index.html
221 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Transitional//EN' 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'><html xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>RIF Basic Logic Dialect</title>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<style type="text/css">
.editsection { display: none; }
</style>
<link href="tr.css" rel="stylesheet" type="text/css" />
<link href="http://www.w3.org/StyleSheets/TR/W3C-REC" rel="stylesheet" type="text/css" />
</head>
<body>
<div class="head">
<a href="http://www.w3.org/"><img alt="W3C" height="48" src="http://www.w3.org/Icons/w3c_home" width="72" /></a><h1 id="title" style="clear:both"><span id="short-title">RIF Basic Logic Dialect</span></h1>
<h2 id="W3C-doctype">W3C Recommendation 22 June 2010</h2>
<!-- no inplace warning -->
<dl>
<dt>This version:</dt>
<dd><a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/" id="this-version-url">http://www.w3.org/TR/2010/REC-rif-bld-20100622/</a></dd>
<dt>Latest version:</dt>
<dd><a href="http://www.w3.org/TR/rif-bld/">http://www.w3.org/TR/rif-bld/</a></dd>
<dt>Previous version:</dt>
<dd><a href="http://www.w3.org/TR/2010/PR-rif-bld-20100511/">http://www.w3.org/TR/2010/PR-rif-bld-20100511/</a> (<a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/diff-from-20100511">color-coded diff</a>)</dd>
</dl>
<dl><dt>Editors:</dt><dd>Harold Boley, National Research Council Canada</dd>
<dd>Michael Kifer, State University of New York at Stony Brook, USA</dd>
</dl>
<p>Please refer to the <a href="http://www.w3.org/2010/rif/errata"><strong>errata</strong></a> for this document, which may include some normative corrections.</p>
<p>This document is also available in these non-normative formats: <a href="http://www.w3.org/2010/pdf/REC-rif-bld-20100622.pdf">PDF version</a>.</p>
<p>See also <a href="http://www.w3.org/2010/rif/translation/rif-bld">translations</a>.</p>
<p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a> © 2010 <a href="http://www.w3.org/"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>®</sup> (<a href="http://www.csail.mit.edu/"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.eu/"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">trademark</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-documents">document use</a> rules apply.</p>
</div>
<hr />
<h2><a id="abstract" name="abstract">Abstract</a></h2>
<div>
<div><p>This document, developed by the <a href="http://www.w3.org/2005/rules/wiki/RIF_Working_Group" title="RIF Working Group">Rule Interchange Format (RIF) Working Group</a>, specifies the Basic Logic Dialect, RIF-BLD, a format that allows logic rules to be exchanged between rule systems. The RIF-BLD presentation syntax and semantics are specified both directly and as specializations of the <i>RIF Framework for Logic Dialects</i>, or RIF-FLD. The XML serialization syntax of RIF-BLD is specified via a mapping from the presentation syntax. A normative XML schema is also provided.</p> </div>
</div>
<h2 class="no-toc no-num">
<a id="w3c_status" name="w3c_status">Status of this Document</a>
</h2>
<h4 class="no-toc no-num" id="may-be">May Be Superseded</h4>
<p><em>This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the <a href="http://www.w3.org/TR/">W3C technical reports index</a> at http://www.w3.org/TR/.</em></p>
<h4 class="no-toc no-num" id="related">Set of Documents</h4>
<p>This document is being published as one of a set of 11 documents: </p>
<ol>
<li><a href="http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/">RIF Overview</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/">RIF Core Dialect</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-bld-20100622/">RIF Basic Logic Dialect</a> (this document)</li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-prd-20100622/">RIF Production Rule Dialect</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/">RIF Framework for Logic Dialects</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/">RIF Datatypes and Built-Ins 1.0</a></li>
<li><a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/">RIF RDF and OWL Compatibility</a></li>
<li><a href="http://www.w3.org/TR/2010/NOTE-rif-owl-rl-20100622/">OWL 2 RL in RIF</a></li>
<li><a href="http://www.w3.org/TR/2010/WD-rif-xml-data-20100622/">RIF Combination with XML data</a></li>
<li><a href="http://www.w3.org/TR/2010/WD-rif-in-rdf-20100622/">RIF In RDF</a></li>
<li><a href="http://www.w3.org/TR/2010/WD-rif-test-20100622/">RIF Test Cases</a></li>
</ol>
<!-- no eventStatusExtra -->
<!-- no statusExtra -->
<div>
<h4 class="no-toc no-num" id="sotd-xml-dep">XML Schema Datatypes Dependency</h4>
<p>RIF is defined to use datatypes defined in the <a href="http://www.w3.org/TR/xmlschema-2/">XML Schema Definition Language (XSD)</a>. As of this writing, the latest W3C Recommendation for XSD is version 1.0, with <a href="http://www.w3.org/TR/xmlschema11-1/">version 1.1</a> progressing toward Recommendation. RIF has been designed to take advantage of the new datatypes and clearer explanations available in XSD 1.1, but for now those advantages are being partially put on hold. Specifically, until XSD 1.1 becomes a W3C Recommendation, the elements of RIF which are based on it should be considered <em>optional</em>, as detailed in <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#XML_Schema_Datatypes">Datatypes and Builtins, section 2.3</a>. Upon the publication of XSD 1.1 as a W3C Recommendation, those elements will cease to be optional and are to be considered required as otherwise specified.</p>
<p>We suggest that for now developers and users follow the <a href="http://www.w3.org/TR/2009/WD-xmlschema11-1-20091203/">XSD 1.1 Last Call Working Draft</a>. Based on discussions between the Schema, RIF and OWL Working Groups, we do not expect any implementation changes will be necessary as XSD 1.1 advances to Recommendation.</p>
</div>
<h4 class="no-toc no-num" id="status-changes">Document Unchanged</h4>
<p>There have been no changes to the body of this document since the <a href="http://www.w3.org/TR/2010/PR-rif-bld-20100511/">previous version</a>. For details on earlier changes, see the <a href="#changelog">change log</a>.</p>
<h4 class="no-toc no-num" id="please">Please Send Comments</h4><p>Please send any comments to <a class="mailto" href="mailto:public-rif-comments@w3.org">public-rif-comments@w3.org</a>
(<a class="http" href="http://lists.w3.org/Archives/Public/public-rif-comments/">public
archive</a>). Although work on this document by the <a href="http://www.w3.org/2005/rules/wg.html">Rule Interchange Format (RIF) Working Group</a> is complete, comments may be addressed in the <a href="http://www.w3.org/2010/rif/errata">errata</a> or in future revisions. Open discussion among developers is welcome at <a class="mailto" href="mailto:public-rif-dev@w3.org">public-rif-dev@w3.org</a> (<a class="http" href="http://lists.w3.org/Archives/Public/public-rif-dev/">public archive</a>).</p>
<h4 class="no-toc no-num" id="endorsement">Endorsed By W3C</h4>
<p><em>This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.</em></p>
<h4 class="no-toc no-num" id="patents">Patents</h4>
<p><em>This document was produced by a group operating under the <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/">5 February 2004 W3C Patent Policy</a>. W3C maintains a <a href="http://www.w3.org/2004/01/pp-impl/38457/status" rel="disclosure">public list of any patent disclosures</a> made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent.</em></p>
<hr title="Separator After Status Section" />
<table class="toc" id="toc" summary="Contents"><tr><td><div id="toctitle"><h2>Table of Contents</h2></div>
<ul>
<li class="toclevel-1"><a href="#Overview"><span class="tocnumber">1</span> <span class="toctext">Overview</span></a></li>
<li class="toclevel-1"><a href="#Direct_Specification_of_RIF-BLD_Presentation_Syntax"><span class="tocnumber">2</span> <span class="toctext">Direct Specification of RIF-BLD Presentation Syntax</span></a>
<ul>
<li class="toclevel-2"><a href="#Alphabet_of_RIF-BLD"><span class="tocnumber">2.1</span> <span class="toctext">Alphabet of RIF-BLD</span></a></li>
<li class="toclevel-2"><a href="#Terms"><span class="tocnumber">2.2</span> <span class="toctext">Terms</span></a></li>
<li class="toclevel-2"><a href="#Formulas"><span class="tocnumber">2.3</span> <span class="toctext">Formulas</span></a></li>
<li class="toclevel-2"><a href="#RIF-BLD_Annotations_in_the_Presentation_Syntax"><span class="tocnumber">2.4</span> <span class="toctext">RIF-BLD Annotations in the Presentation Syntax</span></a></li>
<li class="toclevel-2"><a href="#Well-formed_Formulas"><span class="tocnumber">2.5</span> <span class="toctext">Well-formed Formulas</span></a></li>
<li class="toclevel-2"><a href="#EBNF_Grammar_for_the_Presentation_Syntax_of_RIF-BLD_.28Informative.29"><span class="tocnumber">2.6</span> <span class="toctext">EBNF Grammar for the Presentation Syntax of RIF-BLD (Informative)</span></a>
<ul>
<li class="toclevel-3"><a href="#EBNF_for_the_Condition_Language"><span class="tocnumber">2.6.1</span> <span class="toctext">EBNF for the Condition Language</span></a></li>
<li class="toclevel-3"><a href="#EBNF_for_the_Rule_Language"><span class="tocnumber">2.6.2</span> <span class="toctext">EBNF for the Rule Language</span></a></li>
<li class="toclevel-3"><a href="#EBNF_for_Annotations"><span class="tocnumber">2.6.3</span> <span class="toctext">EBNF for Annotations</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Direct_Specification_of_RIF-BLD_Semantics"><span class="tocnumber">3</span> <span class="toctext">Direct Specification of RIF-BLD Semantics</span></a>
<ul>
<li class="toclevel-2"><a href="#Truth_Values"><span class="tocnumber">3.1</span> <span class="toctext">Truth Values</span></a></li>
<li class="toclevel-2"><a href="#Semantic_Structures"><span class="tocnumber">3.2</span> <span class="toctext">Semantic Structures</span></a></li>
<li class="toclevel-2"><a href="#RIF-BLD_Annotations_in_the_Semantics"><span class="tocnumber">3.3</span> <span class="toctext">RIF-BLD Annotations in the Semantics</span></a></li>
<li class="toclevel-2"><a href="#Interpretation_of_Non-document_Formulas"><span class="tocnumber">3.4</span> <span class="toctext">Interpretation of Non-document Formulas</span></a></li>
<li class="toclevel-2"><a href="#Interpretation_of_Documents"><span class="tocnumber">3.5</span> <span class="toctext">Interpretation of Documents</span></a></li>
<li class="toclevel-2"><a href="#Logical_Entailment"><span class="tocnumber">3.6</span> <span class="toctext">Logical Entailment</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#XML_Serialization_Syntax_for_RIF-BLD"><span class="tocnumber">4</span> <span class="toctext">XML Serialization Syntax for RIF-BLD</span></a>
<ul>
<li class="toclevel-2"><a href="#XML_for_the_Condition_Language"><span class="tocnumber">4.1</span> <span class="toctext">XML for the Condition Language</span></a></li>
<li class="toclevel-2"><a href="#XML_for_the_Rule_Language"><span class="tocnumber">4.2</span> <span class="toctext">XML for the Rule Language</span></a></li>
<li class="toclevel-2"><a href="#Mapping_from_the_Presentation_Syntax_to_the_XML_Syntax"><span class="tocnumber">4.3</span> <span class="toctext">Mapping from the Presentation Syntax to the XML Syntax</span></a>
<ul>
<li class="toclevel-3"><a href="#Mapping_of_the_Condition_Language"><span class="tocnumber">4.3.1</span> <span class="toctext">Mapping of the Condition Language</span></a></li>
<li class="toclevel-3"><a href="#Mapping_of_the_Rule_Language"><span class="tocnumber">4.3.2</span> <span class="toctext">Mapping of the Rule Language</span></a></li>
<li class="toclevel-3"><a href="#Mapping_of_Annotations"><span class="tocnumber">4.3.3</span> <span class="toctext">Mapping of Annotations</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Conformance_Clauses"><span class="tocnumber">5</span> <span class="toctext">Conformance Clauses</span></a></li>
<li class="toclevel-1"><a href="#RIF-BLD_as_a_Specialization_of_the_RIF_Framework_for_Logic_Dialects_.5BRIF-FLD.5D"><span class="tocnumber">6</span> <span class="toctext">RIF-BLD as a Specialization of the RIF Framework for Logic Dialects [RIF-FLD]</span></a>
<ul>
<li class="toclevel-2"><a href="#The_Presentation_Syntax_of_RIF-BLD_as_a_Specialization_of_RIF-FLD"><span class="tocnumber">6.1</span> <span class="toctext">The Presentation Syntax of RIF-BLD as a Specialization of RIF-FLD</span></a></li>
<li class="toclevel-2"><a href="#The_Semantics_of_RIF-BLD_as_a_Specialization_of_RIF-FLD"><span class="tocnumber">6.2</span> <span class="toctext">The Semantics of RIF-BLD as a Specialization of RIF-FLD</span></a></li>
<li class="toclevel-2"><a href="#The_XML_Serialization_of_RIF-BLD_as_a_Specialization_of_RIF-FLD"><span class="tocnumber">6.3</span> <span class="toctext">The XML Serialization of RIF-BLD as a Specialization of RIF-FLD</span></a></li>
<li class="toclevel-2"><a href="#RIF-BLD_Conformance_as_a_Specialization_of_RIF-FLD"><span class="tocnumber">6.4</span> <span class="toctext">RIF-BLD Conformance as a Specialization of RIF-FLD</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Acknowledgements"><span class="tocnumber">7</span> <span class="toctext">Acknowledgements</span></a></li>
<li class="toclevel-1"><a href="#References"><span class="tocnumber">8</span> <span class="toctext">References</span></a>
<ul>
<li class="toclevel-2"><a href="#Normative_References"><span class="tocnumber">8.1</span> <span class="toctext">Normative References</span></a></li>
<li class="toclevel-2"><a href="#Informational_References"><span class="tocnumber">8.2</span> <span class="toctext">Informational References</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Appendix:_XML_Schema_for_RIF-BLD"><span class="tocnumber">9</span> <span class="toctext">Appendix: XML Schema for RIF-BLD</span></a>
<ul>
<li class="toclevel-2"><a href="#Condition_Language"><span class="tocnumber">9.1</span> <span class="toctext">Condition Language</span></a></li>
<li class="toclevel-2"><a href="#Rule_Language"><span class="tocnumber">9.2</span> <span class="toctext">Rule Language</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Appendix:_Change_Log_.28Informative.29"><span class="tocnumber">10</span> <span class="toctext">Appendix: Change Log (Informative)</span></a></li>
</ul>
</td></tr></table><script type="text/javascript"> if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } </script>
<a id="Overview" name="Overview"></a><h2> <span class="mw-headline">1 Overview </span></h2>
<p><span class="anchor" id="overview"></span> This specification develops <i><b>RIF-BLD</b></i> (the <b>B</b>asic <b>L</b>ogic <b>D</b>ialect of the <b>R</b>ule <b>I</b>nterchange <b>F</b>ormat). From a theoretical perspective, RIF-BLD corresponds to the language of definite Horn rules with equality and a standard first-order semantics [<a href="#ref-chang-lee" title="">CL73</a>]. Syntactically, RIF-BLD has a number of extensions to support features such as objects and frames as in F-logic [<a href="#ref-flogic-95" title="">KLW95</a>], internationalized resource identifiers (or IRIs, defined by [<a href="#ref-rfc-3987" title="">RFC-3987</a>]) as identifiers for concepts, and XML Schema datatypes [<a href="#ref-xml-schema2" title="">XML-SCHEMA2</a>]. In addition, RIF RDF and OWL Compatibility [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>] defines semantics for the integrated RIF-BLD/RDF and RIF-BLD/OWL languages. These features make RIF-BLD a Web-aware language. However, it should be kept in mind that RIF is designed to enable interoperability among rule languages in general, and its uses are not limited to the Web.
