenceList"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"DerivedKeyName"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"string"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"MasterKeyName"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"string"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Recipient"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"string"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Id"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ID"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Type"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KeyDerivationMethod"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:KeyDerivationMethodType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KeyDerivationMethodType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;any</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"##any"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Algorithm"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"required"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>
          </pre>
          <p>
            <code>KeyDerivationMethod</code> is an optional element that describes
            the key derivation algorithm applied to the master (underlying)
            key material. If the element is absent, the key derivation algorithm must
            be known by the recipient or the recipient's key derivation will fail.
          </p>
          <p>
            <code>ReferenceList</code> is an optional element containing pointers
            to data and keys encrypted using this key. The reference list may
            contain multiple references to <code>EncryptedKey</code> or
            <code>EncryptedData</code> elements. This is done using
            <code>KeyReference</code> and <code>DataReference</code> elements
            from XML Encryption.
          </p>
          <p>
            The optional <code>DerivedKeyName</code> element is used to identify
            the derived key value. This element may then be referenced by the
            <code>ds:KeyName</code> element in <code>ds:KeyInfo</code>. The
            same <code>DerivedKeyName</code> label, unlike an ID type, may occur
            multiple times within a single document. Note that because whitespace
            is significant in the value of the <code>ds:KeyName</code> element,
            whitespace is also significant in the value of the
            <code>DerivedKeyName</code> element.
          </p>
          <p>
            <code>MasterKeyName</code> is an optional element for associating a
            user readable name with the master key (or secret) value. The
            same <code>MasterKeyName</code> label, unlike an ID type, may occur
            multiple times within a single document. The value of the master
            key <em class="rfc2119" title="must">must</em> be the same in all <code>DerivedKey</code> elements
            identified with the same <code>MasterKeyName</code> label within a
            single XML document. If no <code>MasterKeyName</code> is provided, the
            master key material must be known by the recipient or key
            derivation will fail.
          </p>
          <p>
            <code>Recipient</code> is an optional attribute that contains a hint
            as to which recipient this derived key value is intended for. Its
            contents are application dependent. 
          </p>
          <p>
            The optional <code>Id</code> attribute provides for the standard
            method of assigning a string id to the element within the document
            context.
          </p>
          <p>
            The <code>Type</code> attribute can be used to further specify the
            type of the derived key if the <code>KeyDerivationMethod</code>
            algorithm does not define an unambiguous encoding/representation.
          </p>

        </div>
        <div id="sec-ds-RetrievalMethod" class="section">
          <h4><span class="secno">3.5.3 </span>The <code>ds:RetrievalMethod</code> Element</h4>

          <p>The <code>ds:RetrievalMethod</code> <code>[<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>]</code> with a <code>Type</code> of 
            '<code>http://www.w3.org/2001/04/xmlenc#EncryptedKey</code>' provides a way
            to express a link to an <code>EncryptedKey</code> element containing the key
            needed to decrypt the <code>CipherData</code> associated with an
            <code>EncryptedData</code> or <code>EncryptedKey</code> element. The <code>ds:RetrievalMethod</code> <code>[<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>]</code> with a <code>Type</code> of '<code>http://www.w3.org/2001/04/xmlenc#DerivedKey</code>' provides a way
            to express a link to a <code>DerivedKey</code> element used to derive the key
            needed to decrypt the <code>CipherData</code> associated with an
            <code>EncryptedData</code> or <code>EncryptedKey</code> element. The
            <code>ds:RetrievalMethod</code> with one of these types is always a child of the
            <code>ds:KeyInfo</code> element and may appear multiple times. If there is
            more than one instance of a <code>ds:RetrievalMethod</code> in a
            <code>ds:KeyInfo</code> of this type, then the <code>EncryptedKey</code>
            objects referred to must contain the same key value, possibly encrypted in
            different ways or for different recipients.</p>
          <pre class="sh_xml sh_sourceCode">  Schema Definition:

            <span class="sh_comment">&lt;!--</span>
<span class="sh_comment">            &lt;attribute name='Type' type='anyURI' use='optional'/&gt;</span>
<span class="sh_comment">            --&gt;</span></pre>
        </div>
      </div>
      <div id="sec-ReferenceList" class="section">
        <h3><span class="secno">3.6 </span>The <code>ReferenceList</code> Element</h3>

        <p><code>ReferenceList</code> is an element that contains pointers from a key
          value of an <code>EncryptedKey</code> or <code>DerivedKey</code> to items encrypted by that key value
          (<code>EncryptedData</code> or <code>EncryptedKey</code> elements).</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"ReferenceList"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;complexType&gt;</span>
        <span class="sh_keyword">&lt;choice</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"1"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"DataReference"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:ReferenceType"</span><span class="sh_keyword">/&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KeyReference"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:ReferenceType"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/choice&gt;</span>
      <span class="sh_keyword">&lt;/complexType&gt;</span>
    <span class="sh_keyword">&lt;/element&gt;</span>

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"ReferenceType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;any</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"##other"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"URI"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"required"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        <p><code>DataReference</code> elements are used to refer to
          <code>EncryptedData</code> elements that were encrypted using the key defined
          in the enclosing <code>EncryptedKey</code> or <code>DerivedKey</code> element. Multiple
          <code>DataReference</code> elements can occur if multiple
          <code>EncryptedData</code> elements exist that are encrypted by the same
          key.</p>

        <p><code>KeyReference</code> elements are used to refer to
          <code>EncryptedKey</code> elements that were encrypted using the key defined
          in the enclosing <code>EncryptedKey</code> or <code>DerivedKey</code> element. Multiple
          <code>KeyReference</code> elements can occur if multiple
          <code>EncryptedKey</code> elements exist that are encrypted by the same
          key.</p>

        <p>For both types of references one may optionally specify child elements to
          aid the recipient in retrieving the <code>EncryptedKey</code> and/or
          <code>EncryptedData</code> elements. These could include information such as
          XPath transforms, decompression transforms, or information on how to retrieve
          the elements from a document storage facility. For example:</p>
        <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;ReferenceList&gt;</span>
  <span class="sh_keyword">&lt;DataReference</span> <span class="sh_type">URI</span><span class="sh_symbol">=</span><span class="sh_string">"#invoice34"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;ds:Transforms&gt;</span>
      <span class="sh_keyword">&lt;ds:Transform</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/TR/1999/REC-xpath-19991116"</span><span class="sh_keyword">&gt;</span>
        <span class="sh_keyword">&lt;ds:XPath</span> <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span><span class="sh_keyword">&gt;</span>
          self::xenc:EncryptedData[@Id="example1"]
      <span class="sh_keyword">&lt;/ds:XPath&gt;</span>
      <span class="sh_keyword">&lt;/ds:Transform&gt;</span>
    <span class="sh_keyword">&lt;/ds:Transforms&gt;</span>
  <span class="sh_keyword">&lt;/DataReference&gt;</span>
<span class="sh_keyword">&lt;/ReferenceList&gt;</span></pre>
      </div>
      <div id="sec-EncryptionProperties" class="section">
        <h3><span class="secno">3.7 </span>The <code>EncryptionProperties</code> Element</h3>
        <dl>
          <dt>Identifier</dt>
          <dd><code><a id="EncryptionProperties">Type="http://www.w3.org/2001/04/xmlenc#EncryptionProperties"</a></code> 
            <p>(This can be used within a <code>ds:Reference</code> element to
              identify the referent's type.)</p>
          </dd>
        </dl>

        <p>Additional information items concerning the generation of the
          <code>EncryptedData</code> or <code>EncryptedKey</code> can be placed in an
          <code>EncryptionProperty</code> element (e.g., date/time stamp or the serial
          number of cryptographic hardware used during encryption). The
          <code>Target</code> attribute identifies the <code>EncryptedType</code>
          structure being described. <code>anyAttribute</code> permits the inclusion of
          attributes from the XML namespace to be included (i.e.,
          <code>xml:space</code>, <code>xml:lang</code>, and <code>xml:base</code>).</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptionProperties"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptionPropertiesType"</span><span class="sh_keyword">/&gt;</span> 
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptionPropertiesType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptionProperty"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">/&gt;</span> 
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Id"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ID"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span> 
    <span class="sh_keyword">&lt;/complexType&gt;</span>
 
    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptionProperty"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:EncryptionPropertyType"</span><span class="sh_keyword">/&gt;</span> 
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"EncryptionPropertyType"</span> <span class="sh_type">mixed</span><span class="sh_symbol">=</span><span class="sh_string">"true"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;choice</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">&gt;</span>
        <span class="sh_keyword">&lt;any</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"##other"</span> <span class="sh_type">processContents</span><span class="sh_symbol">=</span><span class="sh_string">"lax"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/choice&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Target"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span> 
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Id"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ID"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"optional"</span><span class="sh_keyword">/&gt;</span> 
      <span class="sh_keyword">&lt;anyAttribute</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/XML/1998/namespace"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>
      </div>
    </div>
    <div id="sec-Processing" class="section">
      <!--OddPage--><h2><span class="secno">4. </span>Processing Rules</h2>

      <p>This section describes the operations to be performed as part of
        encryption and decryption processing by implementations of this
        specification. The conformance requirements are specified over the following
        roles:</p>
      <dl>
        <dt><a id="def-Encryptor">Encryptor</a></dt>
        <dd>An XML Encryption implementation with the role of encrypting
          data.</dd>
        <dt><a id="def-Decryptor">Decryptor</a></dt>
        <dd>An XML Encryption implementation with the role of decrypting
          data.</dd>
      </dl>

      <p>Encryptor and Decryptor are invoked by the <a id="def-Application">Application</a>.  This specification does not include normative definitions for application behavior.  However, this specification does include conformance requirements on encrypted data that may only be achievable through appropriate behavior by all three parties.  It is up to specific deployment contexts how this is achieved.</p>

      <div id="sec-Intended-Processing" class="section">
	    <h3><span class="secno">4.1 </span>Intended Application Model</h3>

        <p>The processing rules for XML Encryption are designed around an intended application model that this version of the specification does not cover normatively.</p>

        <p>In the intended processing model, XML Encryption is used to encrypt
          an octet-stream, an EXI stream, or a fragment of an XML document that
          matches either the <code>content</code> or <code>element</code>
          production from [<cite><a class="bibref" rel="biblioentry" href="#bib-XML10">XML10</a></cite>].</p>

        <p>If XML Encryption is used with some octet-stream, the precise encoding and meaning of that octet-stream is up to the application, but treated as opaque by the Encryptor or Decryptor.  The application may use the <code>Type</code>, <code>Encoding</code> and <code>MimeType</code> parameters to transport further information about the nature of that octet-stream. Hence, an unknown <code>Type</code> parameter is, in general, not treated as an error by either the Encryptor or Decryptor, but instead simply passed through, along with the other relevant parameters and the cleartext octet-stream.</p>

        <p>If XML Encryption is used with an XML <code>element</code> or XML <code>content</code>, then Encryptors and Decryptors commonly perform type-specific processing:</p>

        <ul>
	      <li>If an <code>element</code> is encrypted, then the Encryptor
	        will replace the element in question with an appropriately
	        constructed <code>EncryptedData</code> element.  The Decryptor
	        will, conversely, replace the <code>EncryptedData</code> element
	        with its cleartext.</li> 
	      <li>If XML <code>content</code> is encrypted, then the Encryptor will likewise replace this content with an appropriately constructed <code>EncryptedData</code> element, and the Decryptor will reverse this operation.</li>
        </ul>

        <p>Note that the intended Encryptor behavior 
          will often cause the document with encrypted parts to become
          invalid with respect to its schema
          for 
          the hosting XML format, unless that format is specifically prepared
          to be used with XML Encryption.  An Encryptor or Decryptor that
          implements the intended processing model is <em class="rfc2119" title="not required">not required</em> to ensure
          that the resulting XML is schema-valid for the hosting XML
          format.</p> 
	    
        <p>If XML processing is handled inside the Encryptor and Decryptor, and the <code>Type</code> attribute values for <code>element</code> and <code>content</code> cleartext are used, then the Encryptor and Decryptor <em class="rfc2119" title="must">must</em> ensure that the XML cleartext is serialized as UTF-8 before encryption, and -- if needed -- converted back to whatever other encoding might be used by the surrounding XML context.</p>

        <p>If XML Encryption is used with an EXI stream [<cite><a class="bibref" rel="biblioentry" href="#bib-EXI">EXI</a></cite>], then Encryptors and
          Decryptors process content as for XML element or XML content processing, but taking into account EXI serialization. In particular,
          the encryptor will replace the XML element or XML fragment in question
          with an appropriately constructed EncryptedData element. The Decryptor
          will conversely replace the EncryptedData element with its cleartext
          XML element or XML fragment. Note that the XML document into which the
          EncryptedData element is embedded may be encoded using EXI and/or EXI
          may be used to encode the cleartext before encryption.  </p>
      </div>

      <div id="sec-Type-Parameters" class="section">
	    <h3><span class="secno">4.2 </span>Well-known <code>Type</code> parameter values</h3>

        <p>For interoperability purposes, the following types <em class="rfc2119" title="must">must</em> be implemented
          such that an implementation will be able to take as input and yield as output
          data matching the production rules 39 and 43 from [<cite><a class="bibref" rel="biblioentry" href="#bib-XML10">XML10</a></cite>]:</p>
        <dl>
          <dt><a id="Element">element</a> '<a href="http://www.w3.org/2001/04/xmlenc#Element">http://www.w3.org/2001/04/xmlenc#Element</a>'</dt>
          <dd>"[39]&nbsp; <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-element">element</a>
            ::= <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-EmptyElemTag"><code>EmptyElemTag</code></a>
            | <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-STag">STag</a>
            <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-content">content</a>
            <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-ETag">ETag</a>"</dd>
          <dt><a id="Content">content</a>&nbsp;'<a href="http://www.w3.org/2001/04/xmlenc#Content">http://www.w3.org/2001/04/xmlenc#Content</a>'</dt>
          <dd>"[43] <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-content">content</a>
            ::= <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-CharData"><code>CharData</code></a>?
            ((<a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-element">element</a>
            | <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Reference">Reference</a>
            | <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-CDSect">CDSect</a>
            | <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-PI">PI</a> |
            <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-Comment">Comment</a>)
            <a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-CharData"><code>CharData</code></a>?)*"</dd>
        </dl>

        <p>Support for the following type is <em class="rfc2119" title="optional">optional</em> for Encryptors and Decryptors:</p>

        <dl>
	      <dt><a href="http://www.w3.org/2009/xmlenc11#EXI" id="EXI">http://www.w3.org/2009/xmlenc11#EXI</a></dt>
	      <dd>Presence of this <code>Type</code> indicates that the cleartext is an EXI stream [<cite><a class="bibref" rel="biblioentry" href="#bib-EXI">EXI</a></cite>].  Encryptors and Decryptors that support this type <em class="rfc2119" title="may">may</em> operate directly on (parts of) EXI streams.</dd>
        </dl>

        <p>Encryptors and Decryptors <em class="rfc2119" title="should">should</em> handle unknown or empty <code>Type</code> attribute values as a signal that the cleartext is to be handled as an opaque octet-stream, whose specific processing is up to the invoking application. In this case, the <code>Type</code>, <code>MimeType</code> and <code>Encoding</code> parameters <em class="rfc2119" title="should">should</em> be treated as opaque data whose appropriate processing is up to the application.</p>

      </div>

      <div id="sec-Processing-Encryption" class="section">
        <h3><span class="secno">4.3 </span>Encryption</h3>

        <p>The selection of the algorithm, parameters, and encryption keys is out of scope for this specification.</p>

        <p>The cleartext data are assumed to be present as an octet stream.  If the cleartext is of type <code>element</code> or <code>content</code>, the data <em class="rfc2119" title="must">must</em> be serialized in UTF-8 as specified in [<cite><a class="bibref" rel="biblioentry" href="#bib-XML10">XML10</a></cite>], using Normal Form C [<cite><a class="bibref" rel="biblioentry" href="#bib-NFC">NFC</a></cite>].</p>

        <p>For each data item to be encrypted as an <code>EncryptedData</code> or
          <code>EncryptedKey</code> element, the <strong>encryptor</strong> <em class="rfc2119" title="must">must</em>:</p>
        <ol>
          <li>Obtain (or derive) and (optionally) represent the key. 
            <ol>
              <li><p>If the key is to be identified (via naming, URI, or included in a
                  child element), construct the <code>ds:KeyInfo</code> as appropriate
                  (e.g., <code>ds:KeyName</code>, <code>ds:KeyValue</code>,
                  <code>ds:RetrievalMethod</code>, etc.)</p></li>
              <li><p>If the key itself is to be encrypted, construct an
                  <code>EncryptedKey</code> element by recursively applying this
                  encryption process. The result may then be a child of
                  <code>ds:KeyInfo</code>, or it may exist elsewhere and may be
                  identified in the preceding step.</p></li>
              <li><p>If the key was derived from a master key, construct a
                  <code>DerivedKey</code> element with associated child
	              elements. The result may, as in the <code>EncryptedKey</code>
	              case, be a child of <code>ds:KeyInfo</code>, or it may exist
	              elsewhere.</p></li>
            </ol>
          </li>
          <li><p>Encrypt the data:
              </p><ol>
                <li><p>Encrypt the octets using the algorithm and key.</p></li>
                <li>
	              <p>Unless the <strong>decryptor</strong> will implicitly know the type of the
                    encrypted data, the <strong>encryptor</strong> <em class="rfc2119" title="should">should</em> set the
                    <code>Type</code> to indicate the intended interpretation of the cleartext
                    data. See <a class="sectionRef" href="#sec-Type-Parameters">section 4.2 Well-known Type parameter values</a>
                    for known parameter values.</p>
                  <p>If the data is a
                    simple octet sequence it <em class="rfc2119" title="may">may</em> be described with the
                    <code>MimeType</code> and <code>Encoding</code> attributes. For
                    example, the data might be an XML document
                    (<code>MimeType="text/xml"</code>), sequence of characters
                    (<code>MimeType="text/plain"</code>), or binary image data
                    (<code>MimeType="image/png</code>").</p>
                </li>
              </ol>
          </li>
          <li>Build the <code>EncryptedData</code> or
            <code>EncryptedKey</code> structure: 
            <p>An <code>EncryptedData</code> or <code>EncryptedKey</code> structure represents all of the
              information previously discussed including the type of the encrypted
              data, encryption algorithm, parameters, key, type of the encrypted data,
              etc.</p>
            <ol>
              <li>If the encrypted octet sequence obtained in step 2 is to be stored
                in the <code>CipherData</code> element within the
                <code>EncryptedData</code> or <code>EncryptedKey</code> element, then the base64 representation of the encrypted octet sequence is
                inserted as the content of a
                <code>CipherValue</code> element.</li>
              <li><p>If the encrypted octet sequence is stored externally to the
                  <code>EncryptedData</code> or <code>EncryptedKey</code> element, 
	              then  the URI and transforms (if
                  any) required for the Decryptor to retrieve the encrypted octet
                  sequence are described within a 
	              <code>CipherReference</code> element.</p>
	          </li>
            </ol>
          </li>
        </ol>
      </div>
      <div id="sec-Processing-Decryption" class="section">
        <h3><span class="secno">4.4 </span>Decryption</h3>

        <p>For each <code>EncryptedData</code> or <code>EncryptedKey</code> to be decrypted,
          the <strong>decryptor</strong> <em class="rfc2119" title="must">must</em>:</p>
        <ol>
          <li>Determine the algorithm, parameters and key information to be used.
            This information may be obtained out-of-band, or determined according to
            a <code>ds:KeyInfo</code> element;
            see <a href="#sec-Extensions-to-KeyInfo" class="sectionRef">section 3.5 Extensions to ds:KeyInfo Element</a>.
          </li>
          <li><p>Decrypt the data contained in the <code>CipherData</code> element. 
              </p><ol>
                <li><p>If a <code>CipherValue</code> child element is present, then the
                    associated text value is retrieved and base64 decoded so as to obtain
                    the encrypted octet sequence.</p></li>
                <li><p>If a <code>CipherReference</code> child element is present, the URI
                    and transforms (if any) are used to retrieve the encrypted octet
                    sequence.</p></li>
                <li><p>The encrypted octet sequence is decrypted using the
                    algorithm, parameters and key value already determined from step 1.</p></li>
              </ol>
          </li>
        </ol>
      </div>