</p><p>While rule interchange (and not, e.g., execution) is the principle design goal for RIF-BLD, the design clearly indicates a decision to avoid solving the (probably impossible) problem of rule interchange in general. Instead, the design of RIF reflects the rationale of identifying specific kinds of rules within existing rule systems, called <i>RIF dialects</i>, that can be translated into other rule systems without changing their meaning. RIF-BLD is just the first in a series of such dialects. In particular, RIF-BLD has the RIF-Core dialect [<a href="#ref-rif-core" title="">RIF-Core</a>] as a subset. It is <i>not expected</i> that most rule systems will be able to translate all their rules into RIF-BLD, rather it is expected that only certain kinds of rules will be translatable. Since there are many existing rule languages with useful features that are not supported in RIF-BLD, it is expected that RIF-BLD translators will not translate rules that use such features. This could drive the design of "BLD-specific" rule sets in which rules are specifically written by the implementor to be within the BLD dialect and thus be portable between many rule system implementations.
</p><p>Among its many influences, RIF shares certain characteristics with ISO Common Logic (CL) [<a href="#ref-common-logic" title="">ISO-CL</a>], itself an evolution of KIF [<a href="#ref-kif" title="">KIF</a>] and Conceptual Graphs [<a href="#ref-cg" title="">CG</a>]. Like CL, RIF employs XML as its primary normative syntax, uses IRIs as identifiers, specifies integrated RIF-BLD/RDF and RIF-BLD/OWL languages for Semantic Web Compatibility [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>], and provides a rich set of datatypes and built-ins that are designed to be well aligned with Web-aware rule system implementations [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]. Unlike CL, RIF-BLD was designed to be a <i>simple</i> dialect with limited expressiveness that lies within the intersection of first-order and logic-programming systems. This is why RIF-BLD does not support negation. More generally, RIF-BLD is part of a coherent array of RIF rule dialects, which encompasses both logic rules -- through the RIF framework for logic dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>] also including a variety of rule languages based on non-monotonic theories -- and production rules, as defined in [<a href="#ref-rif-prd" title="">RIF-PRD</a>]. CL, on the other hand, is strictly first-order; it does not account for non-monotonic semantics (e.g. negation as failure, defaults, priorities, etc.). For rule interchange between CL and RIF dialects, it is expected that partial RIF-CL mappings will be defined.
</p><p>RIF-BLD also bears some similarity to SPARQL, in particular with respect to RDF Compatibility [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>]. As with the well-known correspondence between a fragment of SQL and Datalog, SPARQL can be partially mapped to Datalog (and thus to the RIF-Core subset of RIF-BLD), see [<a href="#ref-sparql-rules" title="">AP07</a>] and [<a href="#ref-sparql-expr" title="">AG08</a>] for details. A full mapping of SPARQL would need constructs beyond RIF-BLD, such as non-monotonic negation. Likewise, not all of SPARQL's FILTER functions are expressible in RIF-DTB built-in predicates. Not all of RIF-BLD is expressible in SPARQL either, for instance recursive rules over RDF Data are not expressible as SPARQL CONSTRUCT statements.
</p><p>RIF-BLD is defined in two different ways -- <i>both normative</i>:
</p>
<ul>
<li>
As a direct specification, independently of the RIF framework for logic dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>], for the benefit of those who desire a direct path to RIF-BLD, e.g., as prospective implementers, and are not interested in extensibility issues. This version of the RIF-BLD specification is given first.
</li>
<li>
As a specialization of the RIF framework for logic dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>], which is part of the RIF extensibility framework.
Building on RIF-FLD, this version of the RIF-BLD specification is comparatively short and is presented in Section <a href="#sec-bld-fld-spec" title="">RIF-BLD as a Specialization of the RIF Framework</a> at the end of this document. This is intended for the reader who is already familiar with RIF-FLD and does not need to go through the much longer direct specification of RIF-BLD. This section is also useful for dialect designers, as it is a concrete example of how a non-trivial RIF dialect can be derived from the RIF framework for logic dialects.
</li>
</ul>
<p>Logic-based RIF dialects that specialize or extend RIF-BLD in accordance with the RIF framework for logic dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>] include RIF-Core as a specialization of RIF-BLD. It is expected that other specifications will develop further logic dialects based on RIF-BLD such as a RIF-BLD extension capturing uncertainty [<a href="#ref-rif-urd" title="">URD08</a>].
</p><p>As a preview, here is a simple complete RIF-BLD example deriving a ternary relation from its inverse.
</p><p><b>Example 1</b> (An introductory RIF-BLD example).
</p><p>A rule can be written in English to derive the <tt>buy</tt> relationships
(rather than store them) from the <tt>sell</tt> relationships that are
stored as facts (e.g., as exemplified by the English statement below):
</p>
<ul>
<li>
<em>
A buyer buys an item from a seller
if the seller sells the item to the buyer.
</em>
</li>
<li>
<em>
John sells LeRif to Mary.
</em>
</li>
</ul>
<p>Intuitively, the fact <i>Mary buys LeRif from John</i> should be logically derivable from the above premises.
Assuming Web IRIs for the predicates <tt>buy</tt> and <tt>sell</tt>, as well as for the individuals
<tt>John</tt>, <tt>Mary</tt>, and <tt>LeRif</tt>, the above English text can be represented in the <a href="#sec-bld-direct-syntax" title="">RIF-BLD Presentation Syntax</a> as follows.
</p>
<pre>Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(bks <http://example.com/books#>)
Group
(
Forall ?Buyer ?Item ?Seller (
cpt:buy(?Buyer ?Item ?Seller) :- cpt:sell(?Seller ?Item ?Buyer)
)
cpt:sell(<John> bks:LeRif "Mary"^^rif:iri)
)
)
</pre>
<p>Note that IRIs are represented in several different ways in this example. First,
the [<a href="#ref-curie" title="">CURIE</a>] notation <tt>prefix:suffix</tt> is used to shorten IRI representation. For instance, <tt>cpt:buy</tt> via a <tt>Prefix</tt> directive represents the <tt>rif:iri</tt> constant <tt>"http://example.com/concepts#buy"^^rif:iri</tt>.
Another way to shorten this IRI constant is to use the angle-bracketed notation <tt><http://example.com/concepts#buy></tt>. The <tt>Base</tt> directive provides yet another shortcut: it applies to all relative IRIs, such as
<tt>"Mary"^^rif:iri</tt> and <tt><John></tt>. The <tt>Base</tt> directive expands these relative IRIs to <tt>"http://example.com/people#Mary"^^rif:iri</tt> and <tt>"http://example.com/people#John"^^rif:iri</tt>, respectively.
</p><p><br />
Whenever a RIF-BLD document falls into the Core subset or can be translated to it, the document should be produced in RIF-Core to allow its interchange with a maximum number of RIF consumers.
For instance, the Datalog-like RIF document in Example 1 is also a RIF-Core example.
</p><p>For the interchange of documents containing RIF-BLD rules (and facts), a concrete <a href="#sec-xml-bld" title="">RIF-BLD XML Syntax</a> is given in this specification. To formalize their meaning, a model-theoretic <a href="#sec-bld-direct-semantics" title="">RIF-BLD Semantics</a> is specified.
</p><p><span class="anchor" id="sec-bld-direct-syntax"></span>
</p>
<a id="Direct_Specification_of_RIF-BLD_Presentation_Syntax" name="Direct_Specification_of_RIF-BLD_Presentation_Syntax"></a><h2> <span class="mw-headline">2 Direct Specification of RIF-BLD Presentation Syntax </span></h2>
<p>This section specifies the <i><b>presentation syntax</b></i> of RIF-BLD directly, without relying on [<a href="#ref-rif-fld" title="">RIF-FLD</a>]. In the first five (normative) subsections, the presentation syntax is
defined using "mathematical English," a special form of English for communicating mathematical definitions, examples, etc.
In the non-normative subsection <a href="#sec-concrete-syntax" title="">EBNF Grammar for the Presentation Syntax of RIF-BLD</a>, a grammar for a superset of the presentation syntax is given using Extended Backus–Naur Form (EBNF).
Neither the mathematical English nor the EBNF is intended to be a concrete syntax for RIF-BLD. The mathematical English deliberately leaves out details such as the delimiters of the various syntactic components, escape symbols, parenthesizing, precedence of operators, and the like. The EBNF does not specify context-sensitive syntactic constraints.
Since RIF is an interchange format, it uses <i><b>XML as the only concrete syntax</b></i>,
which will be defined in <a href="#sec-xml-bld" title="">XML Serialization Syntax for RIF-BLD</a>. Hence <a href="#sec-conformance" title="">RIF-BLD conformance</a> is described in terms of <a href="#def-conformance" title="">semantics-preserving transformations</a>.
</p><p>Note to the reader: this section depends on Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p><p><br />
<span class="anchor" id="sec-alphabet"></span>
</p>
<a id="Alphabet_of_RIF-BLD" name="Alphabet_of_RIF-BLD"></a><h4> <span class="mw-headline">2.1 Alphabet of RIF-BLD </span></h4>
<p><span class="anchor" id="def-bld-alphabet"></span>
<b>Definition (Alphabet)</b>.
The <i><b>alphabet</b></i> of the presentation language of RIF-BLD consists of
</p>
<ul><li> a countably infinite set of <i><b>constant symbols</b></i> <tt>Const</tt>
</li><li> a countably infinite set of <i><b>variable symbols</b></i> <tt>Var</tt> (disjoint from <tt>Const</tt>)
</li><li> a countably infinite set of argument names, <tt>ArgNames</tt> (disjoint from <tt>Const</tt> and <tt>Var</tt>)
</li><li> connective symbols <tt>And</tt>, <tt>Or</tt>, and <tt>:-</tt>
</li><li> quantifiers <tt>Exists</tt> and <tt>Forall</tt>
</li><li> the symbols <tt>=</tt>, <tt>#</tt>, <tt>##</tt>, <tt>-></tt>, <tt>External</tt>, <tt>Import</tt>, <tt>Prefix</tt>, and <tt>Base</tt>
</li><li> the symbols <tt>Group</tt> and <tt>Document</tt>
</li><li> the symbols for representing lists: <tt>List</tt> and <tt>OpenList</tt>.
</li><li> the auxiliary symbols <tt>(</tt>, <tt>)</tt>, <tt>[</tt>, <tt>]</tt>, <tt><</tt>, <tt>></tt>, and <tt>^^</tt>
</li></ul>
<p>The set of connective symbols, quantifiers, <tt>=</tt>, etc., is disjoint from <tt>Const</tt> and <tt>Var</tt>. The argument names in <tt>ArgNames</tt> are written as Unicode strings that must not start with a question mark, "<tt>?</tt>". Variables are written as Unicode strings preceded with the symbol "<tt>?</tt>".
</p><p>Constants are written as <tt>"literal"^^symspace</tt>, where <tt>literal</tt> is a sequence of Unicode characters and
<tt>symspace</tt> is an identifier for a symbol space. Symbol spaces are defined in Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p><p>The symbols <tt>=</tt>, <tt>#</tt>, and <tt>##</tt> are used in formulas that define equality, class membership, and subclass relationships. The symbol <tt>-></tt> is used in terms that have named arguments and in frame formulas. The symbol <tt>External</tt> indicates that an atomic formula or a function term is defined externally (e.g., a built-in) and the symbols <tt>Prefix</tt> and <tt>Base</tt> enable compact representations of IRIs [<a href="#ref-rfc-3987" title="">RFC-3987</a>].
</p><p>The symbol <tt>Document</tt> is used to specify RIF-BLD documents, the symbol <tt>Import</tt> is an import directive, and the symbol <tt>Group</tt> is used to organize RIF-BLD formulas into collections. ☐
</p><p>The language of RIF-BLD is the set of formulas constructed using the above alphabet according to the rules given below.
</p><p><br />
<span class="anchor" id="sec-terms"></span>
</p>
<a id="Terms" name="Terms"></a><h4> <span class="mw-headline">2.2 Terms </span></h4>
<p>RIF-BLD defines several kinds of terms: <i>constants</i> and <i>variables</i>,
<i>positional</i> terms, terms with <i>named arguments</i>, plus <i>equality</i>,
<i>membership</i>, <i>subclass</i>, <i>frame</i>, and <i>external</i> terms. The word "<i>term</i>" will be used to refer to any of these constructs.
</p><p>To simplify the next definition, we will use the phrase <i>base term</i> to refer to simple, positional, or named-argument terms, or to terms of the form <tt>External(t)</tt>, where <tt>t</tt> is a positional or a named-argument term.
</p><p><span class="anchor" id="def-bld-term"></span>
<b>Definition (Term)</b>.
</p>
<ol>
<li><i>Constants and variables</i>. If <tt>t</tt> ∈ <tt>Const</tt> or <tt>t</tt> ∈ <tt>Var</tt> then <tt>t</tt> is a <i><b>simple term</b></i>. </li>
<li><i>Positional terms</i>. If <tt>t</tt> ∈ <tt>Const</tt> and <tt>t<sub>1</sub></tt>, ..., <tt>t<sub>n</sub></tt>, <tt>n≥0</tt>, are base terms then <tt>t(t<sub>1</sub> ... t<sub>n</sub>)</tt> is a <i><b>positional term</b></i>.