      <div id="sec-Processing-XML" class="section">
        <h3><span class="secno">4.5 </span>XML Encryption</h3>

        <p>Encryption and decryption operations are operations on octets. The
          <strong>application</strong> is responsible for the marshalling XML such that
          it can be serialized into an octet sequence, encrypted, decrypted, and be of
          use to the recipient.</p>

        <p>For example, if the application wishes to canonicalize its data or
          encode/compress the data in an XML packaging format, the application needs to
          marshal the XML accordingly and identify the resulting type via the
          <code>EncryptedData</code> <code>Type</code> attribute. The likelihood of
          successful decryption and subsequent processing will be dependent on the
          recipient's support for the given type. Also, if the data is intended to be
          processed both before encryption and after decryption (e.g., XML Signature
          [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>] validation or an XSLT transform) the
          encrypting application must be careful to preserve information necessary for
          that process's success.</p>


        <p>The following sections contain specifications for decrypting, replacing,
          and serializing XML content (i.e., <code>Type</code> '<a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-element">element</a>' or
          element '<a href="http://www.w3.org/TR/2008/REC-xml-20081126/#NT-content">content</a>')
          using the [<cite><a class="bibref" rel="biblioentry" href="#bib-XPATH">XPATH</a></cite>] data model. These sections are
          non-normative and <em class="rfc2119" title="optional">optional</em> to implementers of this specification, but they
          may be normatively referenced by and be required by other specifications that
          require a consistent processing for applications, such as [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLENC-DECRYPT">XMLENC-DECRYPT</a></cite>].</p>

        <div id="sec-Decrypt-Imp" class="section">
          <h4><span class="secno">4.5.1 </span>A Decrypt
            Implementation (Non-normative)</h4>

          <p>Where <em>P</em> is the context in which the serialized XML should be
            parsed (a document node or element node) and <em>O</em> is the octet sequence
            representing UTF-8 encoded characters resulting from step 4.3 in  <a class="sectionRef" href="#sec-Processing-Decryption">section 4.4 Decryption</a>. <em>Y</em>
            is node-set representing the decrypted content 
            obtained by the following steps:</p>
          <ol>
            <li>Let <em>C</em> be the <a class="def" id="def-parsing-context">parsing context</a>
              of a child of <em>P</em>, which consists of the following items: 
              <ul>
                <li>Prefix and namespace name of each namespace that is in scope for
                  <em>P</em>.</li>
                <li>Name and value of each general entity that is effective for the XML
                  document causing <em>P</em>.</li>
              </ul>
            </li>
            <li>Wrap the decrypted octet stream <em>O</em> in the context <em>C</em> as
              specified in <a class="sectionRef" href="#sec-Text-Wrapping">section 4.5.4 Text Wrapping</a>.</li>
            <li>Parse the wrapped octet stream as described in <a class="link-sec" href="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#sec-ReferenceProcessingModel">The
                Reference Processing Model</a> (section 4.3.3.2) of [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>], resulting in a node-set.</li>
            <li><em>Y</em> is the node-set obtained by removing the root node, the
              wrapping element node, and its associated set of attribute and namespace
              nodes from the node-set obtained in Step 3.</li>
          </ol>

        </div>
        <div id="sec-Decrypt-Replace-Imp" class="section">
          <h4><span class="secno">4.5.2 </span>A Decrypt and Replace Implementation (Non-normative)</h4>

          <p>Where <em>X</em> is the [<cite><a class="bibref" rel="biblioentry" href="#bib-XPATH">XPATH</a></cite>] node set
            corresponding to an XML document and <em>e</em> is an
            <code>EncryptedData</code> element node in <em>X</em>.</p>
          <ol>
            <li><em>Z</em> is an [<cite><a class="bibref" rel="biblioentry" href="#bib-XPATH">XPATH</a></cite>] node-set that
              identical to X except where the element node <em>e</em> is an
              <code>EncryptedData</code> element type. In which case: 
              <ol>
                <li>Decrypt <em>e</em> in the context of its parent node as specified
                  in the <a class="sectionRef" href="#sec-Decrypt-Imp">section 4.5.1 A Decrypt
            Implementation (Non-normative)</a>
                  yielding <em>Y</em>, an [<cite><a class="bibref" rel="biblioentry" href="#bib-XPATH">XPATH</a></cite>] node set.</li> 
                <li>Include <em>Y</em> in place of <em>e</em> and its descendants in
                  <em>X</em>. Since [<cite><a class="bibref" rel="biblioentry" href="#bib-XPATH">XPATH</a></cite>] does not define
                  methods of replacing node-sets from different documents, the result
                  <em class="rfc2119" title="must">must</em> be equivalent to replacing e with the octet stream resulting
                  from its decryption in the serialized form of <em>X</em> and
                  re-parsing the document. However, the actual method of performing this
                  operation is left to the implementor.</li>
              </ol>
            </li>
          </ol>

        </div>
        <div id="sec-Serializing-XML" class="section">
          <h4><span class="secno">4.5.3 </span>Serializing XML (Non-normative)</h4>

          <div id="sec-Default-Namespace-Considerations" class="section">
            <h5><span class="secno">4.5.3.1 </span>Default Namespace Considerations</h5>

            <p>In <a class="sectionRef" href="#sec-Processing-Encryption">section 4.3 Encryption</a>
              (step 3.1), when serializing an XML fragment special 
              care <em class="rfc2119" title="should">should</em> be taken with respect to default namespaces. If the data will be
              subsequently decrypted in the context of a parent XML document then
              serialization can produce elements in the wrong namespace. Consider the
              following fragment of XML:</p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;Document</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;ToBeEncrypted</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">""</span> <span class="sh_keyword">/&gt;</span>
<span class="sh_keyword">&lt;/Document&gt;</span></pre>

            <p>Serialization of the element <code>ToBeEncrypted</code> fragment via [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-C14N">XML-C14N</a></cite>] would result in the characters
              "<code>&lt;ToBeEncrypted&gt;&lt;/ToBeEncrypted&gt;</code>" as an octet
              stream. The resulting encrypted document would be:</p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;Document</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"..."</span><span class="sh_keyword">&gt;</span>
    <span class="sh_comment">&lt;!-- Containing the encrypted </span>
<span class="sh_comment">    "&lt;ToBeEncrypted&gt;&lt;/ToBeEncrypted&gt;" --&gt;</span>
  <span class="sh_keyword">&lt;/EncryptedData&gt;</span>
<span class="sh_keyword">&lt;/Document&gt;</span></pre>

            <p>Decrypting and replacing the <code>EncryptedData</code> within this
              document would produce the following incorrect result:</p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;Document</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;ToBeEncrypted/&gt;</span>
<span class="sh_keyword">&lt;/Document&gt;</span> </pre>

            <p>This problem arises because most XML serializations assume that the
              serialized data will be parsed directly in a context where there is no
              default namespace declaration. Consequently, they do not redundantly declare
              the empty default namespace with an <code>xmlns=""</code>. If, however, the
              serialized data is parsed in a context where a default namespace declaration
              is in scope (e.g., the parsing context as described in <a class="sectionRef" href="#sec-Decrypt-Imp">section 4.5.1 A Decrypt
            Implementation (Non-normative)</a>), then
              it may affect the interpretation of the serialized data.</p>

            <p>To solve this problem, a canonicalization algorithm <em class="rfc2119" title="may">may</em> be augmented as
              follows for use as an XML encryption serializer:</p>
            <ul>
              <li>A default namespace declaration with an empty value (i.e.,
                <code>xmlns=""</code>) <em class="rfc2119" title="should">should</em> be emitted where it would normally be
                suppressed by the canonicalization algorithm.</li>
            </ul>

            <p>While the result may not be in proper canonical form, this is harmless as
              the resulting octet stream will not be used directly in a
              [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>] signature value computation. 
              Returning to the preceding example with our new augmentation, the
              <code>ToBeEncrypted</code> element would be serialized as follows:</p>
            <pre>&lt;ToBeEncrypted xmlns=""&gt;&lt;/ToBeEncrypted&gt;</pre>

            <p>When processed in the context of the parent document, this serialized
              fragment will be parsed and interpreted correctly.</p>

            <p>This augmentation can be retroactively applied to an existing
              canonicalization implementation by canonicalizing each apex node and its
              descendants from the node set, inserting <code>xmlns=""</code> at the
              appropriate points, and concatenating the resulting octet streams.</p>
          </div>

          <div id="sec-XML-Attribute-Considerations" class="section">
            <h5><span class="secno">4.5.3.2 </span>XML Attribute Considerations</h5>

            <p>Similar attention between the relationship of a fragment and the context
              into which it is being inserted should be given to the <code>xml:base</code>,
              <code>xml:lang</code>, and <code>xml:space</code> attributes as mentioned in
              the <a class="link-sec" href="http://www.w3.org/TR/xml-exc-c14n/#sec-Considerations">Security
                Considerations</a> of [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-EXC-C14N">XML-EXC-C14N</a></cite>]. For
              example, if the element:</p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;Bongo</span> <span class="sh_type">href</span><span class="sh_symbol">=</span><span class="sh_string">"example.xml"</span><span class="sh_keyword">/&gt;</span></pre>

            <p>is taken from a context and serialized with no <code>xml:base</code> [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLBASE">XMLBASE</a></cite>] attribute and parsed in the context of the
              element:</p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;Baz</span> <span class="sh_type">xml:base</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span><span class="sh_keyword">/&gt;</span></pre>

            <p>the result will be:</p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;Baz</span> <span class="sh_type">xml:base</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span><span class="sh_keyword">&gt;&lt;Bongo</span> <span class="sh_type">href</span><span class="sh_symbol">=</span><span class="sh_string">"example.xml"</span><span class="sh_keyword">/&gt;&lt;/Baz&gt;</span></pre>

            <p><code>Bongo</code>'s <code>href</code> is subsequently interpreted as
              "<code>http://example.org/example.xml</code>". If this is not the correct
              URI, <code>Bongo</code> should have been serialized with its own
              <code>xml:base</code> attribute.</p>

            <p>Unfortunately, the recommendation that an empty value be emitted to
              divorce the default namespace of the fragment from the context into which it
              is being inserted cannot be made for <span>the attributes
                <code>xml:base</code>, and <code>xml:space</code>. (<a class="link-sec" href="http://www.w3.org/XML/xml-V10-2e-errata#E41">Error 41</a> of the <a href="http://www.w3.org/XML/xml-V10-2e-errata">XML 1.0 Second Edition
                  Specification Errata</a> clarifies that an empty string value of the
                attribute <code>xml:lang</code> <em>is</em> considered as if, "there is no
                language information available, just as if <code>xml:lang</code> had not been
                specified".)</span>The interpretation of an empty value for the
              <code>xml:base</code> or <code>xml:space</code> attributes is undefined or
              maintains the contextual value. Consequently, applications <em class="rfc2119" title="should">should</em> ensure (1)
              fragments that are to be encrypted are not dependent on XML attributes, or
              (2) if they are dependent and the resulting document is intended to be <a class="link-def" href="http://www.w3.org/TR/2008/REC-xml-20081126/#dt-valid">valid</a> [<cite><a class="bibref" rel="biblioentry" href="#bib-XML10">XML10</a></cite>], the fragment's definition permits the presence of
              the attributes and that the attributes have non-empty values.</p>
          </div>
        </div>
        <div id="sec-Text-Wrapping" class="information section">
          <h4><span class="secno">4.5.4 </span>Text Wrapping</h4>

          <p>This section specifies the process for wrapping text in a given parsing
            context. The process is based on the proposal by Richard Tobin [<cite><a class="bibref" rel="biblioentry" href="#bib-Tobin">Tobin</a></cite>] for constructing the infoset [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-INFOSET">XML-INFOSET</a></cite>] of an external entity.</p>

          <p>The process consists of the following steps:</p>
          <ol>
            <li><p>If the parsing context contains any general entities, then emit a
                document type declaration that provides entity declarations.</p></li>
            <li><p>Emit a <code>dummy</code> element start-tag with namespace declaration
                attributes declaring all the namespaces in the parsing context.</p></li>
            <li><p>Emit the text.</p></li>
            <li><p>Emit a <code>dummy</code> element end-tag.</p></li>
          </ol>

          <p>In the above steps, the document type declaration and <code>dummy</code>
            element tags <em class="rfc2119" title="must">must</em> be encoded in UTF-8.</p>

          <p>Consider the following document containing an <code>EncryptedData</code>
            element:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_preproc">&lt;!DOCTYPE</span> <span class="sh_type">Document</span><span class="sh_normal"> </span><span class="sh_type">[</span>
<span class="sh_type">&lt;!ENTITY</span><span class="sh_normal"> </span><span class="sh_type">dsig</span><span class="sh_normal"> </span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_preproc">&gt;</span>
]&gt;
<span class="sh_keyword">&lt;Document</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;foo:Body</span> <span class="sh_type">xmlns:foo</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/foo"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;EncryptedData</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
      <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#Element"</span><span class="sh_keyword">&gt;</span>
      ...
    <span class="sh_keyword">&lt;/EncryptedData&gt;</span> 
  <span class="sh_keyword">&lt;/foo:Body&gt;</span>
<span class="sh_keyword">&lt;/Document&gt;</span></pre>

          <p>If the <code>EncryptedData</code> element is decrypted to
            the text "<code>&lt;One&gt;&lt;foo:Two/&gt;&lt;/One&gt;</code>", then the
            wrapped form is as follows:</p>
          <pre class="sh_xml sh_sourceCode"><span class="sh_preproc">&lt;!DOCTYPE</span> <span class="sh_type">dummy</span><span class="sh_normal"> </span><span class="sh_type">[</span>
  <span class="sh_type">&lt;!ENTITY</span><span class="sh_normal"> </span><span class="sh_type">dsig</span><span class="sh_normal"> </span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_preproc">&gt;</span>
  ]&gt;
  <span class="sh_keyword">&lt;dummy</span> <span class="sh_type">xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/"</span>
    <span class="sh_type">xmlns:foo</span><span class="sh_symbol">=</span><span class="sh_string">"http://example.org/foo"</span><span class="sh_keyword">&gt;&lt;One&gt;&lt;foo:Two/&gt;&lt;/One&gt;&lt;/dummy&gt;</span></pre>

        </div>
      </div>
    </div>
    <div id="sec-Algorithms" class="section">
      <!--OddPage--><h2><span class="secno">5. </span>Algorithms</h2>

      <p>This section discusses algorithms used with the XML Encryption
        specification. Entries contain the identifier to be used as the value of the
        <code>Algorithm</code> attribute of the <code>EncryptionMethod</code> element
        or other element representing the role of the algorithm, a reference to the
        formal specification, definitions for the representation of keys and the
        results of cryptographic operations where applicable, and general
        applicability comments.</p>

      <div id="sec-AlgID" class="section">
        <h3><span class="secno">5.1 </span>Algorithm Identifiers and Implementation Requirements</h3>

        <p>All algorithms listed below have implicit parameters depending on their
          role. For example, the data to be encrypted or decrypted, keying material,
          and direction of operation (encrypting or decrypting) for encryption
          algorithms. Any explicit additional parameters to an algorithm appear as
          content elements within the element. Such parameter child elements have
          descriptive element names, which are frequently algorithm specific, and
          <em class="rfc2119" title="should">should</em> be in the same namespace as this XML Encryption specification, the XML
          Signature specification, or in an algorithm specific namespace. An example of
          such an explicit parameter could be a nonce (unique quantity) provided to a
          key agreement algorithm.</p>

        <p>This specification defines a set of algorithms, their URIs, and
          requirements for implementation. Levels of requirement specified, such as
          "<em class="rfc2119" title="required">required</em>" or "<em class="rfc2119" title="optional">optional</em>", refer to implementation, not use. Furthermore, the
          mechanism is extensible, and alternative algorithms may be used.</p>



        <div id="sec-Table-of-Algorithms" class="section">
          <h4><span class="secno">5.1.1 </span>Table of Algorithms</h4>

          <p>The table below lists the categories of algorithms. Within each category,
            a brief name, the level of implementation requirement, and an identifying URI
            are given for each algorithm.</p>
          <dl>
            <dt>Block Encryption</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> TRIPLEDES<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">http://www.w3.org/2001/04/xmlenc#tripledes-cbc</a></li>
                <li><em class="rfc2119" title="required">required</em> AES-128<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#aes128-cbc">http://www.w3.org/2001/04/xmlenc#aes128-cbc</a></li>
                <li><em class="rfc2119" title="required">required</em> AES-256<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#aes256-cbc">http://www.w3.org/2001/04/xmlenc#aes256-cbc</a></li>
                <li><em class="rfc2119" title="required">required</em> AES128-GCM<br>
                  <a href="http://www.w3.org/2009/xmlenc11#aes128-gcm">http://www.w3.org/2009/xmlenc11#aes128-gcm</a></li>

                <li><em class="rfc2119" title="optional">optional</em> AES-192<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#aes192-cbc">http://www.w3.org/2001/04/xmlenc#aes192-cbc</a></li>
                <li><em class="rfc2119" title="optional">optional</em> AES256-GCM<br>
                  <a href="http://www.w3.org/2009/xmlenc11#aes256-gcm">http://www.w3.org/2009/xmlenc11#aes256-gcm</a></li>
              </ol>
<p>
<strong id="cbc-warning">Note:</strong> Use
  of AES GCM is strongly recommended over any CBC block encryption
  algorithms as recent
  advances in cryptanalysis [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLENC-CBC-ATTACK">XMLENC-CBC-ATTACK</a></cite>][<cite><a class="bibref" rel="biblioentry" href="#bib-XMLENC-CBC-ATTACK-COUNTERMEASURES">XMLENC-CBC-ATTACK-COUNTERMEASURES</a></cite>]
have cast doubt on the ability of CBC block encryption algorithms to
  protect plain text when used with XML Encryption. Other mitigations
  should be considered when using CBC block encryption, such as
  conveying the encrypted data over a secure channel such as TLS.  The
  CBC block encryption algorithms that are listed as required remain
  so for backward compatibility.
</p>
            </dd>
            <dt>Stream Encryption</dt>
            <dd><ol>
                <li>none<br>
                  Syntax and recommendations are given below to support user
                  specified algorithms.</li>
              </ol>
            </dd>
            <dt>Key Derivation</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> ConcatKDF<br>
                  <a href="http://www.w3.org/2009/xmlenc11#ConcatKDF">http://www.w3.org/2009/xmlenc11#ConcatKDF</a></li>
                <li><em class="rfc2119" title="optional">optional</em> PBKDF2<br>
                  <a href="http://www.w3.org/2009/xmlenc11#pbkdf2">http://www.w3.org/2009/xmlenc11#pbkdf2</a></li>
              </ol>
            </dd>
            <dt>Key Transport</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> RSA-v1.5<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#rsa-1_5">http://www.w3.org/2001/04/xmlenc#rsa-1_5</a></li>
                <li><em class="rfc2119" title="required">required</em> RSA-OAEP (including MGF1 with SHA1)<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p</a></li>
                <li>Optional RSA-OAEP<br>
                  <a href="http://www.w3.org/2009/xmlenc11#rsa-oaep">http://www.w3.org/2009/xmlenc11#rsa-oaep</a></li>
              </ol>
            </dd>
            <dt>Key Agreement</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> Elliptic Curve Diffie-Hellman (Ephemeral-Static mode) <br>
                  <a href="http://www.w3.org/2009/xmlenc11#ECDH-ES">http://www.w3.org/2009/xmlenc11#ECDH-ES</a></li>