<p>
Positional terms correspond to the usual terms and atomic formulas of
classical first-order logic [<a href="#ref-enderton01" title="">Enderton01</a>, <a href="#ref-mendelson97" title="">Mendelson97</a>].
</p></li>
<li><i>Terms with named arguments</i>. A <i><b>term with named arguments</b></i> is of the form <tt>t(s<sub>1</sub>->v<sub>1</sub> ... s<sub>n</sub>->v<sub>n</sub>)</tt>, where <tt>n≥0</tt>, <tt>t</tt> ∈ <tt>Const</tt> and <tt>v<sub>1</sub></tt>, ..., <tt>v<sub>n</sub></tt> are base terms and <tt>s<sub>1</sub></tt>, ..., <tt>s<sub>n</sub></tt> are pairwise distinct symbols from the set <tt>ArgNames</tt>.
<p>The constant <tt>t</tt> here represents a predicate or a function; <tt>s<sub>1</sub></tt>, ..., <tt>s<sub>n</sub></tt> represent argument names; and <tt>v<sub>1</sub></tt>, ..., <tt>v<sub>n</sub></tt> represent argument values. The argument names, <tt>s<sub>1</sub></tt>, ..., <tt>s<sub>n</sub></tt>, are required to be pairwise distinct. Terms with named arguments are like positional terms except that the arguments are named and their order is immaterial. Note that a term of the form <tt>f()</tt> is, trivially, both a positional term and a term with named arguments. </p>
<p>
Terms with named arguments are introduced to support exchange of languages
that permit argument positions of predicates and functions to be named
(in which case the order of the arguments does not matter).
</p>
</li>
<li>
<i>List terms</i>. There are two kinds of list terms: <em>open</em> and <em>closed</em>.
<ul>
<li>
A <i><b>closed list</b></i> has the form <tt>List(t</tt><sub>1</sub> ... <tt>t</tt><sub>m</sub><tt>)</tt>, where <tt>m≥0</tt> and <tt>t</tt><sub>1</sub>, ..., <tt>t</tt><sub>m</sub> are terms.
</li>
<li>
An <i><b>open list</b></i> (or a list with a tail) has the form
<tt>OpenList(t</tt><sub>1</sub> ... <tt>t</tt><sub>m</sub> <tt>t)</tt>, where <tt>m>0</tt> and <tt>t</tt><sub>1</sub>, ..., <tt>t</tt><sub>m</sub>, <tt>t</tt> are terms. Open lists are usually written using the following: <tt>List(t</tt><sub>1</sub> ... <tt>t</tt><sub>m</sub> <tt>|</tt> <tt>t)</tt>.
<p>
The last argument, <tt>t</tt>, represents the tail of the list and so it is normally a list as well. However, the syntax does not restrict <tt>t</tt> in any way: it could be an integer, a variable, another list, or, in fact, any term. An example is <tt>List(1 2 | 3)</tt>. This is not an ordinary list, where the last argument, <tt>3</tt>, would represent the tail of a list (and thus would also be a list, which <tt>3</tt> is not). Such general open lists correspond to Lisp's dotted lists [<a href="#ref-steele90" title="">Steele90</a>]. Note that they can be the result of instantiating an open list with a variable in the tail, hence are hard to avoid. For instance, <tt>List(1 2 | 3)</tt> is <tt>List(1 2 | ?X)</tt>, where the variable <tt>?X</tt> is replaced with <tt>3</tt>.
</p>
</li>
</ul>
<p>
A closed list of the form <tt>List()</tt> (i.e., a list in which <tt>m=0</tt>, corresponding to Lisp's <tt>nil</tt>) is called the <i><b>empty list</b></i>.
</p>
<p>
</p>
</li>
<li><i>Equality terms</i>. <tt>t = s</tt> is an <i><b>equality term</b></i>, if <tt>t</tt> and <tt>s</tt> are base terms. </li>
<li><i>Class membership terms</i> (or just <i>membership terms</i>). <tt>t#s</tt> is a <i><b>membership term</b></i> if <tt>t</tt> and <tt>s</tt> are base terms. </li>
<li><i>Subclass terms</i>. <tt>t##s</tt> is a <i><b>subclass term</b></i> if <tt>t</tt> and <tt>s</tt> are base terms.
</li>
<li><i>Frame terms</i>. <tt>t[p<sub>1</sub>->v<sub>1</sub> ... p<sub>n</sub>->v<sub>n</sub>]</tt> is a <i><b>frame term</b></i> (or simply a <i><b>frame</b></i>) if <tt>t</tt>, <tt>p<sub>1</sub></tt>, ..., <tt>p<sub>n</sub></tt>, <tt>v<sub>1</sub></tt>, ..., <tt>v<sub>n</sub></tt>, <tt>n ≥ 0</tt>, are base terms.
<p>
Membership, subclass, and frame terms are used to describe objects and class hierarchies.
</p>
</li>
<li>
<i>Externally defined terms.</i> If <tt>t</tt> is a positional or a named-argument term then <tt>External(t)</tt> is an <i><b>externally defined term</b></i>.
<p>
External terms are used for representing built-in functions and predicates as well as "procedurally attached" terms or predicates, which might exist in various rule-based systems, but are not specified by RIF. ☐
</p>
</li>
</ol>
<p>Observe that the argument names of frame terms, <tt>p<sub>1</sub></tt>, ..., <tt>p<sub>n</sub></tt>, are base terms and so, as a special case, can be variables. In contrast, terms with named arguments can use only the symbols from <tt>ArgNames</tt> to represent their argument names. They cannot be constants from <tt>Const</tt> or variables from <tt>Var</tt>. The reason for not allowing variables for those is to control the complexity of unification, which is used by several inference mechanisms of first-order logic.
</p><p><br />
<b>Example 2</b> (Terms)
</p><p>a. Positional term: <tt>"http://example.com/ex1"^^rif:iri(1 "http://example.com/ex2"^^rif:iri(?X 5) "abc")</tt>
</p><p>b. Term with named arguments: <tt>"http://example.com/Person"^^rif:iri(id->"http://example.com/John"^^rif:iri "age"^^rif:local->?X "spouse"^^rif:local->?Y)</tt>
</p><p>c. Frame term: <tt>"http://example.com/John"^^rif:iri["age"^^rif:local->?X "spouse"^^rif:local->?Y]</tt>
</p><p>d. Lists
</p><p>- Empty list: <tt>List()</tt>
</p><p>- Closed list with variable inside: <tt>List("a"^^xs:string ?Y "c"^^xs:string)</tt>
</p><p>- Open list with variables: <tt>List("a"^^xs:string ?Y "c"^^xs:string | ?Z)</tt>
</p><p>- Equality term with lists inside: <tt>List(Head | Tail) = List("a"^^xs:string ?Y "c"^^xs:string)</tt>
</p><p>- Nested list: <tt>List("a"^^xs:string List(?X "b"^^xs:string) "c"^^xs:string)</tt>
</p><p><br />
e. Classification terms
</p><p>- Membership: <tt>?X # ?Y</tt>
</p><p>- Subclass: <tt>?X ## "http://example.com/ex1"^^rif:iri(?Y)</tt>
</p><p>- Membership: <tt>"http://example.com/John"^^rif:iri # "http://example.com/Person"^^rif:iri</tt>
</p><p>- Subclass: <tt>"http://example.com/Student"^^rif:iri ## "http://example.com/Person"^^rif:iri</tt>
</p><p><br />
f. External term: <tt>External(pred:numeric-greater-than(?diffdays 10)))</tt>
</p><p><br />
<span class="anchor" id="sec-formulas"></span>
</p>
<a id="Formulas" name="Formulas"></a><h4> <span class="mw-headline">2.3 Formulas </span></h4>
<p>RIF-BLD distinguishes certain subsets of the set <tt>Const</tt> of symbols, including subsets of <i>predicate symbols</i> and <i>function symbols</i>. Section <a href="#sec-well-formed" title="">Well-formed Formulas</a> gives more details, but we do not need those details yet.
</p><p><span class="anchor" id="def-bld-atomic-formula"></span>
<b>Definition (Atomic Formula)</b>.
Any term (positional or with named arguments) of the form <tt>p(...)</tt>, where <tt>p</tt> is a predicate symbol, is also an <i><b>atomic formula</b></i>. Equality, membership, subclass, and frame terms are also atomic formulas. An externally defined term of the form <tt>External(φ)</tt>, where <tt>φ</tt> is an atomic formula, is also an atomic formula, called an <i><b>externally defined</b></i> atomic formula.
☐
</p><p>Note that simple terms (constants and variables) are <i>not</i> formulas.
</p><p>More general formulas are constructed from atomic formulas with the help of logical connectives.
</p><p><span class="anchor" id="def-bld-formula"></span>
<b>Definition (Formula)</b>.
A <i><b>formula</b></i> can have several different forms and is defined as follows:
</p>
<ol>
<li>
<i>Atomic</i>: If <tt>φ</tt> is an atomic formula then it is also a formula.
</li>
<li>
<i><span id="def-bld-condition">Condition formula</span></i>: A <i><b>condition formula</b></i> is either an atomic formula or a formula that has one of the following forms:
<ul>
<li>
<i>Conjunction</i>: If <tt>φ<sub>1</sub></tt>, ..., <tt>φ<sub>n</sub></tt>, <tt>n ≥ 0</tt>, are condition formulas then so is <tt>And(φ<sub>1</sub> ... φ<sub>n</sub>)</tt>, called a <i>conjunctive</i> formula. As a special case, <tt>And()</tt> is allowed and is treated as a tautology, i.e., a formula that is always true.
</li>
<li>
<i>Disjunction</i>: If <tt>φ<sub>1</sub></tt>, ..., <tt>φ<sub>n</sub></tt>, <tt>n ≥ 0</tt>, are condition formulas then so is <tt>Or(φ<sub>1</sub> ... φ<sub>n</sub>)</tt>, called a <i>disjunctive</i> formula. As a special case, <tt>Or()</tt> is permitted and is treated as a contradiction, i.e., a formula that is always false.
</li>
<li>
<i>Existentials</i>: If <tt>φ</tt> is a condition formula and <tt>?V<sub>1</sub></tt>, ..., <tt>?V<sub>n</sub></tt>, <tt>n>0</tt>, are distinct variables then <tt>Exists ?V<sub>1</sub> ... ?V<sub>n</sub>(φ)</tt> is an <i>existential</i> formula.
</li>
</ul>
<p>
Condition formulas are intended to be used inside the premises of rules. Next we define the notions of rule implications, universal rules, universal facts, groups (i.e., sets of rules and facts), and documents.
</p>
</li>
<li>
<i>Rule implication</i>: <tt>φ :- ψ</tt> is a formula, called <i>rule implication</i>, if:
<ul>
<li>
<tt>φ</tt> is an atomic formula or a <i>conjunction</i> of atomic formulas,
</li>
<li>
<tt>ψ</tt> is a condition formula, and
</li>
<li>
none of the atomic formulas in <tt>φ</tt> is an externally defined term (i.e., a term of the form <tt>External(...)</tt>). Note: external terms <i>can</i> occur in the <i>arguments</i> of atomic formulas in the rule conclusion. For instance, <tt>p(func:numeric-add(?X,"2"^^xs:integer)) :- q(?X)</tt>.
</li>
</ul>
</li>
<li>
<i>Universal rule</i>: If <tt>φ</tt> is a rule implication and <tt>?V<sub>1</sub></tt>, ..., <tt>?V<sub>n</sub></tt>, <tt>n>0</tt>, are distinct variables then <tt>Forall ?V<sub>1</sub> ... ?V<sub>n</sub>(φ)</tt> is a formula, called a <i>universal rule</i>. It is required that all the <i>free</i> variables in <tt>φ</tt> occur among the variables <tt>?V<sub>1</sub> ... ?V<sub>n</sub></tt> in the quantification part. An occurrence of a variable <tt>?v</tt> is <i>free</i> in <tt>φ</tt> if it is not inside a subformula of <tt>φ</tt> of the form <tt>Exists ?v (ψ)</tt> and <tt>ψ</tt> is a formula. Universal rules will also be referred to as <i><b><span class="anchor" id="def-rif-bld-rule">RIF-BLD rules</span></b></i>.
</li>
<li>
<i>Universal fact</i>: If <tt>φ</tt> is an atomic formula and <tt>?V<sub>1</sub></tt>, ..., <tt>?V<sub>n</sub></tt>, <tt>n>0</tt>, are distinct variables then
<tt>Forall ?V<sub>1</sub> ... ?V<sub>n</sub>(φ)</tt> is a formula, called a <i>universal fact</i>, provided that all the free variables in <tt>φ</tt> occur among the variables <tt>?V<sub>1</sub> ... ?V<sub>n</sub></tt>.
<p>
Universal facts are often considered to be rules without premises.
</p>
</li>
<li>
<i>Group</i>: If <tt>φ<sub>1</sub></tt>, ..., <tt>φ<sub>n</sub></tt> are RIF-BLD rules, universal facts, variable-free rule implications, variable-free atomic formulas, <i>or</i> group formulas then <tt>Group(φ<sub>1</sub> ... φ<sub>n</sub>)</tt> is a <i>group formula</i>. As a special case, the empty group formula, <tt>Group()</tt>, is allowed and is treated as a tautology, i.e., a formula that is always true.
<p>
Non-empty group formulas are used to represent sets of rules and facts. Note that some of the <tt>φ<sub>i</sub></tt>'s can be group formulas themselves, which means that groups can be nested.
</p>
</li>
<li>
<i>Document</i>: An expression of the form <tt>Document(<em>directive<sub>1</sub></em> ... <em>directive<sub>n</sub></em> Γ)</tt> is a <i>RIF-BLD document formula</i> (or simply a <i>document formula</i>), if
<ul>
<li>
<tt>Γ</tt> is an optional group formula; it is called the group formula <span id="def-associated-group"><i>associated</i></span> with the document.
</li>
<li>
<tt><em>directive<sub>1</sub></em></tt>, ..., <tt><em>directive<sub>n</sub></em></tt> is an optional sequence of <span id="def-directives"><em>directives</em></span>. A directive can be a <i>base directive</i>, a <i>prefix directive</i> or an <i>import directive</i>.
<ul>
<li>
A <i><b>base directive</b></i> has the form <tt>Base(<iri>)</tt>, where <tt>iri</tt> is a Unicode string in the form of an absolute IRI [<a href="#ref-rfc-3987" title="">RFC-3987</a>].
<p>
The <tt>Base</tt> directive defines a syntactic shortcut for expanding relative IRIs into full IRIs, as described in Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p>
</li>
<li>
A <i><b>prefix directive</b></i> has the form <tt>Prefix(p <v>)</tt>, where <tt>p</tt> is an alphanumeric string that serves as the prefix name and <tt>v</tt> is an expansion for <tt>p</tt> -- a Unicode sequence of characters that forms an IRI.