                <li><em class="rfc2119" title="optional">optional</em> Diffie-Hellman Key Agreement (Ephemeral-Static mode) with Legacy Key Derivation Function<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#dh">http://www.w3.org/2001/04/xmlenc#dh</a></li>
	            <li><em class="rfc2119" title="optional">optional</em> Diffie-Hellman Key Agreement (Ephemeral-Static
	              mode) with explicit Key Derivation Functions<br>
                  <a href="http://www.w3.org/2009/xmlenc11#dh-es">http://www.w3.org/2009/xmlenc11#dh-es</a></li>

              </ol>
            </dd>
            <dt>Symmetric Key Wrap</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> TRIPLEDES KeyWrap<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#kw-tripledes">http://www.w3.org/2001/04/xmlenc#kw-tripledes</a></li>
                <li><em class="rfc2119" title="required">required</em> AES-128 KeyWrap<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#kw-aes128">http://www.w3.org/2001/04/xmlenc#kw-aes128</a></li>
                <li><em class="rfc2119" title="required">required</em> AES-256 KeyWrap<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#kw-aes256">http://www.w3.org/2001/04/xmlenc#kw-aes256</a></li>
                <li><em class="rfc2119" title="optional">optional</em> AES-192 KeyWrap<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#kw-aes192">http://www.w3.org/2001/04/xmlenc#kw-aes192</a></li>
                <li><em class="rfc2119" title="optional">optional</em> AES-128-pad KeyWrap<br>
                  <a href="http://www.w3.org/2009/xmlenc11#kw-aes-128-pad">http://www.w3.org/2009/xmlenc11#kw-aes-128-pad</a></li>
                <li><em class="rfc2119" title="optional">optional</em> AES-192-pad KeyWrap<br>
                  <a href="http://www.w3.org/2009/xmlenc11#kw-aes-192-pad">http://www.w3.org/2009/xmlenc11#kw-aes-192-pad</a></li>
                <li><em class="rfc2119" title="optional">optional</em> AES-256-pad KeyWrap<br>
                  <a href="http://www.w3.org/2009/xmlenc11#kw-aes-256-pad">http://www.w3.org/2009/xmlenc11#kw-aes-256-pad</a></li>
              </ol>
            </dd>
            <dt>Message Digest</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> SHA1 (<em>Use is DISCOURAGED</em>; see below).<br>
                  <a href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a></li>
                <li><em class="rfc2119" title="required">required</em> SHA256<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#sha256">http://www.w3.org/2001/04/xmlenc#sha256</a></li>
                <li><em class="rfc2119" title="optional">optional</em> SHA384<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#sha384">http://www.w3.org/2001/04/xmlenc#sha384</a></li>
                <li><em class="rfc2119" title="optional">optional</em> SHA512<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#sha512">http://www.w3.org/2001/04/xmlenc#sha512</a></li>
                <li><em class="rfc2119" title="optional">optional</em> RIPEMD-160<br>
                  <a href="http://www.w3.org/2001/04/xmlenc#ripemd160">http://www.w3.org/2001/04/xmlenc#ripemd160</a></li>
              </ol>
            </dd>
            <dt>Canonicalization</dt>
            <dd><ol>
                <li><em class="rfc2119" title="optional">optional</em> Canonical XML 1.0 (omit comments)<br>
                  <a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a></li>
                <li><em class="rfc2119" title="optional">optional</em> Canonical XML 1.0 (with comments)<br>
                  <a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a></li>
                <li><em class="rfc2119" title="optional">optional</em> Canonical XML 1.1 (omit comments)<br>
                  <a href="http://www.w3.org/2006/12/xml-c14n11">http://www.w3.org/2006/12/xml-c14n11</a></li>
                <li><em class="rfc2119" title="optional">optional</em> Canonical XML 1.1 (with comments)<br>
                  <a href="http://www.w3.org/2006/12/xml-c14n11#WithComments">http://www.w3.org/2006/12/xml-c14n11#WithComments</a></li>
                <li><em class="rfc2119" title="optional">optional</em> Exclusive XML Canonicalization 1.0 (omit comments)<br>
                  <a href="http://www.w3.org/2001/10/xml-exc-c14n#">http://www.w3.org/2001/10/xml-exc-c14n#</a></li>
                <li><em class="rfc2119" title="optional">optional</em> Exclusive XML Canonicalization 1.0 (with comments)<br>
                  <a href="http://www.w3.org/2001/10/xml-exc-c14n#WithComments">http://www.w3.org/2001/10/xml-exc-c14n#WithComments</a></li>
              </ol>
            </dd>
            <dt>Encoding</dt>
            <dd><ol>
                <li><em class="rfc2119" title="required">required</em> base64 (<a href="#base64note">*note</a>)<br>
                  
                  <a href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a></li>
              </ol>
            </dd>
            <dt>Transforms</dt>
            <dd>
              <ol>
                <li><em class="rfc2119" title="required">required</em> base64 (<a href="#base64note">*note</a>)<br>
                  <a href="http://www.w3.org/2000/09/xmldsig#base64">http://www.w3.org/2000/09/xmldsig#base64</a></li>
              </ol>
            </dd>
          </dl>
          <div id="base64note">
            <p>*note:
              The same URI is used to identify base64 both in "encoding"
              context (e.g. when used with the <code>Encoding</code> attribute
              of an <code>EncryptedKey</code> element,
              see <a href="#sec-EncryptedType" class="sectionRef">section 3.1 The EncryptedType Element</a>) as 
              well as in "transform" context (when identifying a base64
              transform for a <code>CipherReference</code>, see <a href="#sec-CipherReference" class="sectionRef">section 3.3.1 The CipherReference Element</a>).</p> 
          </div>
        </div>
      </div>
      <div id="sec-Alg-Block" class="section">
        <h3><span class="secno">5.2 </span>Block Encryption Algorithms</h3>

        <p>Block encryption algorithms are designed for encrypting and decrypting
          data in fixed size, multiple octet blocks. Their identifiers appear as the
          value of the <code>Algorithm</code> attributes of
          <code>EncryptionMethod</code> elements that are children of
          <code>EncryptedData</code>.</p>
        <p>
          <strong>Note</strong>: CBC block encryption algorithms should not be used without
          consideration of <a href="#cbc-warning">possibly severe
            security risks</a>. 
        </p>
        <p>Block encryption algorithms take, as implicit arguments, the data to be
          encrypted or decrypted, the keying material, and their direction of
          operation. For all of these algorithms specified below, an initialization
          vector (IV) is required that is encoded with the cipher text. For user
          specified block encryption algorithms, the IV, if any, could be specified as
          being with the cipher data, as an algorithm content element, or elsewhere.</p>

        <p>The IV is encoded with and before the cipher text for the algorithms below
          for ease of availability to the decryption code and to emphasize its
          association with the cipher text. Good cryptographic practice requires that a
          different IV be used for every encryption.</p>

        <div id="sec-Padding" class="section">
          <h4><span class="secno">5.2.1 </span>Padding</h4>

          <p>Since the data being encrypted is an arbitrary number of octets, it may
            not be a multiple of the block size. This is solved by padding the plain text
            up to the block size before encryption and unpadding after decryption. The
            padding algorithm is to calculate the smallest non-zero number of octets, say
            <code>N</code>, that must be suffixed to the plain text to bring it up to a
            multiple of the block size. We will assume the block size is <code>B</code>
            octets so <code>N</code> is in the range of 1 to <code>B</code>. Pad by
            suffixing the plain text with <code>N-1</code> arbitrary pad bytes and a
            final byte whose value is <code>N</code>. On decryption, just take the last
            byte and, after sanity checking it, strip that many bytes from the end of the
            decrypted cipher text.</p>

          <p>For example, assume an 8 byte block size and plain text of
            <code>0x616263</code>. The padded plain text would then be
            <code>0x616263????????05</code> where the "??" bytes can be any value.
            Similarly, plain text of <code>0x2122232425262728</code> would be padded to
            <code>0x2122232425262728??????????????08</code>.</p>

        </div>
        <div id="sec-tripledes-cbc" class="section">
          <h4><span class="secno">5.2.2 </span>Triple DES</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="tripledes-cbc" href="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">http://www.w3.org/2001/04/xmlenc#tripledes-cbc</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>NIST SP800-67 [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-67">SP800-67</a></cite>] specifies three
            sequential FIPS 46-3 [<cite><a class="bibref" rel="biblioentry" href="#bib-DES">DES</a></cite>] operations. The XML
            Encryption TRIPLEDES consists of a DES encrypt, a DES decrypt, and a DES
            encrypt used in the Cipher Block Chaining (CBC) mode with 192 bits of key and
            a 64 bit Initialization Vector (IV). Of the key bits, the first 64 are used
            in the first DES operation, the second 64 bits in the middle DES operation,
            and the third 64 bits in the last DES operation.</p>

          <p>Note: Each of these 64 bits of key contain 56 effective bits and 8 parity
            bits. Thus there are only 168 operational bits out of the 192 being
            transported for a TRIPLEDES key. (Depending on the criterion used for
            analysis, the effective strength of the key may be thought to be 112 bits
            (due to meet in the middle attacks) or even less.)</p>

          <p>The resulting cipher text is prefixed by the IV. If included in XML
            output, it is then base64 encoded. An example TRIPLEDES EncryptionMethod is
            as follows:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptionMethod</span> 
          <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#tripledes-cbc"</span><span class="sh_keyword">/&gt;</span></pre>

        <p>
          <strong>Note</strong>: CBC block encryption algorithms should not be used without
          consideration of <a href="#cbc-warning">possibly severe
            security risks</a>. 
        </p>
        </div>
        <div id="sec-AES" class="section">
          <h4><span class="secno">5.2.3 </span>AES</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="aes128-cbc" href="http://www.w3.org/2001/04/xmlenc#aes128-cbc">http://www.w3.org/2001/04/xmlenc#aes128-cbc</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
            <dd><a id="aes192-cbc" href="http://www.w3.org/2001/04/xmlenc#aes192-cbc">http://www.w3.org/2001/04/xmlenc#aes192-cbc</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a id="aes256-cbc" href="http://www.w3.org/2001/04/xmlenc#aes256-cbc">http://www.w3.org/2001/04/xmlenc#aes256-cbc</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>[<cite><a class="bibref" rel="biblioentry" href="#bib-AES">AES</a></cite>] is used in the Cipher Block Chaining (CBC)
            mode with a 128 bit initialization vector (IV). The resulting cipher text is
            prefixed by the IV. If included in XML output, it is then base64 encoded. An
            example AES EncryptionMethod is as follows:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptionMethod</span>
          <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#aes128-cbc"</span><span class="sh_keyword">/&gt;</span></pre>
        <p>
          <strong>Note</strong>: CBC block encryption algorithms should not be used without
          consideration of <a href="#cbc-warning">possibly severe
            security risks</a>. 
        </p>
        </div>
        <div id="sec-AES-GCM" class="section">
          <h4><span class="secno">5.2.4 </span>AES-GCM</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="aes128-gcm" href="http://www.w3.org/2009/xmlenc11#aes128-gcm">http://www.w3.org/2009/xmlenc11#aes128-gcm</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
            <dd><a id="aes256-gcm" href="http://www.w3.org/2009/xmlenc11#aes256-gcm">http://www.w3.org/2009/xmlenc11#aes256-gcm</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>
          <p>
            AES-GCM [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-38D">SP800-38D</a></cite>] is an authenticated encryption mechanism. It is
            equivalent to doing these two operations in one step - AES
            encryption  followed by HMAC signing.</p>
          <p>AES-GCM is very attractive from a performance point of
            view because the cost of AES-GCM is similar to regular AES-CBC
            encryption, yet it achieves the same result as encryption and HMAC
            signing. Also AES-GCM can be pipelined so it is amenable to
            hardware acceleration.
          </p>
          <p>For the purposes of this specification, AES-GCM shall be used with a
            96 bit Initialization Vector (IV) and a 128 bit Authentication Tag
            (T). The cipher text contains the IV first, followed by the encrypted
            octets and finally the Authentication tag. No padding should be used
            during encryption. During decryption the implementation should compare
            the authentication tag computed during decryption with the specified
            Authentication Tag, and fail if they don't match. For details on the
            implementation of AES-GCM, see [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-38D">SP800-38D</a></cite>]. 
          </p>
        </div>
      </div>
      <div id="sec-Alg-Stream" class="section">
        <h3><span class="secno">5.3 </span>Stream Encryption Algorithms</h3>

        <p>Simple stream encryption algorithms generate, based on the key, a stream
          of bytes which are XORed with the plain text data bytes to produce the cipher
          text on encryption and with the cipher text bytes to produce plain text on
          decryption. They are normally used for the encryption of data and are
          specified by the value of the <code>Algorithm</code> attribute of the
          <code>EncryptionMethod</code> child of an <code>EncryptedData</code>
          element.</p>

        <p>NOTE: It is critical that each simple stream encryption key (or key and
          initialization vector (IV) if an IV is also used) be used once only. If the
          same key (or key and IV) is ever used on two messages then, by XORing the two
          cipher texts, you can obtain the XOR of the two plain texts. This is usually
          very compromising.</p>

        <p>No specific stream encryption algorithms are specified herein but this
          section is included to provide general guidelines.</p>

        <p>Stream algorithms typically use the optional <code>KeySize</code> explicit
          parameter. In cases where the key size is not apparent from the algorithm URI
          or key source, as in the use of key agreement methods, this parameter sets
          the key size. If the size of the key to be used is apparent and disagrees
          with the <code>KeySize</code> parameter, an error <em class="rfc2119" title="must">must</em> be returned.
          Implementation of any stream algorithms is optional. The schema for the
          KeySize parameter is as follows:</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;simpleType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KeySizeType"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;restriction</span> <span class="sh_type">base</span><span class="sh_symbol">=</span><span class="sh_string">"integer"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/simpleType&gt;</span></pre>
      </div>

      <div id="sec-Alg-KeyDerivation" class="section">
        <h3><span class="secno">5.4 </span>Key Derivation</h3>

        <p>
          Key derivation is a well-established mechanism for generating new
          cryptographic key material from some existing, original ("master")
          key material and potentially other information. Derived keys are
          used for a variety of purposes including data encryption and message
          authentication. The reason for doing key derivation itself is
          typically a combination of a desire to expand a given, but limited,
          set of original key material and prudent security practices of
          limiting use (exposure) of such key material. Key separation (such as
          avoiding use of the same key material for multiple purposes) is an
          example of such practices.
        </p>
        <p>
          The key derivation process may be based on passphrases agreed upon
          or remembered by users, or it can be based on some shared "master"
          cryptographic keys (and be intended to reduce exposure of such master
          keys), etc. Derived keys themselves may be used in XML Signature and
          XML Encryption as any other keys; in particular, they may be used to
          compute message authentication codes (e.g. digital signatures using
          symmetric keys) or for encryption/decryption purposes.
        </p>

        <div id="sec-ConcatKDF" class="section">
          <h4><span class="secno">5.4.1 </span>ConcatKDF</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="ConcatKDF" href="http://www.w3.org/2009/xmlenc11#ConcatKDF">http://www.w3.org/2009/xmlenc11#ConcatKDF</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>The ConcatKDF key derivation algorithm, defined in Section 5.8.1 of NIST
            SP 800-56A [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-56A">SP800-56A</a></cite>] (and equivalent to
            the KDF3 function defined in ANSI X9.44-2007 [<cite><a class="bibref" rel="biblioentry" href="#bib-ANSI-X9-44-2007">ANSI-X9-44-2007</a></cite>] when
            the contents of the 
            <code>OtherInfo</code> parameter is structured as in NIST SP 800-56A),
            takes several parameters. These parameters are represented in the
            <code>xenc11:ConcatKDFParamsType</code>:
          </p>
          <pre class="sh_xml sh_sourceCode">Schema Definition:
	        
    <span class="sh_comment">&lt;!-- targetNamespace='http://www.w3.org/2009/xmlenc11#' --&gt;</span>


    <span class="sh_comment">&lt;!-- use this element type as a child of xenc11:KeyDerivationMethod</span>
<span class="sh_comment">      when used with ConcatKDF --&gt;</span> 
    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"ConcatKDFParams"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:ConcatKDFParamsType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"ConcatKDFParamsType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"ds:DigestMethod"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"AlgorithmID"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"hexBinary"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"PartyUInfo"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"hexBinary"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"PartyVInfo"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"hexBinary"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"SuppPubInfo"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"hexBinary"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"SuppPrivInfo"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"hexBinary"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>
          </pre>
          <p>
            The <code>ds:DigestMethod</code> element identifies the digest
            algorithm used by the KDF. Compliant implementations <em class="rfc2119" title="must">must</em> support
            SHA-256 and SHA-1 (support for SHA-1 is present only for
            backwards-compatibility reasons). Support for SHA-384 and SHA-512 is
            <em class="rfc2119" title="optional">optional</em>.
          </p>

          <p>
            The <code>AlgorithmID</code>, <code>PartyUInfo</code>,
            <code>PartyVInfo</code>, <code>SuppPubInfo</code> and
            <code>SuppPrivInfo</code> attributes are as defined in
            [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-56A">SP800-56A</a></cite>]. Their 
            presence is optional but <code>AlgorithmID</code>,
            <code>PartyVInfo</code> and <code>PartyUInfo</code> <em class="rfc2119" title="must">must</em> be present
            for applications that need to comply with [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-56A">SP800-56A</a></cite>].
            Note: The <code>PartyUInfo</code> component shall include a nonce when
            ConcatKDF is 
            used in conjunction with a static-static Diffie-Hellman (or 
            static-static ECDH) key agreement scheme; see further [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-56A">SP800-56A</a></cite>].  
          </p>

          <p>
            In [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-56A">SP800-56A</a></cite>], <code>AlgorithmID</code>, <code>PartyUInfo</code>, <code>PartyVInfo</code>, <code>SuppPubInfo</code>
            and
            <code>SuppPrivInfo</code> attributes are all defined as
            arbitrary-length bitstrings, thus they may need to be padded in order
            to be encoded into hexBinary for XML Encryption.  The following
            padding and encoding method <em class="rfc2119" title="must">must</em> be used when encoding bitstring
            values for the <code>AlgorithmID</code>, <code>PartyUInfo</code>,
            <code>PartyVInfo</code>, <code>SuppPubInfo</code> and
            <code>SuppPrivInfo</code>:
          </p>

          <ol>
            <li><p>
                The bitstring is divided into octets using big-endian encoding.  If
                the length of the bitstring is not a multiple of 8 then add padding
                bits (value 0) as necessary to the last octet to make it a multiple of
                8.</p>
            </li>
            <li><p>
                Prepend one octet to the octets string from step 1. This octet shall
                identify (in a big-endian representation) the number of padding bits
                added to the last octet in step 1.</p>
            </li>
            <li><p>
                Encode the octet string resulting from step 2 as a hexBinary string.</p>
            </li>
          </ol>

          <p>
            Example: the bitstring <code>11011</code>, which is 5 bits long, gets
            3 additional padding bits to become the
            bitstring <code>11011000</code> (or <code>D8</code> in hex).  This
            bitstring is then prepended with one octet identifying the number of
            padding bits to become the octet string (in hex) <code>03D8</code>, which then
            finally is encoded as a hexBinary string value of "03D8".
          </p>

          <p>
            Note that as specified in [<cite><a class="bibref" rel="biblioentry" href="#bib-SP800-56A">SP800-56A</a></cite>],
            these attributes shall be concatenated to form a bit string
            “OtherInfo” that is used with the key derivation function. The
            concatenation <em class="rfc2119" title="shall">shall</em> be done using the original, unpadded bit string
            values.”  Applications <em class="rfc2119" title="must">must</em> also verify that these attributes, in an
            application-specific way not defined in this document, identify
            algorithms and parties in accordance with NIST SP800-56.
          </p>



          <p>
            An example of an <code>xenc11:DerivedKey</code> element with this key
            derivation algorithm given below.  In this example, the bitstring
            value of <code>AlgorithmID</code> is <code>00000000</code>, the
            bitstring value of <code>PartyUInfo</code> is <code>11011</code> and
            the bitstring value of <code>PartyVInfo</code> is <code>11010</code>:
          </p>

          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;xenc11:DerivedKey</span>
    <span class="sh_type">xmlns:xsi</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/XMLSchema-instance"</span>
    <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
    <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
    <span class="sh_type">xmlns:xenc11</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;xenc11:KeyDerivationMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#ConcatKDF"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;xenc11:ConcatKDFParams</span> <span class="sh_type">AlgorithmID</span><span class="sh_symbol">=</span><span class="sh_string">"0000"</span> <span class="sh_type">PartyUInfo</span><span class="sh_symbol">=</span><span class="sh_string">"03D8"</span> <span class="sh_type">PartyVInfo</span><span class="sh_symbol">=</span><span class="sh_string">"03D0"</span><span class="sh_keyword">&gt;</span> 
      <span class="sh_keyword">&lt;ds:DigestMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha256"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/xenc11:ConcatKDFParams&gt;</span>
  <span class="sh_keyword">&lt;/xenc11:KeyDerivationMethod&gt;</span>
  <span class="sh_keyword">&lt;xenc:ReferenceList&gt;</span>
    <span class="sh_keyword">&lt;xenc:DataReference</span> <span class="sh_type">URI</span><span class="sh_symbol">=</span><span class="sh_string">"#ED"</span><span class="sh_keyword">/&gt;</span>
  <span class="sh_keyword">&lt;/xenc:ReferenceList&gt;</span>
  <span class="sh_keyword">&lt;xenc11:MasterKeyName&gt;</span>Our other secret<span class="sh_keyword">&lt;/xenc11:MasterKeyName&gt;</span>
<span class="sh_keyword">&lt;/xenc11:DerivedKey&gt;</span></pre>
          <div class="note">
            While any bit string can be used with ConcatKDF, it is <em class="rfc2119" title="recommended">recommended</em> to keep byte
            aligned for greatest interoperability.
          </div> 
        </div>
        <div id="sec-PBKDF2" class="section">
          <h4><span class="secno">5.4.2 </span>PBKDF2</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="PBKDF2" href="http://www.w3.org/2009/xmlenc11#pbkdf2">http://www.w3.org/2009/xmlenc11#pbkdf2</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>
          <p>
            The PBKDF2 key derivation algorithm and the ASN.1 type definitions for
            its parameters are defined in PKCS #5 v2.0 [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS5">PKCS5</a></cite>]. The XML schema
            definitions for the parameters is defined in [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS5Amd1">PKCS5Amd1</a></cite>] and the same
            can be specified by enclosing them within an <code>xenc11:PBKDF2-params</code> child
            element of the <code>xenc11:KeyDerivationMethod</code> element.
          </p>
          <p>
            </p><pre class="sh_xml sh_sourceCode">Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"PBKDF2-params"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:PBKDF2ParameterType"</span><span class="sh_keyword">/&gt;</span>

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"PBKDF2ParameterType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Salt"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;complexType&gt;</span>
            <span class="sh_keyword">&lt;choice&gt;</span>
              <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Specified"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"base64Binary"</span><span class="sh_keyword">/&gt;</span>
              <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"OtherSource"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:AlgorithmIdentifierType"</span><span class="sh_keyword">/&gt;</span>
            <span class="sh_keyword">&lt;/choice&gt;</span>
          <span class="sh_keyword">&lt;/complexType&gt;</span>
        <span class="sh_keyword">&lt;/element&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"IterationCount"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"positiveInteger"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KeyLength"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"positiveInteger"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"PRF"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:PRFAlgorithmIdentifierType"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"AlgorithmIdentifierType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Parameters"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Algorithm"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>

    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"PRFAlgorithmIdentifierType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;complexContent&gt;</span>
        <span class="sh_keyword">&lt;restriction</span> <span class="sh_type">base</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:AlgorithmIdentifierType"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Algorithm"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/restriction&gt;</span>
      <span class="sh_keyword">&lt;/complexContent&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>
  </pre>
          <p>(Note: A newline has been added to the Algorithm attribute to fit on this page, but is not part of the URI.)</p>
          <p>
The <code>PBKDF2-params</code> element and its child elements have the
same names 
and meaning as the corresponding components of
the <code>PBKDF2-params</code> ASN.1 
type in [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS5">PKCS5</a></cite>]. Note, in case of ConcatKDF and the Diffie Hellman
legacy KDF,  <code>KeyLength</code> is an implied parameter and needs to be
inferred from the context, but in the case of PBKDF2
the <code>KeyLength</code> child 
element has to be specified, as it has been made a mandatory parameter
to be consistent with PKCS5. For PBKDF2, the inferred key length must
match the specified key length, otherwise it is an error condition.
          </p>
          <p>
            The <code>AlgorithmIdentifierType</code> corresponds to
            the <code>AlgorithmIdentifier</code> type of [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS5">PKCS5</a></cite>] and carries the
            algorithm identifier in the <code>Algorithm</code> attribute. Algorithm
            specific parameters, where applicable, can be specified using
            the <code>Parameters</code> element.
          </p>
          <p>
            The <code>PRFAlgorithmIdentifierType</code> is derived from the
            <code>AlgorithmIdentifierType</code> and constrains the choice of
            algorithms to those contained in the PBKDF2-PRFs set defined in
            [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS5">PKCS5</a></cite>]. This type is used to specify a pseudorandom function (PRF)
            for PBKDF2. Whereas HMAC-SHA1 is the default PRF algorithm in [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS5">PKCS5</a></cite>],
            use of HMAC-SHA256 is <em class="rfc2119" title="recommended">recommended</em> by this specification (see [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>],
            [<cite><a class="bibref" rel="biblioentry" href="#bib-HMAC">HMAC</a></cite>]).
          </p>
          <p>
            An example of an <code>xenc11:DerivedKey</code> element with this key
            derivation algorithm is:
          </p>
          <p>
            </p><pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;xenc11:DerivedKey</span>
    <span class="sh_type">xmlns:xsi</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/XMLSchema-instance"</span>
    <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
    <span class="sh_type">xmlns:xenc11</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;xenc11:KeyDerivationMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#pbkdf2"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;xenc11:PBKDF2-params&gt;</span>
      <span class="sh_keyword">&lt;xenc11:Salt&gt;</span>
        <span class="sh_keyword">&lt;xenc11:Specified&gt;</span>Df3dRAhjGh8=<span class="sh_keyword">&lt;/xenc11:Specified&gt;</span>
      <span class="sh_keyword">&lt;/xenc11:Salt&gt;</span>
      <span class="sh_keyword">&lt;xenc11:IterationCount&gt;</span>2000<span class="sh_keyword">&lt;/xenc11:IterationCount&gt;</span>
      <span class="sh_keyword">&lt;xenc11:KeyLength&gt;</span>16<span class="sh_keyword">&lt;/xenc11:KeyLength&gt;</span>
      <span class="sh_keyword">&lt;xenc11:PRF</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmldsig-more#hmac-sha256"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/xenc11:PBKDF2-params&gt;</span>
  <span class="sh_keyword">&lt;/xenc11:KeyDerivationMethod&gt;</span>
  <span class="sh_keyword">&lt;xenc:ReferenceList&gt;</span>
    <span class="sh_keyword">&lt;xenc:DataReference</span> <span class="sh_type">URI</span><span class="sh_symbol">=</span><span class="sh_string">"#ED"</span><span class="sh_keyword">/&gt;</span>
  <span class="sh_keyword">&lt;/xenc:ReferenceList&gt;</span>
  <span class="sh_keyword">&lt;xenc11:MasterKeyName&gt;</span>Our shared secret<span class="sh_keyword">&lt;/xenc11:MasterKeyName&gt;</span>
<span class="sh_keyword">&lt;/xenc11:DerivedKey&gt;</span></pre>
        </div>
      </div>
      <div id="sec-Alg-KeyTransport" class="section">
        <h3><span class="secno">5.5 </span>Key Transport</h3>

        <p>Key Transport algorithms are public key encryption algorithms especially
          specified for encrypting and decrypting keys. Their identifiers appear as
          <code>Algorithm</code> attributes to <code>EncryptionMethod</code> elements
          that are children of <code>EncryptedKey</code>. <code>EncryptedKey</code> is
          in turn the child of a <code>ds:KeyInfo</code> element. The type of key being
          transported, that is to say the algorithm in which it is planned to use the
          transported key, is given by the <code>Algorithm</code> attribute of the
          <code>EncryptionMethod</code> child of the <code>EncryptedData</code> or
          <code>EncryptedKey</code> parent of this <code>ds:KeyInfo</code> element.</p>

        <p>(Key Transport algorithms may optionally be used to encrypt data in which
          case they appear directly as the <code>Algorithm</code> attribute of an
          <code>EncryptionMethod</code> child of an <code>EncryptedData</code> element.
          Because they use public key algorithms directly, Key Transport algorithms are
          not efficient for the transport of any amounts of data significantly larger
          than symmetric keys.)</p>
        <div id="sec-RSA-1_5" class="section">
          <h4><span class="secno">5.5.1 </span>RSA Version 1.5</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="rsa-1_5" href="http://www.w3.org/2001/04/xmlenc#rsa-1_5">http://www.w3.org/2001/04/xmlenc#rsa-1_5</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>The RSAES-PKCS1-v1_5 algorithm, specified in RFC 3447 [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS1">PKCS1</a></cite>], takes no explicit parameters. An example of an
            RSA Version 1.5 <code>EncryptionMethod</code> element is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptionMethod</span>
          <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#rsa-1_5"</span><span class="sh_keyword">/&gt;</span></pre>

          <p>The <code>CipherValue</code> for such an encrypted key is the base64 [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC2045">RFC2045</a></cite>] encoding of the octet string computed as per RFC
            3447 [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS1">PKCS1</a></cite>], section 7.2.1: Encryption operation].
            As specified in the EME-PKCS1-v1_5 function RFC 3447 [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS1">PKCS1</a></cite>],
            section 7.2.1, the value input to the key 
            transport function is as follows:</p>
          <pre class="example sh_xml sh_sourceCode">CRYPT ( PAD ( KEY ))</pre>

          <p>where the padding is of the following special form:</p>
          <pre class="example sh_xml sh_sourceCode">02 | PS* | 00 | key</pre>

          <p>where "|" is concatenation, "02" and "00" are fixed octets of the
            corresponding hexadecimal value, PS is a string of strong pseudo-random
            octets [<cite><a class="bibref" rel="biblioentry" href="#bib-RANDOM">RANDOM</a></cite>] at least eight octets long,
            containing no zero octets, and long enough that the value of the quantity
            being CRYPTed is one octet shorter than the RSA modulus, and "key" is the key
            being transported. The key is 192 bits for TRIPLEDES and 128, 192, or 256
            bits for AES.</p>
          <p>Implementations <em class="rfc2119" title="must">must</em> support this key transport algorithm for transporting 192-bit TRIPLEDES keys. Support of this algorithm for
            transporting other keys is <em class="rfc2119" title="optional">optional</em>. RSA-OAEP is <em class="rfc2119" title="recommended">recommended</em> for the
            transport of AES keys.</p>

          <p>The resulting base64 [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC2045">RFC2045</a></cite>] string is the value of
            the child text node of the <code>CipherData</code> element, e.g.</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;CipherData&gt;</span>
<span class="sh_keyword">&lt;CipherValue&gt;</span>IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4
t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
<span class="sh_keyword">&lt;/CipherValue&gt;</span>
<span class="sh_keyword">&lt;/CipherData&gt;</span></pre>

        </div>
        <div id="sec-RSA-OAEP" class="section">
          <h4><span class="secno">5.5.2 </span>RSA-OAEP</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="rsa-oaep-mgf1p" href="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p</a>
              (including <code>MGF1 with SHA1</code> mask generation function)</dd>
            <dt>Identifier:</dt>
            <dd><a id="rsa-oaep" href="http://www.w3.org/2009/xmlenc11#rsa-oaep">http://www.w3.org/2009/xmlenc11#rsa-oaep</a></dd>
          </dl>
          <p>
            The RSAES-OAEP-ENCRYPT algorithm, as specified in RFC 3447 [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS1">PKCS1</a></cite>],
            has options that define the message digest function and mask
            generation function, as well as an optional <code>PSourceAlgorithm</code>
            parameter. Default values defined in RFC 3447 are <code>SHA1</code>
            for the message 
            digest and <code>MGF1 with SHA1</code> for the mask generation
            function. Both the 
            message digest and mask generation functions are used in the
            EME-OAEP-ENCODE operation as part of RSAES- OAEP-ENCRYPT. </p>
          <p>
            The http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p identifier defines
            the mask generation function as the fixed value of <code>MGF1 with
              SHA1</code>. In 
            this case the optional <code>xenc11:MGF</code> element of the
            <code>xenc:EncryptionMethod</code> element <em class="rfc2119" title="must not">must not</em> be provided. </p>
          <p>
            The http://www.w3.org/2009/xmlenc11#rsa-oaep identifier defines the
            mask generation function using the optional <code>xenc11:MGF</code>
            element of the <code>xenc:EncryptionMethod</code> element. If not present, the
            default of <code>MGF1 with SHA1</code> is to be used.</p>
          <p>The following URIs define the various mask generation function URI
            values that may be used. These correspond to the object identifiers
            defined in RFC 4055 [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC4055">RFC4055</a></cite>]: </p>
          <ul>
            <li>MGF1 with SHA1: http://www.w3.org/2009/xmlenc11#mgf1sha1</li>
            <li>MGF1 with SHA224: http://www.w3.org/2009/xmlenc11#mgf1sha224</li>
            <li>MGF1 with SHA256: http://www.w3.org/2009/xmlenc11#mgf1sha256</li>
            <li>MGF1 with SHA384: http://www.w3.org/2009/xmlenc11#mgf1sha384</li>
            <li>MGF1 with SHA512: http://www.w3.org/2009/xmlenc11#mgf1sha512</li>
          </ul>
          <p>Otherwise the two identifiers define the same usage of the RSA-OAEP
            algorithm, as follows. </p>
          <p>The message digest function <em class="rfc2119" title="should">should</em> be specified using the Algorithm
            attribute of the <code>ds:DigestMethod</code> child element 
            of the <code>xenc:EncryptionMethod</code> element. If it is not specified, the
            default value of <code>SHA1</code> is to be used. </p>
          <p>The optional RSA-OAEP <code>PSourceAlgorithm</code> parameter value <em class="rfc2119" title="may">may</em> be
            explicitly provided by placing the base64 encoded octets in the
            <code>xenc:OAEPparams</code> XML element. </p>
          <pre class="sh_xml sh_sourceCode">Schema Definition:
    <span class="sh_comment">&lt;!-- use these element types as children of EncryptionMethod</span>
<span class="sh_comment">      when used with RSA-OAEP --&gt;</span>
    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"OAEPparams"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"base64Binary"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;element</span> <span class="sh_type">ref</span><span class="sh_symbol">=</span><span class="sh_string">"ds:DigestMethod"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"MGF"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:MGFType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"MGFType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;complexContent&gt;</span>
        <span class="sh_keyword">&lt;restriction</span> <span class="sh_type">base</span><span class="sh_symbol">=</span><span class="sh_string">"xenc11:AlgorithmIdentifierType"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Algorithm"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"required"</span> <span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/restriction&gt;</span>
      <span class="sh_keyword">&lt;/complexContent&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span>
  </pre>
          <p>An example of an RSA-OAEP element is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;OAEPparams&gt;</span>9lWu3Q==<span class="sh_keyword">&lt;/OAEPparams&gt;</span>
  <span class="sh_keyword">&lt;ds:DigestMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#sha1"</span><span class="sh_keyword">/&gt;</span>
<span class="sh_keyword">&lt;EncryptionMethod&gt;</span></pre>
          <p>Another example is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#rsa-oaep"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;OAEPparams&gt;</span>9lWu3Q==<span class="sh_keyword">&lt;/OAEPparams&gt;</span>
  <span class="sh_keyword">&lt;xenc11:MGF</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#MGF1withSHA1"</span> <span class="sh_keyword">/&gt;</span>
  <span class="sh_keyword">&lt;ds:DigestMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#sha1"</span><span class="sh_keyword">/&gt;</span>
<span class="sh_keyword">&lt;EncryptionMethod&gt;</span></pre>
          <p>The <code>CipherValue</code> for an RSA-OAEP encrypted key is the base64
            [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC2045">RFC2045</a></cite>] encoding of the octet string computed as per
            RFC 3447 [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS1">PKCS1</a></cite>], section 7.1.1: Encryption
            operation. As described in the EME-OAEP-ENCODE function RFC 3447
            [<cite><a class="bibref" rel="biblioentry" href="#bib-PKCS1">PKCS1</a></cite>], section 7.1.1, the value input to the key 
            transport function is calculated using the message digest function and string
            specified in the <code>DigestMethod</code> and <code>OAEPparams</code>
            elements and using either the mask generator function specified with
            the <code>xenc11:MGF</code> element or the default <code>MGF1 with
              SHA1</code> specified in 
            RFC 3447. The desired output length for EME-OAEP-ENCODE is one byte shorter
            than the RSA modulus.</p>
          <p>The transported key size is 192 bits for TRIPLEDES and 128, 192, or 256
            bits for AES. Implementations <em class="rfc2119" title="must">must</em> implement RSA-OAEP for the transport of
            all key types and sizes that are mandatory to implement for symmetric 
            encryption. They <em class="rfc2119" title="may">may</em> implement RSA-OAEP for the transport of other
            keys.</p>
        </div>
      </div>
      <div id="sec-Alg-KeyAgreement" class="section">
        <h3><span class="secno">5.6 </span>Key Agreement</h3>

        <p>A Key Agreement algorithm provides for the derivation of a shared secret
          key based on a shared secret computed from certain types of compatible public
          keys from both the sender and the recipient. Information from the originator
          to determine the secret is indicated by an optional
          <code>OriginatorKeyInfo</code> parameter child of an
          <code>AgreementMethod</code> element while that associated with the recipient
          is indicated by an optional <code>RecipientKeyInfo</code>. A shared key is
          derived from this shared secret by a method determined by the Key Agreement
          algorithm.</p>

        <p>Note: XML Encryption does not provide an online key agreement negotiation
          protocol. The <code>AgreementMethod</code> element can be used by the
          originator to identify the keys and computational procedure that were used to
          obtain a shared encryption key. The method used to obtain or select the keys
          or algorithm used for the agreement computation is beyond the scope of this
          specification.</p>

        <p>The <code>AgreementMethod</code> element appears as the content of a
          <code>ds:KeyInfo</code> since, like other <code>ds:KeyInfo</code> children,
          it yields a key. This <code>ds:KeyInfo</code> is in turn a child of an
          <code>EncryptedData</code> or <code>EncryptedKey</code> element. The
          <code>Algorithm</code> attribute and <code>KeySize</code> child of the
          <code>EncryptionMethod</code> element under this <code>EncryptedData</code>
          or <code>EncryptedKey</code> element are implicit parameters to the key
          agreement computation. In cases where this <code>EncryptionMethod</code>
          algorithm URI is insufficient to determine the key length, a
          <code>KeySize</code> <em class="rfc2119" title="must">must</em> have been included.
        </p>
        <p>
          Key derivation algorithms (with associated parameters) may be
          explicitly declared by using the
          <code>xenc11:KeyDerivationMethod</code> element. This element will
          then be placed at the extensibility point of the
          <code>xenc:AgreementMethodType</code> (see below).
        </p>
        <p>
          In addition, the sender may place a <code>KA-Nonce</code> element under
          <code>AgreementMethod</code> to assure that different keying material
          is generated even for repeated agreements using the same sender and
          recipient public keys. For example:</p> 
        <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptedData&gt;</span>
  <span class="sh_keyword">&lt;EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"Example:Block/Alg"</span>
    <span class="sh_type">&lt;KeySize</span><span class="sh_keyword">&gt;</span>80<span class="sh_keyword">&lt;/KeySize&gt;</span>
  <span class="sh_keyword">&lt;/EncryptionMethod&gt;</span>
  <span class="sh_keyword">&lt;ds:KeyInfo</span> <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;AgreementMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"example:Agreement/Algorithm"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;KA-Nonce&gt;</span>Zm9v<span class="sh_keyword">&lt;/KA-Nonce&gt;</span>
      <span class="sh_keyword">&lt;xenc11:KeyDerivationMethod</span>
        <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#ConcatKDF"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;xenc11:ConcatKDFParams</span> 
          <span class="sh_type">AlgorithmID</span><span class="sh_symbol">=</span><span class="sh_string">"00"</span> <span class="sh_type">PartyUInfo</span><span class="sh_symbol">=</span><span class="sh_string">""</span> <span class="sh_type">PartyVInfo</span><span class="sh_symbol">=</span><span class="sh_string">""</span><span class="sh_keyword">&gt;</span> 
          <span class="sh_keyword">&lt;ds:DigestMethod</span> 
            <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha256"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/xenc11:ConcatKDFParams&gt;</span>
      <span class="sh_keyword">&lt;/xenc11:KeyDerivationMethod&gt;</span>
    