(An alphanumeric string is a sequence of ASCII characters, where each character is a letter, a digit, or an underscore "_", and the first character is a letter.)
<p>
Like the <tt>Base</tt> directive, the <tt>Prefix</tt> directives define shorthands to allow more concise representation of constants that come from the symbol space <tt>rif:iri</tt> (we will call such constants <tt>rif:iri</tt> <i><b>constants</b></i>). This mechanism is explained in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>], Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a>.
</p>
</li>
<li>
An <i><b>import directive</b></i> can have one of these two forms: <tt>Import(<loc>)</tt> or <tt>Import(<loc> <p>)</tt>. Here <tt>loc</tt> is a Unicode sequence of characters that forms an IRI and <tt>p</tt> is another Unicode sequence of characters. The constant <tt>loc</tt> represents the location of another document to be imported; it is called the <span class="anchor" id="ref-locator"><i><b>locator</b></i></span> of the imported document. The argument <tt>p</tt> is called the <i>profile of import</i>; it has the form of a Unicode character sequence in the form of an IRI -- see [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>].
<p>
Section <a href="#sec-bld-direct-semantics" title="">Direct Specification of RIF-BLD Semantics</a> of this document defines the semantics for the directive <tt>Import(<loc>)</tt> only. The two-argument directive, <tt>Import(<loc> <p>)</tt>, is intended for importing non-RIF-BLD documents, such as rules from other RIF dialects, RDF data, or OWL ontologies. The profile, <tt>p</tt>, indicates what kind of entity is being imported and under what semantics (for instance, the various RDF entailment regimes have different profiles). The semantics of <tt>Import(<loc> <p>)</tt> (for various <tt>p</tt>) are expected to be given by other specifications on a case-by-case basis. For instance, [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>] defines the semantics for the profiles that are recommended for importing RDF and OWL.
</p>
</li>
</ul>
<p>
Note that although <tt>Base</tt>, <tt>Prefix</tt>, and <tt>Import</tt> all use symbols of the form <iri> to indicate the connection of these symbols to IRIs, these symbols are <em>not</em> <tt>rif:iri</tt> constants, as semantically they are interpreted in a way that is quite different from constants.
</p>
<p>
A document formula can contain at most one <tt>Base</tt> directive. The <tt>Base</tt> directive, if present, must be first, followed by any number of <tt>Prefix</tt> directives, followed by any number of <tt>Import</tt> directives.
</p>
</li>
</ul>
</li>
</ol>
<p>
In the definition of a formula, the component formulas <tt>φ</tt>, <tt>φ<sub>i</sub></tt>, <tt>ψ<sub>i</sub></tt>, and <tt>Γ</tt> are said to be <span class="anchor" id="def-subformula"><i><b>subformulas</b></i></span> of the respective formulas (condition, rule, group, etc.) that are built using these components. ☐
</p>
<p><br />
</p><p><span class="anchor" id="sec-formal-syntax-metadata"></span>
</p>
<a id="RIF-BLD_Annotations_in_the_Presentation_Syntax" name="RIF-BLD_Annotations_in_the_Presentation_Syntax"></a><h4> <span class="mw-headline">2.4 RIF-BLD Annotations in the Presentation Syntax </span></h4>
<p>RIF-BLD allows every term and formula (including terms and formulas that occur inside other terms and formulas) to be optionally preceded by <i>one</i> <i><b>annotation</b></i> of the form <tt>(* id φ *)</tt>, where <tt>id</tt> is a <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-iri-space" title="DTB">rif:iri</a></tt> constant and <tt>φ</tt> is a frame formula or a conjunction of frame formulas. Both items inside the annotation are optional. The <tt>id</tt> part represents the identifier of the term or formula to which the annotation is attached and <tt>φ</tt> is the metadata part of the annotation. RIF-BLD does not impose any restrictions on <tt>φ</tt> apart from what is stated above. This means that it may include variables, function symbols, constants from the symbol space <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-local-space" title="DTB">rif:local</a></tt> (often referred to as <i><b>local</b></i> or <tt>rif:local</tt> <i><b>constants</b></i>), and so on.
</p><p>Document formulas with and without annotations will be referred to as <i><b><span id="def-rif-bld-document">RIF-BLD documents</span></b></i>.
</p><p>The following convention is used to avoid a syntactic ambiguity with respect to annotations. The annotation scoping convention associates each annotation to the largest term or formula it precedes. For instance, in <tt>(* id φ *) t[w -> v]</tt> the metadata annotation could be attributed to the term <tt>t</tt> or to the entire frame <tt>t[w -> v]</tt>. The convention specifies that the above annotation is considered to be syntactically attached to the entire frame. Yet, since <tt>φ</tt> can be a conjunction, some conjuncts can be used to provide metadata targeted to the object part, <tt>t</tt>, of the frame. For instance, <tt>(* And(_foo[meta_for_frame->"this is an annotation for the entire frame"] _bar[meta_for_object->"this is an annotation for t" meta_for_property->"this is an annotation for w"]) *) t[w -> v]</tt>.
</p><p><br />
We suggest to use Dublin Core, RDFS, and OWL properties for metadata, along the lines of <a class="external text" href="http://www.w3.org/TR/owl-ref/#Annotations" title="http://www.w3.org/TR/owl-ref/#Annotations">Section 7.1</a> of [<a href="#ref-owl-reference" title="">OWL-Reference</a>]-- specifically <tt>owl:versionInfo</tt>, <tt>rdfs:label</tt>, <tt>rdfs:comment</tt>, <tt>rdfs:seeAlso</tt>, <tt>rdfs:isDefinedBy</tt>, <tt>dc:creator</tt>, <tt>dc:description</tt>, <tt>dc:date</tt>, and <tt>foaf:maker</tt>.
</p><p><span class="anchor" id="sec-well-formed"></span>
</p>
<a id="Well-formed_Formulas" name="Well-formed_Formulas"></a><h4> <span class="mw-headline">2.5 Well-formed Formulas </span></h4>
<p>Not all formulas and thus not all documents are well-formed in RIF-BLD:
it is required that no constant appear in more than one context. What this means precisely is explained below. Informally, this means that each constant symbol in RIF-BLD can be either an individual, a plain function, a plain predicate, an externally defined function, or an externally defined predicate. However, symbols can be <i>polyadic</i>: the same function or predicate symbol (normal or external) can occur with different numbers of arguments in different places. Note that polyadic symbols could be replaced by non-polyadic symbols with the arity information encoded in the function or predicate names. For instance, the polyadic terms <tt>p(?X)</tt> and <tt>p(?X,?Y)</tt> could be represented as <tt>p_1(?X)</tt> and <tt>p_2(?X,?Y)</tt>, respectively.
</p><p>The set of all constant symbols, <tt>Const</tt>, is partitioned into the following subsets:
</p>
<ul>
<li>A subset of individuals.
<p>The symbols in <tt>Const</tt> that belong to the symbol spaces of <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-data-types" title="DTB">Datatypes</a> are required to be individuals.</p>
</li>
<li>A subset of plain (i.e., non-external) function symbols.
</li>
<li>A subset for external function symbols.
</li>
<li>A subset of plain predicate symbols.
</li>
<li>A subset for external predicate symbols.
</li>
</ul>
<p>The above subsets do not differentiate between positional and named argument symbols. Also, as seen from the following definitions, these subsets are not specified explicitly but, rather, are inferred from the occurrences of the symbols.
</p><p><br />
<span class="anchor" id="def-bld-context"></span>
<b>Definition (Context of a symbol)</b>.
The <i><b>context of an occurrence</b></i> of a symbol, <tt>s∈Const</tt>, in a formula, <tt>φ</tt>, is determined as follows:
</p>
<ul>
<li>
If <tt>s</tt> occurs as a predicate of the form <tt>s(...)</tt> (positional or named-argument) in an atomic <a href="#def-subformula" title="">subformula</a> of <tt>φ</tt> then <tt>s</tt> occurs in the <i>context of a (plain) predicate symbol</i>.
</li>
<li>
If <tt>s</tt> occurs as a function symbol in a non-subformula term of the form <tt>s(...)</tt> then <tt>s</tt> occurs in the <i>context of a (plain) function symbol</i>.
</li>
<li>
If <tt>s</tt> occurs as a predicate in an atomic subformula <tt>External(s(...))</tt> then <tt>s</tt> occurs in the <i>context of an external predicate symbol</i>.
</li>
<li>
If <tt>s</tt> occurs as a function in a non-subformula term <tt>External(s(...))</tt> then <tt>s</tt> occurs in the <i>context of an external function symbol</i>.
</li>
<li>
If <tt>s</tt> occurs in any other context (in a frame: <tt>s[...]</tt>, <tt>...[s->...]</tt>, or <tt>...[...->s]</tt>; or in a positional/named-argument term: <tt>p(...s...)</tt>, <tt>q(...->s...)</tt>), it is said to occur as an <i>individual</i>. ☐
</li>
</ul>
<p><span class="anchor" id="def-bld-imported-doc"></span>
<b>Definition (Imported document).</b>
Let <tt>Δ</tt> be a document formula and <tt>Import(<i>loc</i>)</tt> be one of its import directives, where <i>loc</i> is a <a href="#ref-locator" title="">locator</a> of another document formula, <tt>Δ'</tt>. We say that <tt>Δ'</tt> is <i><b>directly imported</b></i> into <tt>Δ</tt>.
</p><p>A document formula <tt>Δ'</tt> is said to be <i><b>imported</b></i> into
<tt>Δ</tt> if it is either directly imported into <tt>Δ</tt> or it is imported (directly or not) into some other formula that is directly imported into <tt>Δ</tt>. ☐
</p><p>The above definition deals only with one-argument import directives, since
only such directives can be used to import other RIF-BLD documents.
Two-argument import directives are provided to enable import of other types of documents, and their semantics are supposed to be covered by other specifications, such as [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>].
</p><p><br />
<span class="anchor" id="def-bld-wff"></span>
<b>Definition (Well-formed formula)</b>.
A formula <tt>φ</tt> is <i><b>well-formed</b></i> iff:
</p>
<ul>
<li>
every constant symbol (whether coming from the symbol space <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-local-space" title="DTB">rif:local</a></tt> or not) mentioned in <tt>φ</tt> occurs in exactly one <a href="#def-bld-context" title="">context</a>.
</li>
<li>
if <tt>φ</tt> is a document formula and <tt>Δ'<sub>1</sub></tt>, ..., <tt>Δ'<sub>k</sub></tt> are all of its imported documents, then every non-<tt>rif:local</tt> constant symbol mentioned in <tt>φ</tt> or any of the imported <tt>Δ'<sub>i</sub></tt>s must occur in exactly one context (in all of the <tt>Δ'<sub>i</sub></tt>s).
</li>
<li>
whenever a formula contains a term or a subformula of the form <tt>External(t)</tt>, <tt>t</tt> must be an instantiation of a schema in the coherent set of external schemas (Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#app-external-schema" title="DTB">Schemas for Externally Defined Terms</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]) associated with the <a href="#def-bld-lang" title="">language of RIF-BLD</a>.
</li>
<li>
if <tt>t</tt> is an instantiation of a schema in the coherent set of external schemas associated with the language then <tt>t</tt> can occur only as <tt>External(t)</tt>, i.e., as an external term or atomic formula. ☐
</li>
</ul>
<p><br />
<span class="anchor" id="def-bld-lang"></span>
<b>Definition (Language of RIF-BLD)</b>.
The <i><b>language of RIF-BLD</b></i> consists of the set of all well-formed formulas and is determined by:
</p>
<ul><li> the alphabet of the language and
</li><li> a set of <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">coherent external schemas</a>, which determine the available built-ins and other externally defined predicates and functions. ☐
</li></ul>
<p><br />
<span class="anchor" id="sec-concrete-syntax"></span>
</p>
<a id="EBNF_Grammar_for_the_Presentation_Syntax_of_RIF-BLD_.28Informative.29" name="EBNF_Grammar_for_the_Presentation_Syntax_of_RIF-BLD_.28Informative.29"></a><h4> <span class="mw-headline">2.6 EBNF Grammar for the Presentation Syntax of RIF-BLD (Informative) </span></h4>
<p>Until now, we have been using mathematical English to specify the syntax of RIF-BLD. Tool developers, however, may prefer EBNF notation, which provides a more succinct view of the syntax. Several points should be kept in mind regarding this notation.
</p>
<ul><li> The syntax of first-order logic is not context-free, so EBNF cannot capture the syntax of RIF-BLD precisely. For instance, it cannot capture some <a href="#sec-well-formed" title="">well-formedness conditions</a>, such as the requirement that external terms must be instances of external schemas. As a result, the EBNF grammar defines a strict <i>superset</i> of RIF-BLD: not all formulas that are derivable using the EBNF grammar are well-formed formulas in RIF-BLD.
</li><li> The EBNF grammar does not address all details of how constants (defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]) and variables are represented, and it is not sufficiently precise about the delimiters and escape symbols. White space is informally used as a delimiter, and is implied in productions that use Kleene star. For instance, <tt>TERM*</tt> is to be understood as <tt>TERM TERM ... TERM</tt>, where each space abstracts from one or more blanks, tabs, newlines, etc. This is so because RIF's presentation syntax is a tool for specifying the semantics and for illustration of the main RIF concepts through examples. It is <i>not</i> intended as a concrete syntax for a rule language. RIF defines a concrete syntax only for <i>exchanging</i> rules, and that syntax is XML-based, obtained as a refinement and serialization of the presentation syntax.
</li><li> For all the above reasons, the EBNF grammar is <i>not normative</i>. Recall from the <a href="#sec-bld-direct-syntax" title="">opening paragraph</a>, however, that the RIF-BLD presentation syntax as specified in mathematical English is normative.
</li></ul>
<p>The EBNF for the RIF-BLD presentation syntax is given as follows, showing the entire (top-down) context of its three parts for rules, conditions, and annotations.
</p><p><span class="anchor" id="part-rule-language"></span>
<b>Rule Language:</b>
</p>
<pre> Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'
Base ::= 'Base' '(' <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">ANGLEBRACKIRI</a> ')'
Prefix ::= 'Prefix' '(' <a class="external text" href="http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName" title="http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName">NCName</a> <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">ANGLEBRACKIRI</a> ')'
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'
RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA
LOCATOR ::= <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">ANGLEBRACKIRI</a>
PROFILE ::= <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">ANGLEBRACKIRI</a>
</pre>
<p><span class="anchor" id="part-condition-language"></span>
<b>Condition Language:</b>
</p>
<pre> FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |
IRIMETA? 'External' '(' Atom ')'
ATOMIC ::= IRIMETA? (Atom | Equal | Member | Subclass | Frame)
Atom ::= UNITERM
UNITERM ::= Const '(' (TERM* | (Name '->' TERM)*) ')'
Equal ::= TERM '=' TERM
Member ::= TERM '#' TERM
Subclass ::= TERM '##' TERM
Frame ::= TERM '[' (TERM '->' TERM)* ']'
TERM ::= IRIMETA? (Const | Var | Expr | List | 'External' '(' Expr ')')
Expr ::= UNITERM
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
Const ::= '"' <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">UNICODESTRING</a> '"^^' SYMSPACE | <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">CONSTSHORT</a>
Var ::= '?' Name
Name ::= <a class="external text" href="http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName" title="http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName">NCName</a> | '"' <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">UNICODESTRING</a> '"'
SYMSPACE ::= <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">ANGLEBRACKIRI</a> | <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">CURIE</a>
</pre>
<p><span class="anchor" id="part-annotations"></span>
<b>Annotations:</b>
</p>
<pre> IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'
</pre>
<p>The following subsections explain and exemplify these parts, starting with the basic language of positive conditions.
</p><p><br />
<span class="anchor" id="sec-ebnf-condition-language"></span>
</p>
<a id="EBNF_for_the_Condition_Language" name="EBNF_for_the_Condition_Language"></a><h5> <span class="mw-headline">2.6.1 EBNF for the Condition Language </span></h5>
<p>The Condition Language represents formulas that can be used in the premises of RIF-BLD rules (also called rule bodies). The EBNF grammar for a superset of the RIF-BLD condition language is shown in the above <a href="#part-condition-language" title="">conditions part</a>.
</p><p>The production rule for the non-terminal <tt>FORMULA</tt> represents <i>RIF condition formulas</i> (defined earlier). The connectives <tt>And</tt> and <tt>Or</tt> define conjunctions and disjunctions of conditions, respectively. <tt>Exists</tt> introduces existentially quantified variables. Here <tt>Var+</tt> stands for the list of variables that are free in <tt>FORMULA</tt>. A RIF-BLD <tt>FORMULA</tt> can also be an <tt>ATOMIC</tt> term, i.e. an <tt>Atom</tt>, <tt>External</tt> <tt>Atom</tt>, <tt>Equal</tt>, <tt>Member</tt>, <tt>Subclass</tt>, or <tt>Frame</tt>. A <tt>TERM</tt> can be a constant, variable, <tt>Expr</tt>, <tt>List</tt>, or <tt>External</tt> <tt>Expr</tt>.
</p><p>The RIF-BLD presentation syntax does not commit to any particular vocabulary and permits arbitrary Unicode strings in constant symbols, argument names, and variables. Constant symbols can have this form: <tt>"UNICODESTRING"^^SYMSPACE</tt>, where <tt>SYMSPACE</tt> is an <tt>ANGLEBRACKIRI</tt> or <tt>CURIE</tt> that represents the identifier of the symbol space of the constant. <tt>UNICODESTRING</tt>, <tt>ANGLEBRACKIRI</tt>, and <tt>CURIE</tt> are defined in Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-shortcuts-constants" title="DTB">Shortcuts for Constants in RIF's Presentation Syntax</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]. Constant symbols can also have several shortcut forms, which are represented by the non-terminal <tt>CONSTSHORT</tt>. These shortcuts are also defined in the same section of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]. One of them is the <tt>CURIE</tt> shortcut, which is extensively used in the examples in this document.
Names are Unicode character sequences. Variables are composed of <tt>UNICODESTRING</tt> symbols prefixed with a <tt>?</tt>-sign.
</p><p>Equality, membership, and subclass terms are self-explanatory. An <tt>Atom</tt> and <tt>Expr</tt> (expression) can either be positional or have named arguments. A frame term is a term composed of an object identifier and a collection of attribute-value pairs. The term <tt>External</tt>(<tt>Atom</tt>) is a call to an externally defined predicate. Likewise, <tt>External</tt>(<tt>Expr</tt>) is a call to an externally defined function.
</p><p><br />
<span class="anchor" id="ex-rif-bld-cond-pres-syntax">
<b>Example 3</b> (RIF-BLD conditions).
</span>
</p><p>This example shows conditions that are composed of atoms, expressions, equalities with lists, frames, and existentials. In frame formulas, variables are shown in the positions of object identifiers, object properties, and property values. For brevity, we use the shortcut CURIE notation <tt>prefix:suffix</tt> for constant symbols defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]. This is understood as a shorthand for an IRI obtained by concatenation of the <tt>prefix</tt> definition and <tt>suffix</tt>. Thus, if <tt>bks</tt> is a prefix that expands into <tt>http://example.com/books#</tt> then <tt>bks:LeRif</tt> is an abbreviation for <tt>"http://example.com/books#LeRif"^^rif:iri</tt>.
</p>
<pre>Prefix(bks <http://example.com/books#>)
Prefix(auth <http://example.com/authors#>)
Prefix(cpt <http://example.com/concepts#>)
</pre>
<p>Positional terms:
</p>
<pre> cpt:book(auth:rifwg bks:LeRif)
Exists ?X (cpt:book(?X bks:LeRif))
</pre>
<p>Terms with named arguments:
</p>
<pre> cpt:book(cpt:author->auth:rifwg cpt:title->bks:LeRif)
Exists ?X (cpt:book(cpt:author->?X cpt:title->bks:LeRif))
</pre>
<p>Equalities with list terms:
</p>
<pre> ?L = List(?X ?Y ?X)
List(?Head | ?Tail) = List("a"^^rif:local ?Y "c"^^rif:local)
</pre>
<p>Frames:
</p>
<pre> bks:wd1[cpt:author->auth:rifwg cpt:title->bks:LeRif]
Exists ?X (bks:wd2[cpt:author->?X cpt:title->bks:LeRif])
Exists ?X (And (bks:wd2#cpt:book bks:wd2[cpt:author->?X cpt:title->bks:LeRif]))
Exists ?I ?X (?I[cpt:author->?X cpt:title->bks:LeRif])
Exists ?I ?X (And (?I#cpt:book ?I[cpt:author->?X cpt:title->bks:LeRif]))
Exists ?S (bks:wd2[cpt:author->auth:rifwg ?S->bks:LeRif])
Exists ?X ?S (bks:wd2[cpt:author->?X ?S->bks:LeRif])
Exists ?I ?X ?S (And (?I#cpt:book ?I[author->?X ?S->bks:LeRif]))
</pre>
<p><br />
</p><p><span class="anchor" id="sec-ebnf-rule-language"></span>
</p>
<a id="EBNF_for_the_Rule_Language" name="EBNF_for_the_Rule_Language"></a><h5> <span class="mw-headline">2.6.2 EBNF for the Rule Language </span></h5>
<p>The presentation syntax for RIF-BLD rules is based on the syntax in Section <a href="#sec-ebnf-condition-language" title="">EBNF for RIF-BLD Condition Language</a> with the productions shown in the above <a href="#part-rule-language" title="">rules part</a>.
</p><p><span class="anchor" id="document-preamble"></span>
A RIF-BLD <tt>Document</tt> consists of an optional <tt>Base</tt>, followed by any number of <tt>Prefix</tt>es, followed by any number of <tt>Import</tt>s, followed by an optional <tt>Group</tt>.
<tt>Base</tt> and <tt>Prefix</tt> serve as shortcut mechanisms for IRIs.
<tt>IRI</tt> has the form of an internationalized resource identifier as defined by [<a href="#ref-rfc-3987" title="">RFC-3987</a>].
An <tt>Import</tt> indicates the location of a document to be imported and an optional profile.
A RIF-BLD <tt>Group</tt> is a collection of
any number of <tt>RULE</tt> elements along with any number of nested <tt>Group</tt>s.
</p><p>Rules are generated using <tt>CLAUSE</tt> elements. The <tt>RULE</tt> production has two alternatives:
</p>
<ul><li> In the first, a <tt>CLAUSE</tt> is in the scope of the <tt>Forall</tt> quantifier. In that case, all variables mentioned in <tt>CLAUSE</tt> are required to also appear among the variables in the <tt>Var+</tt> sequence.
</li><li> In the second alternative, <tt>CLAUSE</tt> appears on its own. In that case, <tt>CLAUSE</tt> cannot have variables.
</li></ul>
<p><tt>Var</tt>, <tt>ATOMIC</tt>, and <tt>FORMULA</tt> were defined as part of the syntax for positive conditions in Section <a href="#sec-ebnf-condition-language" title="">EBNF for RIF-BLD Condition Language</a>. In the <tt>CLAUSE</tt> production, an <tt>ATOMIC</tt> is what is usually called a <i>fact</i>. An <tt>Implies</tt> <i>rule</i> can have an <tt>ATOMIC</tt> or a conjunction of <tt>ATOMIC</tt> elements as its conclusion; it has a <tt>FORMULA</tt> as its premise. Note that, by the <a href="#def-bld-formula" title="">definition of formulas</a>, externally defined atoms (i.e., formulas of the form <tt>External(Atom)</tt>) are not allowed in the conclusion part of a rule (<tt>ATOMIC</tt> does not expand to <tt>External</tt>).
</p><p><br />
</p><p><span class="anchor" id="ex-rif-bld-rule-pres-syntax">
<b>Example 4</b> (RIF-BLD rules).
</span>
</p><p>This example shows a business rule borrowed from the document <a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/" title="UCR">RIF Use Cases and Requirements</a>:
</p>
<ul>
<li>
<em>
If an item is perishable and it is delivered to John more than 10 days
after the scheduled delivery date then the item will be rejected by him.
</em>
</li>
</ul>
<p>As before, for better readability we use the compact URI notation, the angle-bracket notation, and the <tt>Base</tt> directive defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>], Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a>. Again, directives are assumed in the preamble to the document.
Then, two versions of the main part of the document are given.
</p>
<pre>Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
</pre>
<p>a. Universal form:
</p>
<pre> Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (
cpt:reject(<John> ?item) :-
And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))
)
</pre>
<p>b. Universal-existential form:
</p>
<pre> Forall ?item (
cpt:reject(<John> ?item ) :-
Exists ?deliverydate ?scheduledate ?diffduration ?diffdays (
And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))
)
)
</pre>
<p><br />
</p><p><span class="anchor" id="sec-ebnf-annotations"></span>
</p>
<a id="EBNF_for_Annotations" name="EBNF_for_Annotations"></a><h5> <span class="mw-headline">2.6.3 EBNF for Annotations </span></h5>
<p>The EBNF grammar production for RIF-BLD annotations is shown in the above <a href="#part-annotations" title="">annotations part</a>.
</p><p>As explained in Section <a href="#sec-formal-syntax-metadata" title="">RIF-BLD Annotations in the Presentation Syntax</a>, each RIF-BLD formula and term can be preceded by one optional annotation, <tt>IRIMETA</tt>, for identification and metadata.
<tt>IRIMETA</tt> is represented using <tt>(*...*)</tt>-brackets
that contain an optional <tt>rif:iri</tt> constant, <tt>IRICONST</tt>, as identifier followed by
an optional <tt>Frame</tt> or conjunction of <tt>Frame</tt>s as metadata.
</p><p>An <tt>IRICONST</tt> is <tt>rif:iri</tt> constant,
again permitting the shortcut forms defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
One such specialization is <tt>'"' IRI '"^^' 'rif:iri'</tt> from the <tt>Const</tt> production, where <tt>IRI</tt> is a sequence of Unicode characters that forms an internationalized resource identifier as defined by [<a href="#ref-rfc-3987" title="">RFC-3987</a>].
</p><p><br />
</p><p><span class="anchor" id="ex-rif-bld-annotatedgroup-pres-syntax">
<b>Example 5</b> (A RIF-BLD document containing an annotated group).
</span>
</p><p>This example shows a complete document containing a group formula that consists of two RIF-BLD rules. The first of these rules is copied from Example 4a. The group is annotated with an IRI identifier and metadata represented using Dublin Core vocabulary.
</p>
<pre>Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(dc <http://purl.org/dc/terms/>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)
(* "http://sample.org"^^rif:iri _pd[dc:publisher -> "http://www.w3.org/"^^rif:iri
dc:date -> "2008-04-04"^^xs:date] *)
Group
(
Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (
cpt:reject(<John> ?item) :-
And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))
)
Forall ?item (
cpt:reject(<Fred> ?item) :- cpt:unsolicited(?item)
)
)
)
</pre>
<p><br />
</p><p><br />
<span class="anchor" id="sec-bld-direct-semantics"></span>
</p>
<a id="Direct_Specification_of_RIF-BLD_Semantics" name="Direct_Specification_of_RIF-BLD_Semantics"></a><h2> <span class="mw-headline">3 Direct Specification of RIF-BLD Semantics </span></h2>
<p>This normative section specifies the semantics of RIF-BLD directly, without
relying on [<a href="#ref-rif-fld" title="">RIF-FLD</a>].
</p><p>Recall that the presentation syntax of RIF-BLD allows shorthand notation,
which is specified via the <tt>Prefix</tt> and <tt>Base</tt> directives, and various shortcuts for integers, strings, and <tt>rif:local</tt> symbols.
The semantics, below, is described using the full syntax, i.e., we
assume that all shortcuts have already been expanded as defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>], Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a>.
</p><p><span class="anchor" id="sec-truth-values"></span>
</p>
<a id="Truth_Values" name="Truth_Values"></a><h4> <span class="mw-headline">3.1 Truth Values </span></h4>
<p>The set <i><b>TV</b></i> of truth values in RIF-BLD consists of two values, <b>t</b> and <b>f</b>.
</p><p><span class="anchor" id="sec-model-theory"></span>
</p>
<a id="Semantic_Structures" name="Semantic_Structures"></a><h4> <span class="mw-headline">3.2 Semantic Structures </span></h4>
<p>The key concept in a model-theoretic semantics for a logic language is the notion of a <i>semantic structure</i> [<a href="#ref-enderton01" title="">Enderton01</a>, <a href="#ref-mendelson97" title="">Mendelson97</a>]. The definition is slightly more general than what is strictly necessary for RIF-BLD alone. This lays the groundwork for extensions to RIF-BLD and makes the connection with the <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-fld-semantic-framework" title="FLD">semantics of the RIF framework for logic-based dialects</a> [<a href="#ref-rif-fld" title="">RIF-FLD</a>] more obvious.
</p><p><span class="anchor" id="def-bld-sem-struct"></span>
<b>Definition (Semantic structure)</b>.