      <span class="sh_keyword">&lt;OriginatorKeyInfo&gt;</span>
        <span class="sh_keyword">&lt;ds:KeyValue&gt;</span>....<span class="sh_keyword">&lt;/ds:KeyValue&gt;</span>
      <span class="sh_keyword">&lt;/OriginatorKeyInfo&gt;</span>
      <span class="sh_keyword">&lt;RecipientKeyInfo&gt;</span>
        <span class="sh_keyword">&lt;ds:KeyValue&gt;</span>....<span class="sh_keyword">&lt;/ds:KeyValue&gt;</span>
      <span class="sh_keyword">&lt;/RecipientKeyInfo&gt;</span> 
    <span class="sh_keyword">&lt;/AgreementMethod&gt;</span>
  <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
  <span class="sh_keyword">&lt;CipherData&gt;</span>...<span class="sh_keyword">&lt;/CipherData&gt;</span>
<span class="sh_keyword">&lt;/EncryptedData&gt;</span></pre>

        <p>If the agreed key is being used to wrap a key, rather than data as above,
          then <code>AgreementMethod</code> would appear inside a
          <code>ds:KeyInfo</code> inside an <code>EncryptedKey</code> element.</p>

        <p>The Schema for <code>AgreementMethod</code> is as follows:</p>
        <pre class="sh_xml sh_sourceCode">  Schema Definition:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"AgreementMethod"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:AgreementMethodType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"AgreementMethodType"</span> <span class="sh_type">mixed</span><span class="sh_symbol">=</span><span class="sh_string">"true"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"KA-Nonce"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"base64Binary"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_comment">&lt;!-- &lt;element ref="ds:DigestMethod" minOccurs="0"/&gt; --&gt;</span>
        <span class="sh_keyword">&lt;any</span> <span class="sh_type">namespace</span><span class="sh_symbol">=</span><span class="sh_string">"##other"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> <span class="sh_type">maxOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"unbounded"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"OriginatorKeyInfo"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> 
          <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:KeyInfoType"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"RecipientKeyInfo"</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span> 
        <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:KeyInfoType"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;attribute</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Algorithm"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"anyURI"</span> <span class="sh_type">use</span><span class="sh_symbol">=</span><span class="sh_string">"required"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        <div id="sec-DHKeyValue" class="section">
          <h4><span class="secno">5.6.1 </span>Diffie-Hellman Key
            Values</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="DHKeyValue" href="http://www.w3.org/2001/04/xmlenc#DHKeyValue">http://www.w3.org/2001/04/xmlenc#DHKeyValue</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>Diffie-Hellman keys can appear directly within <code>KeyValue</code>
            elements or be obtained by <code>ds:RetrievalMethod</code> fetches as well as
            appearing in certificates and the like. The above identifier can be used as
            the value of the <code>Type</code> attribute of <code>Reference</code> or
            <code>ds:RetrievalMethod</code> elements.</p>

          <p>As specified in [<cite><a class="bibref" rel="biblioentry" href="#bib-ESDH">ESDH</a></cite>], a DH public key consists
            of up to six quantities, two large primes p and q, a "generator" g, the
            public key, and validation parameters "seed" and "pgenCounter". These relate
            as follows: The public key = ( g**x mod p ) where x is the corresponding
            private key; p = j*q + 1 where j &gt;= 2. "seed" and "pgenCounter" are
            optional and can be used to determine if the Diffie-Hellman key has been
            generated in conformance with the algorithm specified in [<cite><a class="bibref" rel="biblioentry" href="#bib-ESDH">ESDH</a></cite>]. Because the primes and generator can be safely
            shared over many DH keys, they may be known from the application environment
            and are optional. The schema for a <code>DHKeyValue</code> is as follows:</p>
          <pre class="sh_xml sh_sourceCode">Schema:

    <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"DHKeyValue"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"xenc:DHKeyValueType"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;complexType</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"DHKeyValueType"</span><span class="sh_keyword">&gt;</span>
      <span class="sh_keyword">&lt;sequence&gt;</span>
        <span class="sh_keyword">&lt;sequence</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"P"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:CryptoBinary"</span><span class="sh_keyword">/&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Q"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:CryptoBinary"</span><span class="sh_keyword">/&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Generator"</span><span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:CryptoBinary"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"Public"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:CryptoBinary"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;sequence</span> <span class="sh_type">minOccurs</span><span class="sh_symbol">=</span><span class="sh_string">"0"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"seed"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:CryptoBinary"</span><span class="sh_keyword">/&gt;</span>
          <span class="sh_keyword">&lt;element</span> <span class="sh_type">name</span><span class="sh_symbol">=</span><span class="sh_string">"pgenCounter"</span> <span class="sh_type">type</span><span class="sh_symbol">=</span><span class="sh_string">"ds:CryptoBinary"</span><span class="sh_keyword">/&gt;</span>
        <span class="sh_keyword">&lt;/sequence&gt;</span>
      <span class="sh_keyword">&lt;/sequence&gt;</span>
    <span class="sh_keyword">&lt;/complexType&gt;</span></pre>

        </div>
        <div id="sec-DHKeyAgreement" class="section">
          <h4><span class="secno">5.6.2 </span>Diffie-Hellman
            Key Agreement</h4>

          <p>The Diffie-Hellman (DH) key agreement protocol [<cite><a class="bibref" rel="biblioentry" href="#bib-ESDH">ESDH</a></cite>] involves the derivation of shared secret
            information based on compatible DH keys from the sender and recipient. Two DH
            public keys are compatible if they have the same prime and generator. If, for
            the second one, <code>Y = g**y mod p</code>, then the two parties can
            calculate the shared secret <code>ZZ = ( g**(x*y) mod p )</code> even though
            each knows only their own private key and the other party's public key.
            Leading zero bytes <em class="rfc2119" title="must">must</em> be maintained in <code>ZZ</code> so it will be the
            same length, in bytes, as <code>p</code>. The size of <code>p</code> <em class="rfc2119" title="must">must</em> be
            at least 512 bits and <code>g</code> at least 160 bits. There are numerous
            other complex security considerations in the selection of <code>g</code>,
            <code>p</code>, and a random <code>x</code> as described in [<cite><a class="bibref" rel="biblioentry" href="#bib-ESDH">ESDH</a></cite>].</p>

          <p>The Diffie-Hellman shared secret <code>zz</code> is used as the input to a KDF to produce a
            secret key.  XML Signature 1.0 defined a 
            specific KDF to be used with Diffie-Hellman; that KDF is now known as the "Legacy KDF" and is defined in Section 5.6.2.2.  
            Use of Diffie-Hellman with explicit KDFs is described in Section 5.6.2.1.</p>

          <p>Implementation of Diffie-Hellman key agreement is <em class="rfc2119" title="optional">optional</em>.  However, if implemented, 
            such implementations <em class="rfc2119" title="must">must</em> support the Legacy Key Derivation Function
            and <em class="rfc2119" title="should">should</em> support Diffie-Hellman with explicit Key Derivation Functions</p>

          <p>An example of a DH
            <code>AgreementMethod</code> element using the Legacy Key Derivation Function 
            (Section 5.6.2.2) is as follows:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;AgreementMethod</span>
  <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#dh"</span>
  <span class="sh_type">ds:xmlns</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;KA-Nonce&gt;</span>Zm9v<span class="sh_keyword">&lt;/KA-Nonce&gt;</span>
  <span class="sh_keyword">&lt;ds:DigestMethod</span>
    <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#sha1"</span><span class="sh_keyword">/&gt;</span>
  <span class="sh_keyword">&lt;OriginatorKeyInfo&gt;</span>
    <span class="sh_keyword">&lt;ds:X509Data&gt;&lt;ds:X509Certificate&gt;</span>
    ...
    <span class="sh_keyword">&lt;/ds:X509Certificate&gt;&lt;/ds:X509Data&gt;</span>
  <span class="sh_keyword">&lt;/OriginatorKeyInfo&gt;</span>
  <span class="sh_keyword">&lt;RecipientKeyInfo&gt;&lt;ds:KeyValue&gt;</span>
    ...
    <span class="sh_keyword">&lt;/ds:KeyValue&gt;</span>
  <span class="sh_keyword">&lt;/RecipientKeyInfo&gt;</span>
<span class="sh_keyword">&lt;/AgreementMethod&gt;</span></pre>

          <p></p>
          <div id="sec-DHKeyAgreementExplicitKDF" class="section">
            <h5><span class="secno">5.6.2.1 </span>Diffie-Hellman Key Agreement with Explicit Key Derivation Functions</h5>

            <dl>
              <dt>Identifier:</dt>
              <dd><a id="dh-es" href="http://www.w3.org/2009/xmlenc11#dh-es">http://www.w3.org/2009/xmlenc11#dh-es</a> (<em class="rfc2119" title="optional">optional</em>)</dd>
            </dl>

            <p>It is <em class="rfc2119" title="recommended">recommended</em> that the shared key material for a Diffie-Hellman key agreement be calculated from the Diffie-Hellman shared secret 
              using a key derivation function (KDF) in accordance with <a href="#sec-Alg-KeyDerivation">Section 5.4</a>.
            </p>

            <p>
              An example of a DH <code>AgreementMethod</code> element using an
              explicit key derivation function is as follows:
            </p>
            <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;xenc:AgreementMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#dh-es"</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;xenc11:KeyDerivationMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#ConcatKDF"</span><span class="sh_keyword">&gt;</span>
    <span class="sh_keyword">&lt;xenc11:ConcatKDFParams</span> <span class="sh_type">AlgorithmID</span><span class="sh_symbol">=</span><span class="sh_string">"00"</span> <span class="sh_type">PartyUInfo</span><span class="sh_symbol">=</span><span class="sh_string">""</span> <span class="sh_type">PartyVInfo</span><span class="sh_symbol">=</span><span class="sh_string">""</span><span class="sh_keyword">&gt;</span> 
      <span class="sh_keyword">&lt;ds:DigestMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha256"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/xenc11:ConcatKDFParams&gt;</span>
  <span class="sh_keyword">&lt;/xenc11:KeyDerivationMethod&gt;</span>
  <span class="sh_keyword">&lt;xenc:OriginatorKeyInfo&gt;</span>
    <span class="sh_keyword">&lt;ds:X509Data&gt;</span>
      <span class="sh_keyword">&lt;ds:X509Certificate&gt;</span>
        <span class="sh_comment">&lt;!-- X.509 Certificate here --&gt;</span>
      <span class="sh_keyword">&lt;/ds:X509Certificate&gt;</span>
    <span class="sh_keyword">&lt;/ds:X509Data&gt;</span>
  <span class="sh_keyword">&lt;/xenc:OriginatorKeyInfo&gt;</span>
  <span class="sh_keyword">&lt;xenc:RecipientKeyInfo&gt;</span>
    <span class="sh_keyword">&lt;ds:X509Data&gt;</span>
      <span class="sh_keyword">&lt;ds:X509SKI&gt;&lt;/ds:X509SKI&gt;</span>
      <span class="sh_comment">&lt;!-- hint for the recipient's private key --&gt;</span>
    <span class="sh_keyword">&lt;/ds:X509Data&gt;</span>
  <span class="sh_keyword">&lt;/xenc:RecipientKeyInfo&gt;</span>
<span class="sh_keyword">&lt;/xenc:AgreementMethod&gt;</span></pre>

          </div>
          <div id="sec-DHKeyAgreementLegacyKDF" class="section">
            <h5><span class="secno">5.6.2.2 </span>Diffie-Hellman
              Key Agreement with Legacy Key Derivation Function</h5>

            <dl>
              <dt>Identifier:</dt>
              <dd><a id="dh" href="http://www.w3.org/2001/04/xmlenc#dh">http://www.w3.org/2001/04/xmlenc#dh</a>
                (<em class="rfc2119" title="optional">optional</em>)</dd>
            </dl>

            <p>XML Signature 1.0 defined a specific KDF for use with Diffie-Hellman key agreement.  In order to guarantee interoperability, 
              implementations that choose to implement Diffie-Hellman <em class="rfc2119" title="must">must</em> support the use of the Diffie-Hellman Legacy KDF defined in this section.
            </p>

            <p>Assume that the Diffie-Hellman shared secret is the octet sequence
              <code>ZZ</code>. The Diffie-Hellman Legacy KDF calculates the shared keying material as follows:</p>
            <pre class="example sh_xml sh_sourceCode">Keying Material = KM(1) | KM(2) | ...</pre>

            <p>where "|" is byte stream concatenation and</p>
            <pre class="example sh_xml sh_sourceCode">KM(counter) = DigestAlg ( ZZ | counter | EncryptionAlg |
            KA-Nonce | KeySize )</pre>
            <dl>
              <dt><code>DigestAlg</code></dt>
              <dd>The message digest algorithm specified by the
                <code>DigestMethod</code> child of <code>AgreementMethod</code>.</dd>
              <dt><code>EncryptionAlg</code></dt>
              <dd>The URI of the encryption algorithm, including possible key wrap
                algorithms, in which the derived keying material is to be used
                ("Example:Block/Alg" in the example above), not the URI of the
                agreement algorithm. This is the value of the <code>Algorithm</code>
                attribute of the <code>EncryptionMethod</code> child of the
                <code>EncryptedData</code> or <code>EncryptedKey</code> grandparent of
                <code>AgreementMethod</code>.</dd>
              <dt><code>KA-Nonce</code></dt>
              <dd>The base64 decoding the content of the <code>KA-Nonce</code> child of
                <code>AgreementMethod</code>, if present. If the <code>KA-Nonce</code>
                element is absent, it is null.</dd>
              <dt><code>Counter</code></dt>
              <dd>A one byte counter starting at one and incrementing by one. It is
                expressed as two hex digits where letters A through F are in upper
                case.</dd>
              <dt><code>KeySize</code></dt>
              <dd>The size in bits of the key to be derived from the shared secret as
                the UTF-8 string for the corresponding decimal integer with only digits
                in the string and no leading zeros. For some algorithms the key size is
                inherent in the URI. For others, such as most stream ciphers, it must
                be explicitly provided.</dd>
            </dl>

            <p>For example, the initial <code>(KM(1))</code> calculation for the
              <code>EncryptionMethod</code> of the <a href="#sec-Alg-KeyAgreement">Key
                Agreement</a> example (section 5.5) would be as follows, where the binary one
              byte counter value of 1 is represented by the two character UTF-8 sequence
              <code>01</code>, <code>ZZ</code> is the shared secret, and "<code>foo</code>"
              is the base64 decoding of "<code>Zm9v</code>".</p>
            <pre class="example sh_xml sh_sourceCode">SHA-1 ( ZZ01Example:Block/Algfoo80 )</pre>

            <p>Assuming that <code>ZZ</code> is <code>0xDEADBEEF</code>, that would be</p>
            <pre class="example sh_xml sh_sourceCode">SHA-1( 0xDEADBEEF30314578616D706C653A426C6F636B2F416C67666F6F3830 )</pre>

            <p>whose value is</p>
            <pre class="example sh_xml sh_sourceCode">0x534C9B8C4ABDCB50038B42015A181711068B08C1</pre>

            <p>Each application of <code>DigestAlg</code> for successive values of
              <code>Counter</code> will produce some additional number of bytes of keying
              material. From the concatenated string of one or more <code>KM</code>'s,
              enough leading bytes are taken to meet the need for an actual key and the
              remainder discarded. For example, if <code>DigestAlg</code> is SHA-1 which
              produces 20 octets of hash, then for 128 bit AES the first 16 bytes from
              <code>KM(1)</code> would be taken and the remaining 4 bytes discarded. For
              256 bit AES, all of <code>KM(1)</code> suffixed with the first 12 bytes of
              KM(2) would be taken and the remaining 8 bytes of <code>KM(2)</code>
              discarded.</p>

          </div>
        </div>
        <div id="sec-ECCKeyValue" class="section">
          <h4><span class="secno">5.6.3 </span>Elliptic Curve Diffie-Hellman (ECDH) Key
            Values</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="ECKeyValue" href="http://www.w3.org/2009/xmldsig11#ECKeyValue">http://www.w3.org/2009/xmldsig11#ECKeyValue</a>
              (<em class="rfc2119" title="recommended">recommended</em>)</dd>
          </dl>

          <p>ECDH has identical public key parameters as ECDSA and can be represented 
            with the <code>ECKeyValue</code> element [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>]. 
            Note that if the curve parameters are explicitly stated using the ECParameters 
            element, then the Cofactor element <em class="rfc2119" title="must">must</em> be included.</p>

          <p>As with Diffie-Hellman keys, Elliptic Curve Key Values can appear directly 
            within <code>KeyValue</code> elements or be obtained by 
            <code>ds:RetrievalMethod</code> fetches as well as appearing in certificates 
            and the like. The above identifier can be used as the value of the 
            <code>Type</code> attribute of <code>Reference</code> or
            <code>ds:RetrievalMethod</code> elements.</p>

        </div>
        <div id="sec-ECDH-ES" class="section">
          <h4><span class="secno">5.6.4 </span>Elliptic Curve Diffie-Hellman (ECDH)
            Key Agreement (Ephemeral-Static Mode)</h4>

          <dl>
            <dt>Identifier:</dt>
            <dd><a id="ECDH-ES" href="http://www.w3.org/2009/xmlenc11#ECDH-ES">http://www.w3.org/2009/xmlenc11#ECDH-ES</a> (<em class="rfc2119" title="required">required</em>)
            </dd>
          </dl>

          <p>ECDH is the elliptic curve analogue to the Diffie-Hellman key agreement 
            algorithm. Details of the ECDH primitive can be found in
            [<cite><a class="bibref" rel="biblioentry" href="#bib-ECC-ALGS">ECC-ALGS</a></cite>]. When ECDH is used in  
            Ephemeral-Static (ES) mode, the recipient has a static key pair, but the sender 
            generates a ephemeral key pair for each message. The same ephemeral key may be 
            used when there are multiple recipients that use the same curve parameters.</p>

          <p>Compliant implementations are <em class="rfc2119" title="required">required</em> to support ECDH-ES key agreement
            using the P-256 prime curve specified in Section D.2.3 of FIPS 186-3
            [<cite><a class="bibref" rel="biblioentry" href="#bib-FIPS-186-3">FIPS-186-3</a></cite>]. (This is the same curve that
            is <em class="rfc2119" title="required">required</em> in XML Signature 1.1 to be supported for the ECDSAwithSHA256
            algorithm.) It is further <em class="rfc2119" title="recommended">recommended</em> that implementations also support
            the P-384 and P-521 prime curves for ECDH-ES; these curves are defined
            in Sections D.2.4 and D.2.5 of FIPS 186-3, respectively.</p>

          <p>The shared key material is calculated from the Diffie-Hellman shared secret 
            using a key derivation function (KDF). While applications may define other 
            KDFs, compliant implementations <em class="rfc2119" title="must">must</em> implement ConcatKDF (see <a href="#sec-ConcatKDF" class="sectionRef">section 5.4.1 ConcatKDF</a>).
            An example of <code>xenc:EncryptedData</code> using the ECDH-ES key
            agreement algorithm with the ConcatKDF key derivation algorithm is as
            follows:</p>

          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;xenc:EncryptedData</span>
    <span class="sh_type">xmlns:xsi</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/XMLSchema-instance"</span>
    <span class="sh_type">xmlns:xenc</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span>
    <span class="sh_type">xmlns:ds</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#"</span>
    <span class="sh_type">xmlns:dsig11</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmldsig11#"</span>
    <span class="sh_type">xmlns:xenc11</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#"</span>
    <span class="sh_type">Type</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#"</span><span class="sh_keyword">&gt;</span>

  <span class="sh_keyword">&lt;xenc:EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#aes128-cbc"</span> <span class="sh_keyword">/&gt;</span>
  <span class="sh_comment">&lt;!-- describes the encrypted AES content encryption key --&gt;</span>
  <span class="sh_keyword">&lt;ds:KeyInfo&gt;</span>
    <span class="sh_keyword">&lt;xenc:EncryptedKey&gt;</span>
      <span class="sh_keyword">&lt;xenc:EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#kw-aes128"</span><span class="sh_keyword">/&gt;</span>
      <span class="sh_comment">&lt;!-- describes the key encryption key --&gt;</span>
      <span class="sh_keyword">&lt;ds:KeyInfo&gt;</span>
        <span class="sh_keyword">&lt;xenc:AgreementMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#ECDH-ES"</span><span class="sh_keyword">&gt;</span>
          <span class="sh_keyword">&lt;xenc11:KeyDerivationMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2009/xmlenc11#ConcatKDF"</span><span class="sh_keyword">&gt;</span>
            <span class="sh_keyword">&lt;xenc11:ConcatKDFParams</span> <span class="sh_type">AlgorithmID</span><span class="sh_symbol">=</span><span class="sh_string">"00"</span> <span class="sh_type">PartyUInfo</span><span class="sh_symbol">=</span><span class="sh_string">""</span> <span class="sh_type">PartyVInfo</span><span class="sh_symbol">=</span><span class="sh_string">""</span><span class="sh_keyword">&gt;</span> 
              <span class="sh_keyword">&lt;ds:DigestMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha256"</span><span class="sh_keyword">/&gt;</span>
            <span class="sh_keyword">&lt;/xenc11:ConcatKDFParams&gt;</span>
          <span class="sh_keyword">&lt;/xenc11:KeyDerivationMethod&gt;</span>
          <span class="sh_keyword">&lt;xenc:OriginatorKeyInfo&gt;</span>
            <span class="sh_keyword">&lt;ds:KeyValue&gt;</span>
              <span class="sh_keyword">&lt;dsig11:ECKeyValue&gt;</span>
                <span class="sh_comment">&lt;!-- ephemeral ECC public key of the originator --&gt;</span>
              <span class="sh_keyword">&lt;/dsig11:ECKeyValue&gt;</span>
            <span class="sh_keyword">&lt;/ds:KeyValue&gt;</span>
          <span class="sh_keyword">&lt;/xenc:OriginatorKeyInfo&gt;</span>
          <span class="sh_keyword">&lt;xenc:RecipientKeyInfo&gt;</span>
            <span class="sh_keyword">&lt;ds:X509Data&gt;</span>
              <span class="sh_keyword">&lt;ds:X509SKI&gt;&lt;/ds:X509SKI&gt;</span>
              <span class="sh_comment">&lt;!-- hint for the recipient's private key --&gt;</span>
            <span class="sh_keyword">&lt;/ds:X509Data&gt;</span>
          <span class="sh_keyword">&lt;/xenc:RecipientKeyInfo&gt;</span>
        <span class="sh_keyword">&lt;/xenc:AgreementMethod&gt;</span>
      <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
      <span class="sh_keyword">&lt;xenc:CipherData&gt;</span>
        <span class="sh_keyword">&lt;xenc:CipherValue&gt;</span><span class="sh_comment">&lt;!-- encrypted AES content encryption key --&gt;</span><span class="sh_keyword">&lt;/xenc:CipherValue&gt;</span>
      <span class="sh_keyword">&lt;/xenc:CipherData&gt;</span>
    <span class="sh_keyword">&lt;/xenc:EncryptedKey&gt;</span>
  <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
  
  <span class="sh_keyword">&lt;xenc:CipherData&gt;</span>
    <span class="sh_keyword">&lt;xenc:CipherValue&gt;</span>
      <span class="sh_comment">&lt;!-- encrypted data --&gt;</span>
    <span class="sh_keyword">&lt;/xenc:CipherValue&gt;</span>
  <span class="sh_keyword">&lt;/xenc:CipherData&gt;</span>
  
<span class="sh_keyword">&lt;/xenc:EncryptedData&gt;</span></pre>
        </div>
      </div>

      <div id="sec-Alg-SymmetricKeyWrap" class="section">
        <h3><span class="secno">5.7 </span>Symmetric Key Wrap</h3>

        <p>
          Symmetric Key Wrap algorithms are shared secret key encryption  
          algorithms especially specified for encrypting and decrypting  
          symmetric keys.  When wrapped keys are used, then an <code>EncryptedKey</code>  
          element will appear as a child of a <code>ds:KeyInfo</code> element.  This  
          <code>EncryptedKey</code> element will have
          an <code>EncryptionMethod</code> child whose   
          <code>Algorithm</code> attribute in turn identifies the key wrap algorithm.
        </p>
        <p>
          The algorithm for which the encrypted key is intended depends on the  
          context of the <code>ds:KeyInfo</code>
          element:  <code>ds:KeyInfo</code> can occur as a child   
          of either an <code>EncryptedData</code> or <code>EncryptedKey</code>
          element; in both cases,   
          <code>ds:KeyInfo</code> will have an <code>EncryptionMethod</code> sibling that
          identifies the   
          algorithm.
        </p>
        <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;EncryptedData</span><span class="sh_type">|EncryptedKey</span><span class="sh_keyword">&gt;</span>
  <span class="sh_keyword">&lt;EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"@alg1"</span><span class="sh_keyword">/&gt;</span>
  <span class="sh_keyword">&lt;ds:KeyInfo&gt;</span>
    <span class="sh_keyword">&lt;EncryptedKey&gt;</span>
      <span class="sh_keyword">&lt;EncryptionMethod</span> <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"@alg2"</span><span class="sh_keyword">/&gt;</span>
    <span class="sh_keyword">&lt;/EncryptedKey&gt;</span>
  <span class="sh_keyword">&lt;/ds:KeyInfo&gt;</span>
<span class="sh_keyword">&lt;/EncryptedData</span><span class="sh_type">|EncryptedKey</span><span class="sh_keyword">&gt;</span></pre>

        <div id="sec-kw-tripledes" class="section">
          <h4><span class="secno">5.7.1 </span>CMS Triple DES Key
            Wrap</h4>
          <dl>
            <dt>Identifiers and Requirements:</dt>
            <dd><a id="kw-tripledes" href="http://www.w3.org/2001/04/xmlenc#kw-tripledes">http://www.w3.org/2001/04/xmlenc#kw-tripledes</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>XML Encryption implementations <em class="rfc2119" title="must">must</em> support TRIPLEDES wrapping of 168 bit
            keys as described in [<cite><a class="bibref" rel="biblioentry" href="#bib-CMS-WRAP">CMS-WRAP</a></cite>] and may optionally support TRIPLEDES wrapping of other keys.</p>

          <p>An example of a TRIPLEDES Key Wrap <code>EncryptionMethod</code> element
            is as follows:</p>
          <pre class="example sh_xml sh_sourceCode"><code><span class="sh_keyword">&lt;EncryptionMethod</span>
            <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#kw-tripledes"</span><span class="sh_keyword">/&gt;</span></code></pre>

        </div>
        <div id="sec-kw-aes" class="section">
          <h4><span class="secno">5.7.2 </span>AES KeyWrap</h4>
          <dl>
            <dt>Identifiers and Requirements:</dt>
            <dd><a id="kw-aes128" href="http://www.w3.org/2001/04/xmlenc#kw-aes128">http://www.w3.org/2001/04/xmlenc#kw-aes128</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
            <dd><a id="kw-aes192" href="http://www.w3.org/2001/04/xmlenc#kw-aes192">http://www.w3.org/2001/04/xmlenc#kw-aes192</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a id="kw-aes256" href="http://www.w3.org/2001/04/xmlenc#kw-aes256">http://www.w3.org/2001/04/xmlenc#kw-aes256</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>Implementation of AES key wrap is described in [<cite><a class="bibref" rel="biblioentry" href="#bib-AES-WRAP">AES-WRAP</a></cite>].
            It provides for confidentiality and integrity. This algorithm is defined only
            for inputs which are a multiple of 64 bits. The information wrapped need not
            actually be a key. The algorithm is the same whatever the size of the AES key
            used in wrapping, called the key encrypting key or <code>KEK</code>. The
            implementation requirements are indicated below.</p>
          <dl>
            <dt>128 bit AES Key Encrypting Key</dt>
            <dd>Implementation of wrapping 128 bit keys <em class="rfc2119" title="required">required</em>.<br>
              Wrapping of other key sizes <em class="rfc2119" title="optional">optional</em>.</dd>
            <dt>192 bit AES Key Encrypting Key</dt>
            <dd>All support <em class="rfc2119" title="optional">optional</em>.</dd>
            <dt>256 bit AES Key Encrypting Key</dt>
            <dd>Implementation of wrapping 256 bit keys <em class="rfc2119" title="required">required</em>.<br>
              Wrapping of other key sizes <em class="rfc2119" title="optional">optional</em>.</dd>
          </dl>

        </div>
        <div id="sec-kw-aes-with-pad" class="section">
          <h4><span class="secno">5.7.3 </span>AES KeyWrap with Padding</h4>
          <dl>
            <dt>Identifiers and Requirements:</dt>
            <dd><a id="kw-aes-128-pad" href="http://www.w3.org/2009/xmlenc11#kw-aes-128-pad">http://www.w3.org/2009/xmlenc11#kw-aes-128-pad</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a id="kw-aes-192-pad" href="http://www.w3.org/2009/xmlenc11#kw-aes-192-pad">http://www.w3.org/2009/xmlenc11#kw-aes-192-pad</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a id="kw-aes-256-pad" href="http://www.w3.org/2009/xmlenc11#kw-aes-256-pad">http://www.w3.org/2009/xmlenc11#kw-aes-256-pad</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>
            These identifiers are used for symmetric key wrapping using the AES key wrap with padding
            algorithm with a 128, 192, and 256 bit AES key encrypting key, respectively.  Implementation of
            AES key wrap with padding is defined in [<cite><a class="bibref" rel="biblioentry" href="#bib-AES-WRAP-PAD">AES-WRAP-PAD</a></cite>].  The algorithm is defined for inputs
            between 9 and 2^32 octets.  Unlike the unpadded AES Key Wrap algorithm, the input length is not
            constrained to multiples of 64 bits (8 octets).
          </p>
          <p>
            Note that the wrapped key will be distinct from the one generated by the unpadded AES Key Wrap
            algorithm, even if the input length is a multiple of 64 bits.
          </p>
        </div>
      </div>
      <div id="sec-Alg-MessageDigest" class="section">
        <h3><span class="secno">5.8 </span>Message Digest</h3>

        <p>Message digest algorithms can be used in
          <code>AgreementMethod</code> as part of the key derivation, within
          RSA-OAEP encryption as a hash function, and in connection with the
          HMAC message authentication code method [<cite><a class="bibref" rel="biblioentry" href="#bib-HMAC">HMAC</a></cite>]
          as described in [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>].) Use of SHA-256 is strongly
          recommended over SHA-1 because recent advances in cryptanalysis (see
          e.g. [<cite><a class="bibref" rel="biblioentry" href="#bib-SHA-1-Analysis">SHA-1-Analysis</a></cite>], [<cite><a class="bibref" rel="biblioentry" href="#bib-SHA-1-Collisions">SHA-1-Collisions</a></cite>] )
          have cast doubt on the long-term collision resistance of SHA-1.
          Therefore, SHA-1 support is <em class="rfc2119" title="required">required</em> in this specification only for
          backwards-compatibility reasons.</p>

        <div id="sec-SHA1" class="section">
          <h4><span class="secno">5.8.1 </span>SHA1</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a href="http://www.w3.org/2000/09/xmldsig#sha1">http://www.w3.org/2000/09/xmldsig#sha1</a>
            </dd>
          </dl>

          <p>The SHA-1 algorithm [<cite><a class="bibref" rel="biblioentry" href="#bib-FIPS-180-3">FIPS-180-3</a></cite>] takes no explicit
            parameters. An example of an SHA-1 <code>DigestMethod</code> element is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;DigestMethod</span>
         <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2000/09/xmldsig#sha1"</span><span class="sh_keyword">/&gt;</span></pre>

          <p>A SHA-1 digest is a 160-bit string. The content of the
            <code>DigestValue</code> element shall be the base64 encoding of this bit
            string viewed as a 20-octet octet stream. For example, the
            <code>DigestValue</code> element for the message digest:</p>
          <pre class="example sh_xml sh_sourceCode"><code>A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D</code></pre>

          <p>from Appendix A of the SHA-1 standard would be:</p>
          <pre class="example sh_xml sh_sourceCode"><code><span class="sh_keyword">&lt;DigestValue&gt;</span>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=<span class="sh_keyword">&lt;/DigestValue&gt;</span></code></pre>

        </div>
        <div id="sec-SHA256" class="section">
          <h4><span class="secno">5.8.2 </span>SHA256</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="sha256" href="http://www.w3.org/2001/04/xmlenc#sha256">http://www.w3.org/2001/04/xmlenc#sha256</a>
              (<em class="rfc2119" title="required">required</em>)</dd>
          </dl>

          <p>The SHA-256 algorithm [<cite><a class="bibref" rel="biblioentry" href="#bib-FIPS-180-3">FIPS-180-3</a></cite>] takes no explicit
            parameters. An example of an SHA-256 <code>DigestMethod</code> element is:</p>
          <pre class="example sh_xml sh_sourceCode"><code><span class="sh_keyword">&lt;DigestMethod</span>
           <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha256"</span><span class="sh_keyword">/&gt;</span></code></pre>

          <p>A SHA-256 digest is a 256-bit string. The content of the
            <code>DigestValue</code> element shall be the base64 encoding of this bit
            string viewed as a 32-octet octet stream.</p>

        </div>
        <div id="sec-SHA384" class="section">
          <h4><span class="secno">5.8.3 </span>SHA384</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="sha384" href="http://www.w3.org/2001/04/xmlenc#sha384">http://www.w3.org/2001/04/xmlenc#sha384</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>The SHA-384 algorithm [<cite><a class="bibref" rel="biblioentry" href="#bib-FIPS-180-3">FIPS-180-3</a></cite>] takes no explicit
            parameters. An example of an SHA-384 <code>DigestMethod</code> element is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;DigestMethod</span>
         <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha384"</span><span class="sh_keyword">/&gt;</span></pre>

          <p>A SHA-384 digest is a 384-bit string. The content of the
            <code>DigestValue</code> element shall be the base64 encoding of this bit
            string viewed as a 48-octet octet stream.</p>

        </div>
        <div id="sec-SHA512" class="section">
          <h4><span class="secno">5.8.4 </span>SHA512</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="sha512" href="http://www.w3.org/2001/04/xmlenc#sha512">http://www.w3.org/2001/04/xmlenc#sha512</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>The SHA-512 algorithm [<cite><a class="bibref" rel="biblioentry" href="#bib-FIPS-180-3">FIPS-180-3</a></cite>] takes no explicit
            parameters. An example of an SHA-512 <code>DigestMethod</code> element is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;DigestMethod</span>
         <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#sha512"</span><span class="sh_keyword">/&gt;</span></pre>

          <p>A SHA-512 digest is a 512-bit string. The content of the
            <code>DigestValue</code> element shall be the base64 encoding of this bit
            string viewed as a 64-octet octet stream.</p>

        </div>
        <div id="sec-RIPEMD-160" class="section">
          <h4><span class="secno">5.8.5 </span>RIPEMD-160</h4>
          <dl>
            <dt>Identifier:</dt>
            <dd><a id="ripemd160" href="http://www.w3.org/2001/04/xmlenc#ripemd160">http://www.w3.org/2001/04/xmlenc#ripemd160</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>The RIPEMD-160 algorithm [<cite><a class="bibref" rel="biblioentry" href="#bib-RIPEMD-160">RIPEMD-160</a></cite>] takes
            no explicit parameters. An example of an RIPEMD-160 <code>DigestMethod</code>
            element is:</p>
          <pre class="example sh_xml sh_sourceCode"><span class="sh_keyword">&lt;DigestMethod</span>
         <span class="sh_type">Algorithm</span><span class="sh_symbol">=</span><span class="sh_string">"http://www.w3.org/2001/04/xmlenc#ripemd160"</span><span class="sh_keyword">/&gt;</span></pre>

          <p>A RIPEMD-160 digest is a 160-bit string. The content of the
            <code>DigestValue</code> element shall be the base64 encoding of this bit
            string viewed as a 20-octet octet stream.</p>
        </div>
      </div>

      <div id="sec-Alg-Canonicalition" class="section">
        <h3><span class="secno">5.9 </span>Canonicalization</h3>

        <p>A Canonicalization of XML is a method of consistently serializing XML into
          an octet stream as is necessary prior to encrypting XML.</p>

        <div id="sec-Inclusive-Canonicalization" class="section">
          <h4><span class="secno">5.9.1 </span>Inclusive
            Canonicalization</h4>
          <dl>
            <dt>Identifiers:</dt>
            <dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments">http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a href="http://www.w3.org/2006/12/xml-c14n11">http://www.w3.org/2006/12/xml-c14n11</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a href="http://www.w3.org/2006/12/xml-c14n11#WithComments">http://www.w3.org/2006/12/xml-c14n11#WithComments</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>Canonical XML [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-C14N11">XML-C14N11</a></cite>] is a method of
            serializing XML which includes the in scope namespace and xml namespace
            attribute context from ancestors of the XML being serialized.</p>

          <p>If XML is to be encrypted and then later decrypted into a different
            environment and it is desired to preserve namespace prefix bindings and the
            value of attributes in the "xml" namespace of its original environment, then
            the canonical XML with comments version of the XML should be the
            serialization that is encrypted.</p>

        </div>
        <div id="sec-Exclusive-Canonicalization" class="section">
          <h4><span class="secno">5.9.2 </span>Exclusive
            Canonicalization</h4>
          <dl>
            <dt>Identifiers:</dt>
            <dd><a href="http://www.w3.org/2001/10/xml-exc-c14n#">http://www.w3.org/2001/10/xml-exc-c14n#</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
            <dd><a href="http://www.w3.org/2001/10/xml-exc-c14n#WithComments">http://www.w3.org/2001/10/xml-exc-c14n#WithComments</a>
              (<em class="rfc2119" title="optional">optional</em>)</dd>
          </dl>

          <p>Exclusive XML Canonicalization [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-EXC-C14N">XML-EXC-C14N</a></cite>]
            serializes XML in such a way as to include to the minimum extent practical
            the namespace prefix binding and xml namespace attribute context inherited
            from ancestor elements.</p>

          <p>It is the recommended method where the outer context of a fragment which
            was signed and then encrypted may be changed. Otherwise the validation of the
            signature over the fragment may fail because the canonicalization by
            signature validation may include unnecessary namespaces into the fragment.</p>
        </div>
      </div>
    </div>
    <div id="sec-Security" class="section">
      <!--OddPage--><h2><span class="secno">6. </span>Security Considerations</h2>