A <i><b>semantic structure</b></i>, <i><b>I</b></i>, is a tuple of the form
<<i><b>TV</b></i>, <i><b>DTS</b></i>, <i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>,
<i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>V</sub>,
<i><b>I</b></i><sub>F</sub>, <i><b>I</b></i><sub>NF</sub>, <i><b>I</b></i><sub>list</sub>, <i><b>I</b></i><sub>tail</sub>, <i><b>I</b></i><sub>frame</sub>,
<i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>, <i><b>I</b></i><sub>=</sub>,
<i><b>I</b></i><sub>external</sub>, <i><b>I</b></i><sub>truth</sub>>. Here <i><b>D</b></i> is a non-empty set of elements called the <i><b>domain</b></i> of <i><b>I</b></i>, and <i><b>D</b></i><sub>ind</sub>, <i><b>D</b></i><sub>func</sub> are nonempty subsets of <i><b>D</b></i>. <i><b>D</b></i><sub>ind</sub> is used to interpret the elements of <tt>Const</tt> that <a href="#def-bld-context" title="">occur as</a> individuals and <i><b>D</b></i><sub>func</sub> is used to interpret the elements of <tt>Const</tt> that <a href="#def-bld-context" title="">occur in the context of</a> function symbols. As before, <tt>Const</tt> denotes the set of all constant symbols and <tt>Var</tt> the set of all variable symbols. <i><b>DTS</b></i> denotes a set of identifiers for datatypes (please refer to Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-data-types" title="DTB">Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>] for the semantics of datatypes).
</p><p>The other components of <i><b>I</b></i> are <i>total</i> mappings defined as follows:
</p>
<ol>
<li>
<i><b>I</b></i><sub>C</sub> maps <tt>Const</tt> to <i><b>D</b></i>.
<p>
This mapping interprets constant symbols. In addition:
</p>
<ul>
<li>
If a constant, <tt>c</tt> ∈ <tt>Const</tt>,
is an <i>individual</i> then it is required that
<i><b>I</b></i><sub>C</sub>(<tt>c</tt>) ∈ <i><b>D</b></i><sub>ind</sub>.
</li>
<li>
If <tt>c</tt> ∈ <tt>Const</tt>, is a <i>function symbol</i> (positional or with named arguments) then it is required that <i><b>I</b></i><sub>C</sub>(<tt>c</tt>) ∈ <i><b>D</b></i><sub>func</sub>.
</li>
</ul>
</li>
<li>
<i><b>I</b></i><sub>V</sub> maps <tt>Var</tt> to <i><b>D</b></i><sub>ind</sub>.
<p>This mapping interprets variable symbols.</p>
</li>
<li>
<i><b>I</b></i><sub>F</sub> maps <i><b>D</b></i> to total functions <i><b>D*</b></i><sub>ind</sub> → <i><b>D</b></i> (here <i><b>D*</b></i><sub>ind</sub> is a set of all finite sequences over the domain <i><b>D</b></i><sub>ind</sub>).
<p>This mapping interprets positional terms. In addition: </p>
<ul>
<li>If <tt>d</tt> ∈ <i><b>D</b></i><sub>func</sub> then <i><b>I</b></i><sub>F</sub>(<tt>d</tt>) must be a function <i><b>D*</b></i><sub>ind</sub> → <i><b>D</b></i><sub>ind</sub>.
</li>
<li>This means that when a function symbol is applied to arguments that are individual objects then the result is also an individual object.
</li>
</ul>
</li>
<li><i><b>I</b></i><sub>NF</sub> maps <i><b>D</b></i> to the set of total functions of the form <tt>SetOfFiniteSets</tt>(<tt>ArgNames</tt> × <i><b>D</b></i><sub>ind</sub>) → <i><b>D</b></i>.
<p>This mapping interprets function symbols with named arguments. In addition:</p>
<ul>
<li>If <tt>d</tt> ∈ <i><b>D</b></i><sub>func</sub> then <i><b>I</b></i><sub>NF</sub>(<tt>d</tt>) must be a function <tt>SetOfFiniteSets</tt>(<tt>ArgNames</tt> × <i><b>D</b></i><sub>ind</sub>) → <i><b>D</b></i><sub>ind</sub>.
</li>
<li>This is analogous to the interpretation of positional terms with two differences:
<ul>
<li>Each pair <<tt>s,v</tt>> ∈ <tt>ArgNames</tt> × <i><b>D</b></i><sub>ind</sub> represents an argument/value pair instead of just a value in the case of a positional term. </li>
<li>The arguments of a term with named arguments constitute a finite set of argument/value pairs rather than a finite ordered sequence of simple elements. So, the order of the arguments does not matter.</li>
</ul>
</li>
</ul>
</li>
<li>
<i><b>I</b></i><sub>list</sub> and <i><b>I</b></i><sub>tail</sub> are used to interpret lists. They are mappings of the following form:
<ul>
<li>
<i><b>I</b></i><sub>list</sub> : <i><b>D</b></i><sub>ind</sub><sup>*</sup> → <i><b>D</b></i><sub>ind</sub>
</li>
<li>
<i><b>I</b></i><sub>tail</sub> : <i><b>D</b></i><sub>ind</sub><sup>+</sup>× <i><b>D</b></i><sub>ind</sub> → <i><b>D</b></i><sub>ind</sub>
</li>
</ul>
<p>
In addition, these mappings are required to satisfy the following conditions:
</p>
<ul>
<li>
The function <i><b>I</b></i><sub>list</sub> is injective (one-to-one).
</li>
<li>
The set <i><b>I</b></i><sub>list</sub>(<i><b>D</b></i><sub>ind</sub><sup>*</sup>), henceforth denoted <span class="anchor" id="def-Dlist"><i><b>D</b></i><sub>list</sub></span>, is disjoint from the value spaces of all data types in <i><b>DTS</b></i>.
</li>
<li>
<i><b>I</b></i><sub>tail</sub>(<tt>a</tt><sub>1</sub>, ..., <tt>a</tt><sub>k</sub>, <i><b>I</b></i><sub>list</sub>(<tt>a</tt><sub>k+1</sub>, ..., <tt>a</tt><sub>k+m</sub>)) = <i><b>I</b></i><sub>list</sub>(<tt>a</tt><sub>1</sub>, ..., <tt>a</tt><sub>k</sub>, <tt>a</tt><sub>k+1</sub>, ..., <tt>a</tt><sub>k+m</sub>).
</li>
</ul>
<p>
Note that the last condition above restricts <i><b>I</b></i><sub>tail</sub> only when its last argument is in <i><b>D</b></i><sub>list</sub>. If the last argument of <i><b>I</b></i><sub>tail</sub> is not in <i><b>D</b></i><sub>list</sub>, then the list is a general open one and there are no restrictions on the value of <i><b>I</b></i><sub>tail</sub> except that it must be in <i><b>D</b></i><sub>ind</sub>.
</p>
</li>
<li><i><b>I</b></i><sub>frame</sub> maps <i><b>D</b></i><sub>ind</sub> to total functions of the form <tt>SetOfFiniteBags</tt>(<i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub>) → <i><b>D</b></i>.
<p>This mapping interprets frame terms. An argument, <tt>d</tt> ∈ <i><b>D</b></i><sub>ind</sub>, to <i><b>I</b></i><sub>frame</sub> represents an object and the finite bag {<<tt>a1,v1</tt>>, ..., <<tt>ak,vk</tt>>} represents a bag of attribute-value pairs for <tt>d</tt>. We will see shortly how <i><b>I</b></i><sub>frame</sub> is used to determine the truth valuation of frame terms. </p>
<p>Bags (multi-sets) are used here because the order of the attribute/value pairs in a frame is immaterial and pairs may repeat. Such repetitions arise naturally when variables are instantiated with constants. For instance, <tt>o[?A->?B ?C->?D]</tt> becomes <tt>o[a->b a->b]</tt> if variables <tt>?A</tt> and <tt>?C</tt> are instantiated with the symbol <tt>a</tt> while <tt>?B</tt> and <tt>?D</tt> are instantiated with <tt>b</tt>. (We shall see later that <tt>o[a->b a->b]</tt> is equivalent to <tt>o[a->b]</tt>.)
</p>
</li>
<li><i><b>I</b></i><sub>sub</sub> gives meaning to the subclass relationship. It is a mapping of the form <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> → <i><b>D</b></i>.
<p>
<i><b>I</b></i><sub>sub</sub> will be further restricted in Section <a href="#sec-interpretation-of-formulas" title="">Interpretation of Formulas</a> to ensure that
the operator <tt>##</tt> is transitive, i.e., that <tt>c1 ## c2</tt> and <tt>c2 ## c3</tt> imply <tt>c1 ## c3</tt>.
</p>
</li>
<li><i><b>I</b></i><sub>isa</sub> gives meaning to class membership. It is a mapping of the form <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> → <i><b>D</b></i>.
<p>
<i><b>I</b></i><sub>isa</sub> will be further restricted in Section <a href="#sec-interpretation-of-formulas" title="">Interpretation of Formulas</a> to ensure that
the relationships <tt>#</tt> and <tt>##</tt> have the usual property that all members of a subclass are also members of the superclass, i.e., that <tt>o # cl</tt> and <tt>cl ## scl</tt> imply <tt>o # scl</tt>.
</p>
</li>
<li><i><b>I</b></i><sub>=</sub> is a mapping of the form <i><b>D</b></i><sub>ind</sub> × <i><b>D</b></i><sub>ind</sub> → <i><b>D</b></i>.
<p>It gives meaning to the equality operator.</p>
</li>
<li>
<i><b>I</b></i><sub>truth</sub> is a mapping of the form <i><b>D</b></i> → <i><b>TV</b></i>.
<p>It is used to define truth valuation for formulas.</p>
</li>
<li>
<i><b>I</b></i><sub>external</sub> is a mapping from the coherent set of schemas for externally defined functions to total functions <i><b>D</b></i>* → <i><b>D</b></i>. For each external schema <tt>σ = (?X<sub>1</sub> ... ?X<sub>n</sub>; τ)</tt> in the <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">coherent set of external schemas</a> associated with the <a href="#def-bld-lang" title="">language</a>, <i><b>I</b></i><sub>external</sub>(<tt>σ</tt>) is a function of the form <i><b>D</b></i><sup>n</sup> → <i><b>D</b></i>.
<p>
For every external schema, <tt>σ</tt>, associated with the language, <i><b>I</b></i><sub>external</sub>(<tt>σ</tt>) is assumed to be specified externally in some document (hence the name <i>external schema</i>). In particular, if <tt>σ</tt> is a schema of a RIF built-in predicate or function, <i><b>I</b></i><sub>external</sub>(<tt>σ</tt>) is specified in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>] so that:
</p>
<ul>
<li>
If <tt>σ</tt> is a schema of a built-in function then <i><b>I</b></i><sub>external</sub>(<tt>σ</tt>) must be the function defined in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</li>
<li>
If <tt>σ</tt> is a schema of a built-in predicate then
<i><b>I</b></i><sub>truth</sub><tt> ο </tt>(<i><b>I</b></i><sub>external</sub>(<tt>σ</tt>)) (the composition of <i><b>I</b></i><sub>truth</sub> and <i><b>I</b></i><sub>external</sub>(<tt>σ</tt>), a truth-valued function) must be as specified in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</li>
</ul>
</li>
</ol>
<p>
We also define the following mapping from terms to <i><b>D</b></i>, which we denote using the same symbol <i><b>I</b></i> as the one used for semantic structures. This overloading is convenient and creates no ambiguity.
</p>
<ul>
<li>
<i><b>I</b></i>(<tt>k</tt>) = <i><b>I</b></i><sub>C</sub>(<tt>k</tt>), if <tt>k</tt> is a symbol in <tt>Const</tt>
</li>
<li>
<i><b>I</b></i>(<tt>?v</tt>) = <i><b>I</b></i><sub>V</sub>(<tt>?v</tt>), if <tt>?v</tt> is a variable in <tt>Var</tt>
</li>
<li>
<i><b>I</b></i>(<tt>f(t<sub>1</sub> ... t<sub>n</sub>)</tt>) = <i><b>I</b></i><sub>F</sub>(<i><b>I</b></i>(<tt>f</tt>))(<i><b>I</b></i>(<tt>t<sub>1</sub></tt>),...,<i><b>I</b></i>(<tt>t<sub>n</sub></tt>))
</li>
<li>
<i><b>I</b></i>(<tt>f(s<sub>1</sub>->v<sub>1</sub> ... s<sub>n</sub>->v<sub>n</sub>)</tt>) = <i><b>I</b></i><sub>NF</sub>(<i><b>I</b></i>(<tt>f</tt>))({<<tt>s<sub>1</sub></tt>,<i><b>I</b></i>(<tt>v<sub>1</sub></tt>)>,...,<<tt>s<sub>n</sub></tt>,<i><b>I</b></i>(<tt>v<sub>n</sub></tt>)>})
<p>
Here we use {...} to denote a set of argument/value pairs.
</p>
</li>
<li>
For list terms, the mapping is defined as follows:
<ul>
<li>
<i><b>I</b></i>(<tt>List()</tt>) = <i><b>I</b></i><sub>list</sub>(<tt><></tt>).
<p>
Here <tt><></tt> denotes an empty list of elements of <i><b>D</b></i><sub>ind</sub>. (Note that the domain of <i><b>I</b></i><sub>list</sub> is <i><b>D</b></i><sub>ind</sub><sup>*</sup>, so <i><b>D</b></i><sub>ind</sub><sup>0</sup> is an empty list of elements of <i><b>D</b></i><sub>ind</sub>.)
</p>
</li>
<li>
<i><b>I</b></i>(<tt>List(t</tt><sub>1</sub> ... <tt>t</tt><sub>n</sub>)) = <i><b>I</b></i><sub>list</sub>(<i><b>I</b></i>(<tt>t</tt><sub>1</sub>), ..., <i><b>I</b></i>(<tt>t</tt><sub>n</sub>)), if <tt>n>0</tt>.
</li>
<li>
<i><b>I</b></i>(<tt>List(t</tt><sub>1</sub> ... <tt>t</tt><sub>n</sub> | <tt>t</tt>)) = <i><b>I</b></i><sub>tail</sub>(<i><b>I</b></i>(<tt>t</tt><sub>1</sub>), ..., <i><b>I</b></i>(<tt>t</tt><sub>n</sub>), <i><b>I</b></i>(<tt>t</tt>)), if <tt>n>0</tt>.