      <div id="sec-chosen-ciphertext-attacks" class="section">
        <h3><span class="secno">6.1 </span>Chosen-Ciphertext Attacks</h3>
        <p>
          A number of chosen-ciphertext attacks against implementations of this
          specification have been published and demonstrated. They all
          involve the following elements:  
        </p><p>
          </p><ol>
            <li>The attacker knows about the format of the
            cleartext.</li>
            <li>The attacker is able to submit substantial numbers of ciphertext messages.</li>
            <li>The attacker is able to send arbitrary ciphertext, based on previous results.</li>
            <li>The attacker is able to force the server to use the same key
              (secret key by CBC-based attacks and server's private key by PKCS#1.5
              attacks) for processing of the adapted ciphertext.</li>
            <li>The server attempting to decrypt the ciphertext in some way
              signals whether the decrypted text is well-formed or
              not.</li> 
          </ol> 
        <p>
          The attacker uses the knowledge of the format and the information
          about well-formedness to construct a series of ciphertext
          guesses which reveal the plaintext with much less work than
          brute force. Attacks of this type have been demonstrated against
          symmetric encryption using CBC mode [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLENC-CBC-ATTACK">XMLENC-CBC-ATTACK</a></cite>][<cite><a class="bibref" rel="biblioentry" href="#bib-XMLENC-CBC-ATTACK-COUNTERMEASURES">XMLENC-CBC-ATTACK-COUNTERMEASURES</a></cite>] and on
          PKCS#1 v1.5. Other future attacks can be expected whenever
          these conditions are met. 
        </p>
      <div id="sec-edata-attacks" class="section">
        <h4><span class="secno">6.1.1 </span> Attacks against the encrypted data (<code>&lt;EncryptedData&gt;</code> part)</h4>
<p>
Using the CBC-based chosen-ciphertext attacks, the attacker sends to the
server an XML document with modified encrypted data in the symmetric
part (<code>&lt;EncryptedData&gt;</code>). After a few requests, the
attacker is able to get the whole 
cleartext without knowledge of the symmetric key.
</p><p>
          It would seem that these attacks can be countered by by disrupting any
          of the conditions, however in practice only preventing condition
          3 (sending arbitrary ciphertext) is fully effective. To counter condition 3, it is necessary
          for the decrypting system to require authenticated integrity
          protection over the ciphertext. However, unless the mechanism
          used is bound to the encryption key, there will no way to be sure
          that the signer is not attempting to recover the plaintext. The
          simplest and most efficient way to do this is to use an
          authenticating block mode, such as GCM. An alternative would be
          an HMAC based on the encryption key over the ciphertext, but it
          is less efficient and provides no advantages. 
        </p><p>
          Other countermeasures are not likely to be effective. Limiting the
          number of messages presented or the number of messages using the
          same key is not practical in large server farms. Attackers can
          spread their attempts over different servers and long or short
          periods of time, to foil attempts to detect attacks in progress
          or determine the location of the attacker. 
        </p><p>
          Signaling well-formedness can occur by emitting different messages for
          distinct security errors or by exhibiting timing
          differences. Implementations should avoid these practices,
          however that is not sufficient to prevent such attacks in an XML
          protocol environment, such as SOAP. Using a technique called
          encryption wrapping, the attacker can insert the ciphertext in
          some schema-legal part of the message. If the decryption code
          notices a format error, an error will be returned, but if not
          the message will be passed to the application which will ignore
          the bogus plaintext and ultimately respond with an application
          level success or failure message. 
        </p>
      </div>
      <div id="sec-bleichenbacher-attack" class="section">
        <h4><span class="secno">6.1.2 </span>Attacks against the encrypted key (Bleichenbacher's Million
          question attack on PKCS#1.5)</h4>
        <p>
The goal of the attacker applying the Bleichenbacher's attack is to get
the symmetric secret key, which is encrypted in the <code>&lt;EncryptedKey&gt;</code> part.
Afterward, he would be able to decrypt the whole data carried in the
<code>&lt;EncryptedData&gt;</code> part.
</p><p>
The basic idea of this attack is to modify the data in the
<code>&lt;EncryptedKey&gt;</code> part, send the document to the server, and observe if the
modified ciphertext contains PKCS#1.5 conformant data. This can be
done by:
</p><ol>
<li>Observing fault messages of the server notifying directly that
the request was not PKCS#1.5 conformant (this should not happen).</li>
<li>Enlarging the data in the <code>&lt;EncryptedData&gt;</code> part and observing the
timing differences between inclusion of PKCS-valid and PKCS-invalid
keys: if the key is PKCS-valid, the session key is extracted, and the
large data is decrypted. Otherwise, the session key cannot be extracted
and the large data is not processed, which yields a timing difference.</li>
<li>Making specific modifications of the <code>&lt;EncryptedData&gt;</code> part based on CBC
and padding-properties.</li>
</ol>
<p></p><p>
These problems are  described in detail in RFC 3281 [<cite><a class="bibref" rel="biblioentry" href="#bib-RFC3218">RFC3218</a></cite>].
</p><p>
The most effective countermeasure against the timing attack (2) is to
generate a random secret key every time when the decrypted data was not
PKCS#1-conformant. This way, the attacker would not get any timing
side-channel.
</p><p>
Please note  however that this is not a valid countermeasure against the
specific modification of the <code>&lt;EncryptedData&gt;</code>
described in part (3). The attacker
could still use a few millions of requests to decrypt the encrypted
symmetric key. Therefore, we recommend the usage of RSA-OAEP. 
RSA-OAEP  also has a risk of a chosen ciphertext attack [<cite><a class="bibref" rel="biblioentry" href="#bib-OAEP-ATTACK">OAEP-ATTACK</a></cite>] which
can be mitigated in security library implementations.
</p>
</div>
</div>
      <div id="sec-Sign-with-Encrypt" class="section">
        <h3><span class="secno">6.2 </span>Relationship to XML Digital Signatures</h3>

        <p>The application of both encryption and digital signatures over portions of
          an XML document can make subsequent decryption and signature verification
          difficult. In particular, when verifying a signature one must know whether
          the signature was computed over the encrypted or unencrypted form of
          elements.</p>

        <p>A separate, but important, issue is introducing cryptographic
          vulnerabilities when combining digital signatures and encryption over a
          common XML element. Hal Finney has suggested that encrypting digitally signed
          data, while leaving the digital signature in the clear, may allow plaintext
          guessing attacks. This vulnerability can be mitigated by using secure hashes
          and the nonces in the text being processed.</p>

        <p>In accordance with the requirements document [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-ENCRYPTION-REQ">XML-ENCRYPTION-REQ</a></cite>] the interaction of encryption and signing is
          an application issue and out of scope of the specification. However, we make
          the following recommendations:</p>
        <ol>
          <li><p>When data is encrypted, any digest or signature over that data should
              be encrypted. This satisfies the first issue in that only those
              signatures that can be seen can be validated. It also addresses the
              possibility of a plaintext guessing vulnerability, though it may not be
              possible to identify (or even know of) all the signatures over a given
              piece of data.</p></li>
          <li><p>Employ the "decrypt-except" signature transform [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLENC-DECRYPT">XMLENC-DECRYPT</a></cite>]. It works as follows:
              during signature transform processing, if you encounter a decrypt
              transform, decrypt all encrypted content in the document except for those
              excepted by an enumerated set of references.</p></li>
        </ol>

        <p>Additionally, while the following warnings pertain to incorrect inferences
          by the user about the authenticity of information encrypted, applications
          should discourage user misapprehension by communicating clearly which
          information has integrity, or is authenticated, confidential, or
          non-repudiable when multiple processes (e.g., signature and encryption) and
          algorithms (e.g., symmetric and asymmetric) are used:</p>
        <ol>
          <li><p>When an encrypted envelope contains a signature, the
              signature does not 
              necessarily protect the authenticity or integrity of the
              ciphertext [<cite><a class="bibref" rel="biblioentry" href="#bib-Davis">Davis</a></cite>].</p></li> 
          <li><p>While the signature secures plaintext it only covers that which is
              signed, recipients of encrypted messages must not infer integrity or
              authenticity of other unsigned information (e.g., headers) within the
              encrypted envelope, see [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLDSIG-CORE1">XMLDSIG-CORE1</a></cite>], <a href="http://www.w3.org/TR/xmldsig-core/#sec-Secure">section 8.1.1 Only What is
                Signed is Secure</a>].</p></li>
        </ol>

      </div>
      <div id="sec-InformationRevealed" class="section">
        <h3><span class="secno">6.3 </span>Information Revealed</h3>

        <p>Where a symmetric key is shared amongst multiple recipients, that
          symmetric key should <em>only</em> be used for the data intended for
          <em>all</em> recipients; even if one recipient is not directed to information
          intended (exclusively) for another in the same symmetric key, the information
          might be discovered and decrypted.</p>

        <p>Additionally, application designers should be careful not to reveal any
          information in parameters or algorithm identifiers (e.g., information in a
          URI) that weakens the encryption.</p>
      </div>
      <div id="sec-Nonce" class="section">
        <h3><span class="secno">6.4 </span>Nonce and IV (Initialization Value or Vector)</h3>

        <p>An undesirable characteristic of many encryption algorithms and/or their
          modes is that the same plaintext when encrypted with the same key has the
          same resulting ciphertext. While this is unsurprising, it invites various
          attacks which are mitigated by including an arbitrary and non-repeating
          (under a given key) data with the plaintext prior to encryption. In
          encryption chaining modes this data is the first to be encrypted and is
          consequently called the IV (initialization value or vector).</p>

        <p>Different algorithms and modes have further requirements on the
          characteristic of this information (e.g., randomness and secrecy) that affect
          the features (e.g., confidentiality and integrity) and their resistance to
          attack.</p>

        <p>Given that XML data is redundant (e.g., Unicode encodings and repeated
          tags ) and that attackers may know the data's structure (e.g., DTDs and
          schemas) encryption algorithms must be carefully implemented and used in this
          regard.</p>

        <p>For the Cipher Block Chaining (CBC) mode used by this specification, the
          IV must not be reused for any key and should be random, but it need not be
          secret. Additionally, under this mode an adversary modifying the IV can make
          a known change in the plain text after decryption. This attack can be avoided
          by securing the integrity of the plain text data, for example by signing
          it.</p>

        <p>Note: CBC block encryption algorithms should not be used
        without consideration of possibly severe security risks. 
        </p>
        <p>
          For the Galois/Counter Mode (GCM) used by this specification, the IV
          must not be reused for any key and should be random, but it need
          not be secret. 
        </p>

      </div>
      <div id="sec-Denial" class="section">
        <h3><span class="secno">6.5 </span>Denial of Service</h3>

        <p>This specification permits recursive processing. For example, the
          following scenario is possible: <code>EncryptedKey</code> <strong>A</strong>
          requires <code>EncryptedKey</code> <strong>B</strong> to be decrypted, which
          itself requires <code>EncryptedKey</code> <strong>A</strong>! Or, an attacker
          might submit an <code>EncryptedData</code> for decryption that references
          network resources that are very large or continually redirected.
          Consequently, implementations should be able to restrict arbitrary recursion
          and the total amount of processing and networking resources a request can
          consume.</p>
      </div>
      <div id="sec-Unsafe-Content" class="section">
        <h3><span class="secno">6.6 </span>Unsafe Content</h3>

        <p>XML Encryption can be used to obscure, via encryption, content
          that applications (e.g., firewalls, virus detectors, etc.) consider unsafe
          (e.g., executable code, viruses, etc.). Consequently, such applications must
          consider encrypted content to be as unsafe as the unsafest content
          transported in its application context. Consequently, such applications may
          choose to (1) disallow such content, (2) require access to the decrypted form
          for inspection, or (3) ensure that arbitrary content can be safely processed
          by receiving applications.</p>
      </div>
      <div id="sec-Errors" class="section">
        <h3><span class="secno">6.7 </span>Error Messages</h3> 
        <p>
          Implementations <em class="rfc2119" title="should not">should not</em> provide detailed error responses related to
          security algorithm processing. Error messages should be limited to a
          generic error message to avoid providing information to a potential
          attacker related to the specifics of the algorithm implementation. For
          example, if an error occurs in  decryption processing the error
          response should be a generic message providing no
          specifics on the details of the processing error.
        </p>
      </div>
      <div id="sec-TimingAttacks" class="section">
        <h3><span class="secno">6.8 </span>Timing Attacks</h3> 
        <p>
          It has been known for some time that it is feasible for an attacker to
          recover keys or cleartext by repeatedly sending chosen ciphertext and
          measuring the time required to process different requests with
          different types of errors. It has been demonstrated that attacks of
          this type are practical even when communicating over large and busy
          networks, especially if the receiver is willing to process large
          numbers of ciphertext blocks.
        </p><p>
          Implementers <em class="rfc2119" title="should">should</em> ensure that distinct errors detected during
          security algorithm processing do not consume systematically different
          amounts of processing time from each other. Implementers <em class="rfc2119" title="should">should</em>
          consult the technical literature for more details on specific attacks
          and recommended countermeasures. 
        </p><p>
          Deployments <em class="rfc2119" title="should">should</em> treat as suspect inputs when a large number of security
          algorithm processing errors are detected within a short period of
          time, especially in messages from the same origin.
        </p>
      </div>
      <div id="sec-cbcBlockEncryptionAttacks" class="section">
        <h3><span class="secno">6.9 </span>CBC Block Encryption Vulnerability</h3> 
        <p>
          <strong>Note</strong>: CBC block encryption algorithms
          should not be used without 
          consideration of <a href="#cbc-warning">possibly severe
            security risks</a>. 
        </p>
    </div>
    </div>
    <div id="sec-Conformance" class="section">
      <!--OddPage--><h2><span class="secno">7. </span>Conformance</h2>

      <p>An implementation is conformant to this specification if it successfully
        generates syntax according to the schema definitions and satisfies all
        <em class="rfc2119" title="must">must</em>/<em class="rfc2119" title="required">required</em>/<em class="rfc2119" title="shall">shall</em> requirements, including <a href="#sec-AlgID">algorithm</a> support and <a href="#sec-Processing">processing</a>. Processing requirements are specified
        over the roles of <a class="link-def" href="#def-Decryptor"><strong>decryptor</strong>,</a> <a class="link-def" href="#def-Encryptor"><strong>encryptor</strong>,</a> and their calling <a class="link-def" href="#def-Application"><strong>application</strong></a>.</p>

    </div>
    <div id="sec-MediaType" class="section">
      <!--OddPage--><h2><span class="secno">8. </span>XML Encryption Media Type</h2>

      <div id="sec-MediaType-Introduction" class="section">
        <h3><span class="secno">8.1 </span>Introduction</h3>

        <p>XML Encryption Syntax and Processing (XMLENC-CORE1, this document)
          specifies a process for encrypting 
          data and representing the result in XML. The data may be arbitrary data
          (including an XML document), an XML element, or XML element content. The
          result of encrypting data is an XML Encryption element which contains or
          references the cipher data.</p>

        <p>The <code>application/xenc+xml</code> media type allows XML Encryption
          applications to identify encrypted documents. Additionally it allows
          applications cognizant of this media-type (even if they are not XML
          Encryption implementations) to note that the media type of the decrypted
          (original) object might be a type other than XML.</p>
      </div>
      <div id="sec-MediaType-Registration" class="section">
        <h3><span class="secno">8.2 </span>application/xenc+xml Registration</h3>

        <p>This is a media type registration as defined in Multipurpose Internet Mail
          Extensions (MIME) Part Four: Registration Procedures [<cite><a class="bibref" rel="biblioentry" href="#bib-MIME-REG">MIME-REG</a></cite>]</p>

        <p>Type name: application</p>

        <p>Subtype name: xenc+xml</p>

        <p>Required parameters: none</p>

        <p>Optional parameters: charset</p>

        <blockquote>
          <p>The allowable and recommended values for, and interpretation of the
            charset parameter are identical to those given for 'application/xml' in
            section 3.2 of RFC 3023 [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-MT">XML-MT</a></cite>].</p>
        </blockquote>

        <p>Encoding considerations:</p>

        <blockquote>
          <p>The encoding considerations are identical to those given for
            'application/xml' in section 3.2 of RFC 3023 [<cite><a class="bibref" rel="biblioentry" href="#bib-XML-MT">XML-MT</a></cite>].</p>
        </blockquote>

        <p>Security considerations:</p>

        <blockquote>
          See the (XMLENC-CORE1, this document) <a href="#sec-Security">Security Considerations</a> section.</blockquote>
        <p>Interoperability considerations: none</p>
        <p>Published specification:  (XMLENC-CORE1, this document)</p>
        <p>Applications which use this media type:</p>
        <blockquote>
          XML Encryption is device-, platform-, and vendor-neutral and is supported
          by a range of Web applications.</blockquote>
        <p>Additional Information:</p>
        <blockquote>
          <p>Magic number(s): none</p>
          <blockquote>
            Although no byte sequences can be counted on to consistently identify XML
            Encryption documents, there will be XML documents in which the root
            element's <code>QName</code>'s <code>LocalPart</code> is
            <code>'EncryptedData'</code> or '<code>EncryptedKey</code>' with an
            associated namespace name of '<a href="http://www.w3.org/2001/04/xmlenc#">http://www.w3.org/2001/04/xmlenc#</a>'.
            The <code>application/xenc+xml</code> type name <em class="rfc2119" title="must">must</em> only be used for
            data objects in which the root element is from the XML Encryption
            namespace. XML documents which contain these element types in places
            other than the root element can be described using facilities such as [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-1">XMLSCHEMA-1</a></cite>], [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSCHEMA-2">XMLSCHEMA-2</a></cite>].</blockquote>
          <p>File extension(s): .xml</p>
          <p>Macintosh File Type Code(s): "TEXT"</p>
        </blockquote>
        <p>Person &amp; email address to contact for further information:</p>
        <blockquote>
          <p>World Wide Web Consortium &lt;web-human at w3.org&gt;</p>
        </blockquote>
        <p>Intended usage: COMMON</p>
        <p>Author/Change controller:</p>
        <p>The XML Encryption specification is a work product of the World Wide Web
          Consortium (<acronym title="World Wide Web Consortium">W3C</acronym>) which has change control over the specification.</p>
      </div>
    </div>
    <div id="sec-Schema" class="section">
      <!--OddPage--><h2><span class="secno">9. </span>Schema</h2>
      <div id="sec-xsdSchema" class="section">
        <h3><span class="secno">9.1 </span>XSD Schema</h3>
        <dl>
          <dt>XML Encryption Core Schema Instance</dt>
          <dd><a href="xenc-schema.xsd">xenc-schema.xsd</a></dd>

          <dt>XML Encryption 1.1 Schema Instance</dt>
          <dd><a href="xenc-schema-11.xsd">xenc-schema11.xsd</a></dd>
          <dd>This schema document defines the additional material defined in
            XML Encryption 1.1.</dd> 
          <dt>Example (non-normative)</dt>
          <dd><a href="enc-example.xml">enc-example.xml</a> (not cryptographically
            valid but exercises much of the schema)</dd>
        </dl>
      </div>
      <div id="sec-rngSchema" class="informative section">
        <h3><span class="secno">9.2 </span>RNG Schema</h3><p><em>This section is non-normative.</em></p>
        <p>Non-normative RELAX NG schema [<cite><a class="bibref" rel="biblioentry" href="#bib-RELAXNG-SCHEMA">RELAXNG-SCHEMA</a></cite>] information is
          available in a separate document [<cite><a class="bibref" rel="biblioentry" href="#bib-XMLSEC-RELAXNG">XMLSEC-RELAXNG</a></cite>].
        </p>
      </div>
    </div>
  