</li>
</ul>
</li>
<li>
<i><b>I</b></i>(<tt>o[a<sub>1</sub>->v<sub>1</sub> ... a<sub>k</sub>->v<sub>k</sub>]</tt>) = <i><b>I</b></i><sub>frame</sub>(<i><b>I</b></i>(<tt>o</tt>))({<<i><b>I</b></i>(<tt>a<sub>1</sub></tt>),<i><b>I</b></i>(<tt>v<sub>1</sub></tt>)>, ..., <<i><b>I</b></i>(<tt>a<sub>n</sub></tt>),<i><b>I</b></i>(<tt>v<sub>n</sub></tt>)>})
<p>
Here {...} denotes a bag of attribute/value pairs. Jumping ahead, we note that duplicate elements in such a bag do not affect the truth value of a frame formula. Thus, for instance, <tt>[a->b a->b]</tt> and <tt>o[a->b]</tt> always have the same truth value.
</p>
</li>
<li>
<i><b>I</b></i>(<tt>c1##c2</tt>) = <i><b>I</b></i><sub>sub</sub>(<i><b>I</b></i>(<tt>c1</tt>), <i><b>I</b></i>(<tt>c2</tt>))
</li>
<li>
<i><b>I</b></i>(<tt>o#c</tt>) = <i><b>I</b></i><sub>isa</sub>(<i><b>I</b></i>(<tt>o</tt>), <i><b>I</b></i>(<tt>c</tt>))
</li>
<li>
<i><b>I</b></i>(<tt>x=y</tt>) = <i><b>I</b></i><sub>=</sub>(<i><b>I</b></i>(x), <i><b>I</b></i>(y))
</li>
<li>
<i><b>I</b></i>(<tt>External(t)</tt>) = <i><b>I</b></i><sub>external</sub>(<tt>σ</tt>)(<i><b>I</b></i>(<tt>s<sub>1</sub></tt>), ..., <i><b>I</b></i>(<tt>s<sub>n</sub></tt>)), if <tt>t</tt> is an instantiation of the external schema <tt>σ = (?X<sub>1</sub> ... ?X<sub>n</sub>; τ)</tt> by substitution <tt>?X<sub>1</sub>/s<sub>1</sub> ... ?X<sub>n</sub>/s<sub>1</sub></tt>.
<p>
Note that, by definition, <tt>External(t)</tt> is well-formed only if <tt>t</tt> is an instantiation of an external schema. Furthermore, by the <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">definition of coherent sets of external schemas</a>, <tt>t</tt> can be an instantiation of at most one such schema, so <i><b>I</b></i>(<tt>External(t)</tt>) is well-defined.
</p>
</li>
</ul>
<p>Note that the definitions of <i><b>I</b></i><sub>NF</sub> and <i><b>I</b></i>(<tt>x=y</tt>) imply that the terms with named arguments that differ only in the order of their arguments are mapped by <i><b>I</b></i> to the same element in the domain. This implies that the equalities like <tt>t(a->1 b->2 c->3) = t(c->3 a->2 b->2)</tt> are tautologies in RIF-BLD.
</p><p><i><b>The effect of datatypes.</b></i> The set <i><b>DTS</b></i> must include the datatypes described in Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-data-types" title="DTB">Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p><p><br />
The datatype identifiers in <i><b>DTS</b></i> impose the following restrictions. Given <tt>dt</tt> ∈ <i><b>DTS</b></i>, let <i><b>LS</b></i><sub>dt</sub> denote the lexical space of <tt>dt</tt>, <i><b>VS</b></i><sub>dt</sub> denote its value space, and <i><b>L</b></i><sub>dt</sub>: <i><b>LS</b></i><sub>dt</sub> → <i><b>VS</b></i><sub>dt</sub> the lexical-to-value-space mapping (for the definitions of these concepts, see Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-data-types" title="DTB">Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]). Then the following must hold:
</p>
<ul><li> <i><b>VS</b></i><sub>dt</sub> ⊆ <i><b>D</b></i><sub>ind</sub>; and
</li><li> For each constant <tt>"lit"^^dt</tt> such that <tt>lit</tt> ∈ <i><b>LS</b></i><sub>dt</sub>, <i><b>I</b></i><sub>C</sub>(<tt>"lit"^^dt</tt>) = <i><b>L</b></i><sub>dt</sub>(<tt>lit</tt>).
</li></ul>
<p>That is, <i><b>I</b></i><sub>C</sub> must map the constants of a datatype <tt>dt</tt> in accordance with <i><b>L</b></i><sub>dt</sub>.
</p><p>RIF-BLD does not impose restrictions on <i><b>I</b></i><sub>C</sub> for constants in symbol spaces that are not datatypes included in <i><b>DTS</b></i>. ☐
</p><p><br />
</p><p><span class="anchor" id="sec-semantics-metadata"></span>
</p>
<a id="RIF-BLD_Annotations_in_the_Semantics" name="RIF-BLD_Annotations_in_the_Semantics"></a><h4> <span class="mw-headline">3.3 RIF-BLD Annotations in the Semantics </span></h4>
<p>RIF-BLD annotations are stripped before the mappings that constitute RIF-BLD semantic structures are applied. Likewise, they are stripped before applying the truth valuation, <i>TVal</i><sub>I</sub>, defined in the next section. Thus, identifiers and metadata have no effect on the formal semantics.
</p><p>Note that although identifiers and metadata associated with RIF-BLD formulas are ignored by the semantics, they can be extracted by XML tools. The frame terms used to represent RIF-BLD metadata can then be fed to other RIF-BLD rules, thus enabling reasoning about metadata. RIF-BLD does not define any particular semantics for metadata, however.
</p><p><br />
</p><p><span class="anchor" id="sec-interpretation-of-formulas"></span>
</p>
<a id="Interpretation_of_Non-document_Formulas" name="Interpretation_of_Non-document_Formulas"></a><h4> <span class="mw-headline">3.4 Interpretation of Non-document Formulas </span></h4>
<p>This section defines how a semantic structure, <i><b>I</b></i>, determines
the truth value <i>TVal</i><sub>I</sub>(<tt>φ</tt>) of a RIF-BLD formula, <tt>φ</tt>, where <tt>φ</tt> is any formula other than a document formula. Truth valuation of document formulas is defined in the next section.
</p><p>We define a mapping, <i>TVal</i><sub>I</sub>, from the set of all non-document formulas to <i><b>TV</b></i>. Note that the definition implies that <i>TVal</i><sub>I</sub>(<tt>φ</tt>) is defined <em>only if</em> the set <i><b>DTS</b></i> of the datatypes of <i><b>I</b></i> includes all the datatypes mentioned in <tt>φ</tt> and <i><b>I</b></i><sub>external</sub> is defined on all externally defined functions and predicates in <tt>φ</tt>.
</p><p><br />
</p><p><span class="anchor" id="def-bld-truth"></span>
<b>Definition (Truth valuation)</b>.
<i><b>Truth valuation</b></i> for well-formed formulas in RIF-BLD is determined using the following function, denoted <i>TVal</i><sub>I</sub>:
</p>
<ol>
<li><i>Positional atomic formulas</i>: <i>TVal</i><sub>I</sub>(<tt>r(t<sub>1</sub> ... t<sub>n</sub>)</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>r(t<sub>1</sub> ... t<sub>n</sub>)</tt>)) </li>
<li><i>Atomic formulas with named arguments</i>: <i>TVal</i><sub>I</sub>(<tt>p(s<sub>1</sub>->v<sub>1</sub> ... s<sub>k</sub>->v<sub>k</sub>)</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>p(s<sub>1</sub>->v<sub>1</sub> ... s<sub>k</sub>->v<sub>k</sub>)</tt>)). </li>
<li><i>Equality</i>: <i>TVal</i><sub>I</sub>(<tt>x = y</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>x = y</tt>)).
<ul>
<li>To ensure that equality has precisely the expected properties, it is required that:
<ul>
<li>
<i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>x = y</tt>)) = <b>t</b> if <i><b>I</b></i>(<tt>x</tt>) = <i><b>I</b></i>(<tt>y</tt>) and that <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>x = y</tt>)) = <b>f</b> otherwise.
</li>
</ul>
</li>
<li>This is tantamount to saying that <i>TVal</i><sub>I</sub>(<tt>x = y</tt>) = <b>t</b> if and only if <i><b>I</b></i>(x) = <i><b>I</b></i>(y).</li>
</ul>
</li>
<li><i>Subclass</i>: <i>TVal</i><sub>I</sub>(<tt>sc ## cl</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>sc ## cl</tt>)).
<p>To ensure that the operator <tt>##</tt> is transitive, i.e., <tt>c1 ## c2</tt> and <tt>c2 ## c3</tt> imply <tt>c1 ## c3</tt>, the following is required:
</p>
<ul>
<li>
For all <tt>c1</tt>, <tt>c2</tt>, <tt>c3</tt> ∈ <i><b>D</b></i>, if <i>TVal</i><sub>I</sub>(<tt>c1 ## c2</tt>) = <i>TVal</i><sub>I</sub>(<tt>c2 ## c3</tt>) = <b>t</b> then <i>TVal</i><sub>I</sub>(<tt>c1 ## c3</tt>) = <b>t</b>.
</li>
</ul>
</li>
<li><i>Membership</i>: <i>TVal</i><sub>I</sub>(<tt>o # cl</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>o # cl</tt>)).
<p>To ensure that all members of a subclass are also members of the superclass, i.e., <tt>o # cl</tt> and <tt>cl ## scl</tt> imply <tt>o # scl</tt>, the following is required:
</p>
<ul>
<li>
For all <tt>o</tt>, <tt>cl</tt>, <tt>scl</tt> ∈ <i><b>D</b></i>, if <i>TVal</i><sub>I</sub>(<tt>o # cl</tt>) = <i>TVal</i><sub>I</sub>(<tt>cl ## scl</tt>) = <b>t</b> then <i>TVal</i><sub>I</sub>(<tt>o # scl</tt>) = <b>t</b>.
</li>
</ul>
</li>
<li><i>Frame</i>: <i>TVal</i><sub>I</sub>(<tt>o[a<sub>1</sub>->v<sub>1</sub> ... a<sub>k</sub>->v<sub>k</sub>]</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i>(<tt>o[a<sub>1</sub>->v<sub>1</sub> ... a<sub>k</sub>->v<sub>k</sub>]</tt>)).
<p>
Since the bag of attribute/value pairs associated with an object <tt>o</tt> represents the conjunction of assertions represented by these pairs, the following is required, if <tt>k > 0</tt>:
</p>
<ul>
<li>
<i>TVal</i><sub>I</sub>(<tt>o[a<sub>1</sub>->v<sub>1</sub> ... a<sub>k</sub>->v<sub>k</sub>]</tt>) = <b>t</b> if and only if <i>TVal</i><sub>I</sub>(<tt>o[a<sub>1</sub>->v<sub>1</sub>]</tt>) = ... = <i>TVal</i><sub>I</sub>(<tt>o[a<sub>k</sub>->v<sub>k</sub>]</tt>) = <b>t</b>.
</li>
</ul>
</li>
<li>
<i>Externally defined atomic formula</i>: <i>TVal</i><sub>I</sub>(<tt>External(t)</tt>) = <i><b>I</b></i><sub>truth</sub>(<i><b>I</b></i><sub>external</sub>(<tt>σ</tt>)(<i><b>I</b></i>(<tt>s<sub>1</sub></tt>), ..., <i><b>I</b></i>(<tt>s<sub>n</sub></tt>))), if <tt>t</tt> is an atomic formula that is an instantiation of the external schema <tt>σ = (?X<sub>1</sub> ... ?X<sub>n</sub>; τ)</tt> by substitution <tt>?X<sub>1</sub>/s<sub>1</sub> ... ?X<sub>n</sub>/s<sub>1</sub></tt>.
<p>
Note that, by definition, <tt>External(t)</tt> is well-formed only if <tt>t</tt> is an instantiation of an external schema. Furthermore, by the <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">definition of coherent sets of external schemas</a>, <tt>t</tt> can be an instantiation of at most one such schema, so <i><b>I</b></i>(<tt>External(t)</tt>) is well-defined.
</p>
</li>
<li><i>Conjunction</i>: <i>TVal</i><sub>I</sub>(<tt>And(</tt>c<sub>1</sub> ... c<sub>n</sub><tt>)</tt>) = <b>t</b> if and only if <i>TVal</i><sub>I</sub>(c<sub>1</sub>) = ... = <i>TVal</i><sub>I</sub>(c<sub>n</sub>) = <b>t</b>. Otherwise, <i>TVal</i><sub>I</sub>(<tt>And(</tt>c<sub>1</sub> ... c<sub>n</sub><tt>)</tt>) = <b>f</b>.
<p>
The empty conjunction is treated as a tautology, so <i>TVal</i><sub>I</sub>(<tt>And()</tt>) = <b>t</b>.
</p>
</li>
<li><i>Disjunction</i>: <i>TVal</i><sub>I</sub>(<tt>Or(</tt>c<sub>1</sub> ... c<sub>n</sub><tt>)</tt>) = <b>f</b> if and only if <i>TVal</i><sub>I</sub>(c<sub>1</sub>) = ... = <i>TVal</i><sub>I</sub>(c<sub>n</sub>) = <b>f</b>. Otherwise, <i>TVal</i><sub>I</sub>(<tt>Or(</tt>c<sub>1</sub> ... c<sub>n</sub><tt>)</tt>) = <b>t</b>.
<p>
The empty disjunction is treated as a contradiction, so <i>TVal</i><sub>I</sub>(<tt>Or()</tt>) = <b>f</b>.
</p>
</li>
<li><i>Quantification</i>:
<ul>
<li><i>TVal</i><sub>I</sub>(<tt>Exists ?v<sub>1</sub> ... ?v<sub>n</sub> (φ)</tt>) = <b>t</b> if and only if for some <i><b>I</b></i>*, described below, <i>TVal</i><sub>I*</sub>(<tt>φ</tt>) = <b>t</b>.</li>
<li><i>TVal</i><sub>I</sub>(<tt>Forall ?v<sub>1</sub> ... ?v<sub>n</sub> (φ))</tt> = <b>t</b> if and only if for every <i><b>I</b></i>*, described below, <i>TVal</i><sub>I*</sub>(<tt>φ</tt>) = <b>t</b>.</li>
</ul>
<p>
Here <i><b>I</b></i>* is a semantic structure of the form <<i><b>TV</b></i>, <i><b>DTS</b></i>, <i><b>D</b></i>, <i><b>D</b></i><sub>ind</sub>, <i><b>D</b></i><sub>func</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i>*<sub>V</sub>, <i><b>I</b></i><sub>F</sub>, <i><b>I</b></i><sub>NF</sub>, <i><b>I</b></i><sub>list</sub>, <i><b>I</b></i><sub>tail</sub>, <i><b>I</b></i><sub>frame</sub>, <i><b>I</b></i><sub>sub</sub>, <i><b>I</b></i><sub>isa</sub>, <i><b>I</b></i><sub>=</sub>, <i><b>I</b></i><sub>external</sub>, <i><b>I</b></i><sub>truth</sub>>, which is exactly like <i><b>I</b></i>, except that the mapping <i><b>I</b></i>*<sub>V</sub>, is used instead of <i><b>I</b></i><sub>V</sub>. <i><b>I</b></i>*<sub>V</sub> is defined to coincide with <i><b>I</b></i><sub>V</sub> on all variables except, possibly, on <tt>?v<sub>1</sub></tt>,...,<tt>?v<sub>n</sub></tt>.