<div id="references" class="appendix section"><!--OddPage--><h2><span class="secno">A. </span>References</h2><p>Dated references below are to the latest known or appropriate edition of the referenced work.  The referenced works may be subject to revision, and conformant implementations may follow, and are encouraged to investigate the appropriateness of following, some or all more recent editions or replacements of the works cited. It is in each case implementation-defined which  editions are supported.</p><div id="normative-references" class="section"><h3><span class="secno">A.1 </span>Normative references</h3><dl class="bibliography"><dt id="bib-AES">[AES]</dt><dd><a href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf"><cite>NIST FIPS 197: Advanced Encryption Standard (AES)</cite></a>. November 2001. URL: <a href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf</a>
</dd><dt id="bib-AES-WRAP">[AES-WRAP]</dt><dd>J. Schaad and R. Housley. <a href="http://www.ietf.org/rfc/rfc3394.txt"><cite>RFC3394: Advanced Encryption Standard (AES) Key Wrap Algorithm</cite></a>.  IETF Informational RFC, September 2002. URL: <a href="http://www.rfc-editor.org/rfc/rfc3394.txt">http://www.rfc-editor.org/rfc/rfc3394.txt</a>
</dd><dt id="bib-AES-WRAP-PAD">[AES-WRAP-PAD]</dt><dd>R. Housley, M. Dworkin. <a href="http://www.ietf.org/rfc/rfc5649.txt"><cite>RFC 5649: Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm</cite></a>.   IETF Informational RFC, August 2009. URL:  <a href="http://www.ietf.org/rfc/rfc5649.txt"> http://www.ietf.org/rfc/rfc5649.txt</a>. 
</dd><dt id="bib-ANSI-X9-44-2007">[ANSI-X9-44-2007]</dt><dd><a href="http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.44-2007"><cite>ANSI X9.44-2007: Key Establishment Using Integer Factorization Cryptography.</cite></a> URL: <a href="http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.44-2007">http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.44-2007</a>
</dd><dt id="bib-CMS-WRAP">[CMS-WRAP]</dt><dd>R. Housley. <a href="http://www.ietf.org/rfc/rfc3217.txt"><cite>RFC3217: Triple-DES and R2 Key Wrapping</cite></a>.  IETF Informational RFC, December 2001. URL: <a href="http://www.ietf.org/rfc/rfc3217.txt">http://www.ietf.org/rfc/rfc3217.txt</a>
</dd><dt id="bib-DES">[DES]</dt><dd><a href="http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf"><cite>NIST FIPS 46-3: Data Encryption Standard (DES)</cite></a> . October 1999. URL: <a href="http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf">http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf</a>
</dd><dt id="bib-ESDH">[ESDH]</dt><dd>E. Rescorla. <a href="http://www.ietf.org/rfc/rfc2631.txt"><cite> Diffie-Hellman Key Agreement Method.</cite></a>. IETF RFC 2631 Standards Track, 1999. URL: <a href="http://www.ietf.org/rfc/rfc2631.txt">http://www.ietf.org/rfc/rfc2631.txt</a>
</dd><dt id="bib-EXI">[EXI]</dt><dd>Takuki Kamiya; John Schneider. <a href="http://www.w3.org/TR/2009/CR-exi-20091208/"><cite>Efficient XML Interchange (EXI) Format 1.0.</cite></a> 8 December 2009. W3C Candidate Recommendation. (Work in progress.) URL: <a href="http://www.w3.org/TR/2009/CR-exi-20091208/">http://www.w3.org/TR/2009/CR-exi-20091208/</a> 
</dd><dt id="bib-FIPS-180-3">[FIPS-180-3]</dt><dd><a href="http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf"><cite>FIPS PUB 180-3 Secure Hash Standard</cite></a>.  U.S. Department of Commerce/National Institute of Standards and Technology. URL: <a href="http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf">http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf</a>
</dd><dt id="bib-FIPS-186-3">[FIPS-186-3]</dt><dd><a href="http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf"><cite>FIPS PUB 186-3:  Digital Signature Standard (DSS)</cite></a>. June 2009. U.S. Department of Commerce/National Institute of Standards and Technology. URL: <a href="http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf">http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf</a>
</dd><dt id="bib-HMAC">[HMAC]</dt><dd>H. Krawczyk, M. Bellare, R. Canetti. <a href="http://www.ietf.org/rfc/rfc2104.txt"><cite>HMAC: Keyed-Hashing for Message Authentication</cite></a>. February 1997. IETF RFC 2104.  URL: <a href="http://www.ietf.org/rfc/rfc2104.txt">http://www.ietf.org/rfc/rfc2104.txt</a>
</dd><dt id="bib-NFC">[NFC]</dt><dd>M. Davis, Ken Whistler. <a href="http://www.unicode.org/reports/tr15/"><cite>TR15, Unicode Normalization Forms.</cite></a>. 17 September 2010, URL: <a href="http://www.unicode.org/reports/tr15/">http://www.unicode.org/reports/tr15/</a>
</dd><dt id="bib-PKCS1">[PKCS1]</dt><dd>J. Jonsson and B. Kaliski. <a href="http://www.ietf.org/rfc/rfc3447.txt"><cite>Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications  Version 2.1.</cite></a> RFC 3447 (Informational), February  2003. URL: <a href="http://www.ietf.org/rfc/rfc3447.txt">http://www.ietf.org/rfc/rfc3447.txt</a> 
</dd><dt id="bib-PKCS5">[PKCS5]</dt><dd>B. Kaliski. <a href="http://www.ietf.org/rfc/rfc2898.txt"><cite>PKCS #5 v2.0: Password-Based Cryptography Standard</cite></a> IETF RFC 2898. September 2000. URL: <a href="http://www.ietf.org/rfc/rfc2898.txt">http://www.ietf.org/rfc/rfc2898.txt</a>
</dd><dt id="bib-PKCS5Amd1">[PKCS5Amd1]</dt><dd><a href="ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf"><cite>PKCS #5 v2.0 Amendment 1: XML Schema for Password-Based Cryptography</cite></a> RSA Laboratories, March 2007. URL: <a href="ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf">ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf</a>
</dd><dt id="bib-RANDOM">[RANDOM]</dt><dd>D.  Eastlake, S. Crocker, J. Schiller. <a href="http://www.ietf.org/rfc/rfc4086.txt"><cite>Randomness Recommendations for Security.</cite></a>. IETF RFC 4086. June 2005. URL: <a href="http://www.ietf.org/rfc/rfc4086.txt">http://www.ietf.org/rfc/rfc4086.txt</a>
</dd><dt id="bib-RFC2045">[RFC2045]</dt><dd>N. Freed and N. Borenstein. <a href="http://www.ietf.org/rfc/rfc2045.txt"><cite>Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies.</cite></a> November 1996. URL: <a href="http://www.ietf.org/rfc/rfc2045.txt">http://www.ietf.org/rfc/rfc2045.txt</a> 
</dd><dt id="bib-RFC2119">[RFC2119]</dt><dd>S. Bradner. <a href="http://www.ietf.org/rfc/rfc2119.txt"><cite>Key words for use in RFCs to Indicate Requirement Levels.</cite></a> March 1997. Internet RFC 2119.  URL: <a href="http://www.ietf.org/rfc/rfc2119.txt">http://www.ietf.org/rfc/rfc2119.txt</a> 
</dd><dt id="bib-RFC4055">[RFC4055]</dt><dd>J. Schaad, B. Kaliski, R. Housley. <a href="http://www.ietf.org/rfc/rfc4055.txt"><cite>Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile</cite></a>. June 2005. IETF RFC 4055. URL: <a href="http://www.ietf.org/rfc/rfc4055.txt">http://www.ietf.org/rfc/rfc4055.txt</a>
</dd><dt id="bib-RIPEMD-160">[RIPEMD-160]</dt><dd>B. Preneel, A. Bosselaers, and H. Dobbertin. <a href="http://www.cosic.esat.kuleuven.be/publications/article-317.pdf"><cite>The Cryptographic Hash Function RIPEMD-160</cite></a>. CryptoBytes, Volume 3, Number 2. pp. 9-14, RSA Laboratories 1997. URL: <a href="http://www.cosic.esat.kuleuven.be/publications/article-317.pdf">http://www.cosic.esat.kuleuven.be/publications/article-317.pdf</a>
</dd><dt id="bib-SP800-38D">[SP800-38D]</dt><dd>M. Dworkin. <a href="http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf"><cite> NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC</cite></a>. November 2007 URL: <a href="http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf">http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf</a>
</dd><dt id="bib-SP800-56A">[SP800-56A]</dt><dd><a href="http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf"><cite> NIST Special Publication 800-56A: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised)</cite></a>. March 2007 URL: <a href="http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf">http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf</a>
</dd><dt id="bib-SP800-67">[SP800-67]</dt><dd><a href="http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf"><cite> Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, Revised 19 May 2008.</cite></a> SP800-67 Version 1.1. U.S. Department of Commerce/National Institute of Standards and Technology. URL: <a href="http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf"> http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf</a>
</dd><dt id="bib-URI">[URI]</dt><dd>T. Berners-Lee; R. Fielding; L. Masinter. <a href="http://www.ietf.org/rfc/rfc3986.txt"><cite>Uniform Resource Identifiers (URI): generic syntax.</cite></a> January 2005. Internet RFC 3986. URL: <a href="http://www.ietf.org/rfc/rfc3986.txt">http://www.ietf.org/rfc/rfc3986.txt</a> 
</dd><dt id="bib-XML-ENCRYPTION-REQ">[XML-ENCRYPTION-REQ]</dt><dd>Joseph Reagle. <a href="http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304"><cite>XML Encryption Requirements.</cite></a> 4 March 2002. W3C Note. URL: <a href="http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304">http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304</a> 
</dd><dt id="bib-XML-NAMES">[XML-NAMES]</dt><dd>Richard Tobin; et al. <a href="http://www.w3.org/TR/2009/REC-xml-names-20091208/"><cite>Namespaces in XML 1.0 (Third Edition).</cite></a> 8 December 2009. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2009/REC-xml-names-20091208/">http://www.w3.org/TR/2009/REC-xml-names-20091208/</a> 
</dd><dt id="bib-XML10">[XML10]</dt><dd>C. M. Sperberg-McQueen; et al. <a href="http://www.w3.org/TR/2008/REC-xml-20081126/"><cite>Extensible Markup Language (XML) 1.0 (Fifth Edition).</cite></a> 26 November 2008. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2008/REC-xml-20081126/">http://www.w3.org/TR/2008/REC-xml-20081126/</a> 
</dd><dt id="bib-XMLDSIG-CORE1">[XMLDSIG-CORE1]</dt><dd>D. Eastlake, J. Reagle, D. Solo, F. Hirsch, T. Roessler, K. Yiu. <a href="http://www.w3.org/TR/2011/CR-xmldsig-core1-20110303/"><cite>XML Signature Syntax and Processing Version 1.1.</cite></a> 3 March 2011. W3C Candidate Recommendation. (Work in progress.) URL: <a href="http://www.w3.org/TR/2011/CR-xmldsig-core1-20110303/">http://www.w3.org/TR/2011/CR-xmldsig-core1-20110303/</a> 
</dd><dt id="bib-XMLSCHEMA-1">[XMLSCHEMA-1]</dt><dd>Henry S. Thompson; et al. <a href="http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/"><cite>XML Schema Part 1: Structures Second Edition.</cite></a> 28 October 2004. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/">http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/</a> 
</dd><dt id="bib-XMLSCHEMA-2">[XMLSCHEMA-2]</dt><dd>Paul V. Biron; Ashok Malhotra. <a href="http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/"><cite>XML Schema Part 2: Datatypes Second Edition.</cite></a> 28 October 2004. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/">http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/</a> 
</dd><dt id="bib-XPATH">[XPATH]</dt><dd>James Clark; Steven DeRose. <a href="http://www.w3.org/TR/1999/REC-xpath-19991116/"><cite>XML Path Language (XPath) Version 1.0.</cite></a> 16 November 1999. W3C Recommendation. URL: <a href="http://www.w3.org/TR/1999/REC-xpath-19991116/">http://www.w3.org/TR/1999/REC-xpath-19991116/</a> 
</dd></dl></div><div id="informative-references" class="section"><h3><span class="secno">A.2 </span>Informative references</h3><dl class="bibliography"><dt id="bib-Davis">[Davis]</dt><dd><a href="http://www.usenix.org/publications/library/proceedings/usenix01/davis.html"><cite>Defective Sign &amp; Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP, and XML.</cite></a> D. Davis. USENIX Annual Technical Conference. 2001. URL: <a href="http://www.usenix.org/publications/library/proceedings/usenix01/davis.html">http://www.usenix.org/publications/library/proceedings/usenix01/davis.html</a>
</dd><dt id="bib-ECC-ALGS">[ECC-ALGS]</dt><dd>D. McGrew, K. Igoe, M. Salter. <a href="http://www.rfc-editor.org/rfc/rfc6090.txt"><cite>RFC 6090: Fundamental Elliptic Curve Cryptography Algorithms.</cite></a> February 2011. IETF Informational RFC. URL: <a href="http://www.rfc-editor.org/rfc/rfc6090.txt">http://www.rfc-editor.org/rfc/rfc6090.txt</a>
</dd><dt id="bib-MIME-REG">[MIME-REG]</dt><dd>N. Freed, J. Klensin. <a href="http://www.ietf.org/rfc/rfc4289.txt"><cite>RFC 4289: Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures</cite></a>. December 2005. Best Current Practice. URL: <a href="http://www.ietf.org/rfc/rfc4289.txt">http://www.ietf.org/rfc/rfc4289.txt</a>
</dd><dt id="bib-OAEP-ATTACK">[OAEP-ATTACK]</dt><dd>Manger, James. <a href="http://archiv.infsec.ethz.ch/education/fs08/secsem/Manger01.pdf"><cite> A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0</cite></a>. URL: <a href="http://archiv.infsec.ethz.ch/education/fs08/secsem/Manger01.pdf">http://archiv.infsec.ethz.ch/education/fs08/secsem/Manger01.pdf</a>
</dd><dt id="bib-RELAXNG-SCHEMA">[RELAXNG-SCHEMA]</dt><dd><a href="http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip"><cite>Information technology -- Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG</cite></a>. ISO/IEC 19757-2:2008. URL: <a href="http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip">http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip</a>
</dd><dt id="bib-RFC3218">[RFC3218]</dt><dd>Rescorla, E. <a href="http://tools.ietf.org/html/rfc3218"><cite>Preventing the Million Message Attack on Cryptographic Message Syntax.</cite></a>January 2002. Informational RFC 3218. URL: <a href="http://tools.ietf.org/html/rfc3218">http://tools.ietf.org/html/rfc3218</a>
</dd><dt id="bib-SHA-1-Analysis">[SHA-1-Analysis]</dt><dd>McDonald, C., Hawkes, P., and J. Pieprzyk. <a href="http://eurocrypt2009rump.cr.yp.to/837a0a8086fa6ca714249409ddfae43d.pdf"><cite>SHA-1 collisions now 2<sup>52</sup> </cite></a>. EuroCrypt 2009 Rump session. URL: <a href="http://eurocrypt2009rump.cr.yp.to/837a0a8086fa6ca714249409ddfae43d.pdf">http://eurocrypt2009rump.cr.yp.to/837a0a8086fa6ca714249409ddfae43d.pdf</a>
</dd><dt id="bib-SHA-1-Collisions">[SHA-1-Collisions]</dt><dd>X. Wang, Y.L. Yin, H. Yu. <a href="http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf"><cite>Finding Collisions in the Full SHA-1</cite></a>. In Shoup, V., editor, Advances in Cryptology - CRYPTO 2005, 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005. URL: <a href="http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf">http://people.csail.mit.edu/yiqun/SHA1AttackProceedingVersion.pdf</a> (also published in <a href="http://www.springerlink.com/content/26vljj3xhc28ux5m/">http://www.springerlink.com/content/26vljj3xhc28ux5m/</a>)
</dd><dt id="bib-Tobin">[Tobin]</dt><dd>R. Tobin. <a href="http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054"><cite>Infoset for external entities.</cite></a> 2000. URL: <a href="http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054">http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054</a> [XML Core mailing list, <a href="http://cgi.w3.org/MemberAccess/AccessRequest">W3C Member Only</a>].
</dd><dt id="bib-XML-C14N">[XML-C14N]</dt><dd>John Boyer. <a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"><cite>Canonical XML Version 1.0.</cite></a> 15 March 2001. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">http://www.w3.org/TR/2001/REC-xml-c14n-20010315</a> 
</dd><dt id="bib-XML-C14N11">[XML-C14N11]</dt><dd>John Boyer, Glenn Marcy. <a href="http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/"><cite>Canonical XML Version 1.1.</cite></a> 2 May 2008. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/">http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/</a> 
</dd><dt id="bib-XML-EXC-C14N">[XML-EXC-C14N]</dt><dd>Donald E. Eastlake 3rd; Joseph Reagle; John Boyer. <a href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/"><cite>Exclusive XML Canonicalization Version 1.0.</cite></a> 18 July 2002. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/">http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/</a> 
</dd><dt id="bib-XML-INFOSET">[XML-INFOSET]</dt><dd>John Cowan; Richard Tobin. <a href="http://www.w3.org/TR/2004/REC-xml-infoset-20040204/"><cite>XML Information Set (Second Edition).</cite></a> 4 February 2004. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2004/REC-xml-infoset-20040204/">http://www.w3.org/TR/2004/REC-xml-infoset-20040204/</a> 
</dd><dt id="bib-XML-MT">[XML-MT]</dt><dd>M. Murata, S. St.Laurent, D. Kohn. <a href="http://www.ietf.org/rfc/rfc3023.txt"><cite>XML Media Types</cite></a>. IETF RFC 3023. URL: <a href="http://www.ietf.org/rfc/rfc3023.txt"> http://www.ietf.org/rfc/rfc3023.txt</a>.
</dd><dt id="bib-XMLBASE">[XMLBASE]</dt><dd>Jonathan Marsh, Richard Tobin. <a href="http://www.w3.org/TR/2009/REC-xmlbase-20090128/"><cite>XML Base (Second Edition).</cite></a> 28 January 2009. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2009/REC-xmlbase-20090128/">http://www.w3.org/TR/2009/REC-xmlbase-20090128/</a> 
</dd><dt id="bib-XMLENC-CBC-ATTACK">[XMLENC-CBC-ATTACK]</dt><dd>Tibor Jager; Juraj Somorovsky. <a href="http://www.nds.rub.de/media/nds/veroeffentlichungen/2011/10/22/HowToBreakXMLenc.pdf"><cite>How to Break XML Encryption</cite></a> 17-21 October 2011. CCS' 11, ACM. URL: <a href="http://www.nds.rub.de/media/nds/veroeffentlichungen/2011/10/22/HowToBreakXMLenc.pdf">http://www.nds.rub.de/media/nds/veroeffentlichungen/2011/10/22/HowToBreakXMLenc.pdf</a> 
</dd><dt id="bib-XMLENC-CBC-ATTACK-COUNTERMEASURES">[XMLENC-CBC-ATTACK-COUNTERMEASURES]</dt><dd>Juraj Somorovsky, Jörg Schwenk. <a href="http://www.w3.org/2008/xmlsec/papers/xmlEncCountermeasuresW3C.pdf"><cite>Technical Analysis of Countermeasures against Attack on XML Encryption - or - Just Another Motivation for Authenticated Encryption</cite></a>. 2011.  URL: <a href="http://www.w3.org/2008/xmlsec/papers/xmlEncCountermeasuresW3C.pdf">http://www.w3.org/2008/xmlsec/papers/xmlEncCountermeasuresW3C.pdf</a>
</dd><dt id="bib-XMLENC-DECRYPT">[XMLENC-DECRYPT]</dt><dd>Takeshi Imamura; Merlin Hughes; Hiroshi Maruyama. <a href="http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210"><cite>Decryption Transform for XML Signature.</cite></a> 10 December 2002. W3C Recommendation. URL: <a href="http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210">http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210</a> 
</dd><dt id="bib-XMLSEC-RELAXNG">[XMLSEC-RELAXNG]</dt><dd>Makoto Murata, Frederick Hirsch. <a href="http://www.w3.org/TR/2011/WD-xmlsec-rngschema-20110830/"><cite>XML Security RELAX NG Schemas.</cite></a> 30 August 2011. W3C Working Draft. (Work in progress.) URL: <a href="http://www.w3.org/TR/2011/WD-xmlsec-rngschema-20110830/">http://www.w3.org/TR/2011/WD-xmlsec-rngschema-20110830/</a>
</dd><dt id="bib-XMLSEC11-REQS">[XMLSEC11-REQS]</dt><dd>Frederick Hirsch, Thomas Roessler. <a href="http://www.w3.org/TR/2011/WD-xmlsec-reqs-20110303/"><cite>XML Security 1.1 Requirements and Design Considerations.</cite></a> 3 March 2011. W3C Working Draft. (Work in progress.) URL: <a href="http://www.w3.org/TR/2011/WD-xmlsec-reqs-20110303/">http://www.w3.org/TR/2011/WD-xmlsec-reqs-20110303/</a> 
</dd></dl></div></div></body></html>