</p>
</li>
<li><i>Rule implication</i>:
<ul>
<li>
<i>TVal</i><sub>I</sub>(<i>conclusion</i> :- <i>condition</i>) = <b>t</b>, if either <i>TVal</i><sub>I</sub>(<i>conclusion</i>)=<b>t</b> or <i>TVal</i><sub>I</sub>(<i>condition</i>)=<b>f</b>.
</li>
<li>
<i>TVal</i><sub>I</sub>(<i>conclusion</i> :- <i>condition</i>) = <b>f</b> otherwise.
</li>
</ul>
</li>
<li><i>Groups of rules</i>:
<p>
If <tt>Γ</tt> is a group formula of the form <tt>Group(φ<sub>1</sub> ... φ<sub>n</sub>)</tt> then
</p>
<ul>
<li>
<i>TVal</i><sub>I</sub>(<tt>Γ</tt>) = <b>t</b> if and only if <i>TVal</i><sub>I</sub>(<tt>φ<sub>1</sub></tt>) = <b>t</b>, ..., <i>TVal</i><sub>I</sub>(<tt>φ<sub>n</sub></tt>) = <b>t</b>.
</li>
<li>
<i>TVal</i><sub>I</sub>(<tt>Γ</tt>) = <b>f</b> otherwise.
</li>
</ul>
<p>
This means that a group of rules is treated as a conjunction. In particular, the empty group is treated as a tautology, so <i>TVal</i><sub>I</sub>(<tt>Group()</tt>) = <b>t</b>. ☐
</p>
</li>
</ol>
<p><br />
</p><p><span class="anchor" id="sec-interpretation-of-documents"></span>
</p>
<a id="Interpretation_of_Documents" name="Interpretation_of_Documents"></a><h4> <span class="mw-headline">3.5 Interpretation of Documents </span></h4>
<p>Document formulas are interpreted using <i>semantic multi-structures</i>, which
are sets of closely related semantics structures. The need for multi-structures
arises due to the fact that a RIF-BLD document can import other documents and
thus is essentially a multi-document object. One interesting aspect of the
multi-document semantics is that <tt>rif:local</tt> symbols that belong to
different documents can have different meanings.
</p><p><span class="anchor" id="def-bld-semantic-multistruct"></span>
<b>Definition (Semantic multi-structure).</b>
A <i><b>semantic multi-structure</b></i> <b>Î</b> is a set of semantic structures of the form {<i><b>J</b></i>,<i><b>I</b></i>; <i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, ...}, where
</p>
<ul>
<li>
<i><b>I</b></i> and <i><b>J</b></i> are <a href="#def-bld-sem-struct" title="">RIF-BLD semantic structures</a>; and
</li>
<li>
<i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sup><tt>i<sub>2</sub></tt></sup>, etc., are semantic structures <i><b>adorned</b></i> with the <a href="#ref-locator" title="">locators</a> of <i>distinct</i> RIF-BLD formulas (one can think of these adorned structures as locator-structure pairs).
</li>
</ul>
<p>All the structures in <b>Î</b> (adorned and non-adorned) are identical in all respects except for the following:
</p>
<ul>
<li>
The mappings <i><b>J</b></i><sub>C</sub>, <i><b>I</b></i><sub>C</sub>, <i><b>I</b></i><sub>C</sub><sup><tt>i<sub>1</sub></tt></sup>, <i><b>I</b></i><sub>C</sub><sup><tt>i<sub>2</sub></tt></sup>, ... may differ on the constants in <tt>Const</tt> that belong to the <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-local-space" title="DTB">rif:local</a></tt> symbol space.
☐
</li>
</ul>
<p>As will be seen from the next definition, the structure <i><b>I</b></i> in the above is used to interpret document formulas, and the adorned structures of the form <i><b>I</b></i><sup><tt>i<sub>k</sub></tt></sup> are used to interpret imported documents. The structure <i><b>J</b></i> is used in the definition of entailment for non-document formulas.
</p><p>The semantics of RIF documents is now defined as follows.
</p><p><b>Definition (Truth valuation of document formulas).</b>
Let <tt>Δ</tt> be a document formula and let
<tt>Δ</tt><sub>1</sub>, ..., <tt>Δ</tt><sub>n</sub> be all the RIF-BLD document formulas that are <i>imported</i> (directly or indirectly, according to Definition <a href="#def-bld-imported-doc" title="">Imported document</a>) into <tt>Δ</tt>.
Let <tt>Γ</tt>, <tt>Γ<sub>1</sub></tt>, ..., <tt>Γ<sub>n</sub></tt> denote the respective group formulas <a href="#def-associated-group" title="">associated</a> with these documents.
Let <b>Î</b> = {<i><b>J</b></i>,<i><b>I</b></i>; <i><b>I</b></i><sup><tt>i<sub>1</sub></tt></sup>, ..., <i><b>I</b></i><sup><tt>i<sub>n</sub></tt></sup>, ...} be a semantic multi-structure that contains the semantic structures adorned with the locators <tt>i<sub>1</sub></tt>, ..., <tt>i<sub>n</sub></tt> of the documents <tt>Δ</tt><sub>1</sub>, ..., <tt>Δ</tt><sub>n</sub>.
Then we define:
</p>
<ul>
<li>
<i>TVal</i><sub>Î</sub>(<tt>Δ</tt>) = <b>t</b> if and only if <i>TVal</i><sub>I</sub>(<tt>Γ</tt>) = <i>TVal</i><sub>I<sup><tt>i<sub>1</sub></tt></sup></sub>(<tt>Γ<sub>1</sub></tt>) = ... = <i>TVal</i><sub>I<sup><tt>i<sub>k</sub></tt></sup></sub>(<tt>Γ<sub>n</sub></tt>) = <b>t</b>.
☐
</li>
</ul>
<p>Note that this definition considers only those document formulas that are reachable via the one-argument import directives. Two argument import directives are not covered here. Their semantics is defined by the document RIF RDF and OWL Compatibility [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>].
</p><p>Also note that some of the <tt>Γ<sub>i</sub></tt> above may be missing since all parts in a document formula are optional. In this case, we assume that <tt>Γ<sub>i</sub></tt> is a tautology, such as <tt>And()</tt>, and every <i>TVal</i> function maps such a <tt>Γ<sub>i</sub></tt> to the truth value <b>t</b>.
</p><p>For non-document formulas, we extend <i>TVal</i><sub>Î</sub>(<tt>φ</tt>) from regular semantic structures to multi-structures as follows. Let <b>Î</b> = {<i><b>J</b></i>, <i><b>I</b></i>; ...} be a semantic multi-structure. Then <i>TVal</i><sub>Î</sub>(<tt>φ</tt>) = <i>TVal</i><sub>J</sub>(<tt>φ</tt>).
</p><p>The above definitions make the intent behind the <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-local-space" title="DTB">rif:local</a></tt> constants clear: occurrences of such constants in different documents can be interpreted differently even if they have the same name. Therefore, each document can choose the names for the <tt>rif:local</tt> constants freely and without regard to the names of such constants used in the imported documents.
</p><p>For the relationship between <tt>rif:local</tt> and RDF blank nodes readers are referred to Section <a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/#sec-swc-symbols-rdf-owl" title="SWC">Symbols in RIF Versus RDF/OWL (Informative)</a> of [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>].
</p><p><br />
</p><p><span class="anchor" id="sec-logical-entailment"></span>
</p>
<a id="Logical_Entailment" name="Logical_Entailment"></a><h4> <span class="mw-headline">3.6 Logical Entailment </span></h4>
<p>We now define what it means for a set of RIF-BLD rules (embedded in a group or a document formula) to entail another RIF-BLD formula. In RIF-BLD we are mostly interested in entailment of RIF condition formulas, which can be viewed as queries to RIF-BLD groups or documents. Entailment of condition formulas provides formal underpinning to RIF-BLD queries.
</p><p><br />
<span class="anchor" id="def-bld-model-formula"></span>
<b>Definition (Models).</b>
A multi-structure <b>Î</b> is a <i><b>model</b></i> of a formula, <tt>φ</tt>, written as <b>Î</b><tt> |= φ</tt>, iff <i>TVal</i><sub>Î</sub>(<tt>φ</tt>) = <b>t</b>. Here <tt>φ</tt> can be a document or a non-document formula. ☐
</p><p><span class="anchor" id="def-bld-entail"></span>
<b>Definition (Logical entailment).</b>
Let <tt>φ</tt> and <tt>ψ</tt> be (document or non-document) formulas. We say that <tt>φ</tt> <i><b>entails</b></i> <tt>ψ</tt>, written as <tt>φ |= ψ</tt>, if and only if for every multi-structure, <b>Î</b>, <b>Î</b><tt> |= φ</tt> implies <b>Î</b><tt> |= ψ</tt>. ☐
</p><p><br />
Note that one consequence of the multi-document semantics of RIF-BLD is that local constants specified in one document cannot be queried from another document. For instance, if one document, <tt>Δ'</tt>, has the fact <tt>"http://example.com/ppp"^^rif:iri("abc"^^rif:local)</tt> while another document formula, <tt>Δ</tt>, imports <tt>Δ'</tt> and has the rule <tt>"http://example.com/qqq"^^rif:iri(?X) :- "http://example.com/ppp"^^rif:iri(?X)</tt>, then <tt>Δ |= "http://example.com/qqq"^^rif:iri("abc"^^rif:local)</tt> does <em>not</em> hold. This is because the symbol <tt>"abc"^^rif:local</tt> in <tt>Δ'</tt> and <tt>Δ</tt> is treated as different constants by semantic multi-structures.
</p><p>This behavior of local symbols should be contrasted with the behavior of <tt>rif:iri</tt> symbols. Suppose, in the above scenario, <tt>Δ'</tt> also has the fact <tt>"http://example.com/ppp"^^rif:iri("http://cde.example.org"^^rif:iri)</tt>. Then <tt>Δ |= "http://example.com/qqq"^^rif:iri("http://cde.example.org"^^rif:iri)</tt> <em>does</em> hold.
</p><p><br />
<span class="anchor" id="sec-xml-bld"></span>
</p>
<a id="XML_Serialization_Syntax_for_RIF-BLD" name="XML_Serialization_Syntax_for_RIF-BLD"></a><h2> <span class="mw-headline">4 XML Serialization Syntax for RIF-BLD </span></h2>
<p>The RIF-BLD XML serialization defines
</p>
<ul><li> a <i>normative</i> mapping from the RIF-BLD presentation syntax to XML (Section <a href="#sec-translation" title="">Mapping from the Presentation Syntax to the XML Syntax</a>), and
</li><li> a <i>normative</i> XML schema for the XML syntax (Appendix <a href="#sec-xsd-bld" title="">XML Schema for BLD</a>).
</li></ul>
<p>Recall that the syntax of RIF-BLD is not context-free and thus cannot be fully captured by EBNF or XML Schema. Still, validity with respect to XML Schema can be a useful test. To reflect this state of affairs, we define two notions of syntactic correctness. The weaker notion checks correctness only with respect to XML Schema, while the stricter notion represents "true" syntactic correctness.
</p><p><span class="anchor" id="def-bld-valid-xml"></span>
<b>Definition (Valid BLD document in XML syntax).</b>
A <i><b>valid</b></i> BLD document in the XML syntax is an XML document that is valid with respect to the XML schema in Appendix <a href="#sec-xsd-bld" title="">XML Schema for BLD</a>. ☐
</p><p><span class="anchor" id="def-bld-admissible-xml"></span>
<b>Definition (Admissible BLD document in XML syntax).</b>
An <i><b>admissible</b></i> BLD document in the XML syntax is a valid BLD document in XML syntax that is the image of a well-formed RIF-BLD document in the presentation syntax (see Definition <a href="#def-bld-wff" title="">Well-formed formula</a> in Section <a href="#sec-formulas" title="">Formulas</a>) under the presentation-to-XML syntax mapping <tt>χ<sub>bld</sub></tt> defined in Section <a href="#sec-translation" title="">Mapping from the Presentation Syntax to the XML Syntax</a>. ☐
</p><p>The XML serialization for RIF-BLD is based on an <i>alternating</i> or <i>striped</i> syntax [<a href="#ref-alternating-normal-form" title="">ANF01</a>]. A striped serialization views XML documents as objects and divides all XML tags into class descriptors, called <i>type tags</i>, and property descriptors, called <i>role tags</i> [<a href="#ref-type-and-role-tags" title="">TRT03</a>]. We follow the tradition of using capitalized names for type tags and lowercase names for role tags.
</p><p>The all-uppercase classes in the presentation syntax, such as <tt>FORMULA</tt>, become XML Schema groups in Appendix <a href="#sec-xsd-bld" title="">XML Schema for BLD</a>. They are not visible in instance markup. The other classes as well as non-terminals and symbols (such as <tt>Exists</tt> or <tt>=</tt>) become XML elements with optional attributes, as shown below.
</p><p>RIF-BLD uses [<a href="#ref-xml-1-point-0" title="">XML1.0</a>] for its XML syntax.
</p><p><br />
<span class="anchor" id="sec-xml-condition-language"></span>
</p>
<a id="XML_for_the_Condition_Language" name="XML_for_the_Condition_Language"></a><h3> <span class="mw-headline">4.1 XML for the Condition Language </span></h3>
<p>XML serialization of RIF-BLD in Section <a href="#sec-ebnf-condition-language" title="">EBNF for RIF-BLD Condition Language</a> uses the following elements.
</p>
<pre>- And (conjunction)
- Or (disjunction)
- Exists (quantified formula for 'Exists', containing declare and formula roles)
- declare (declare role, containing a Var)
- formula (formula role, containing a FORMULA)
- Atom (atom formula, positional or with named arguments)
- External (external call, containing a content role)
- content (content role, containing an Atom, for predicates, or Expr, for functions)
- Member (member formula)
- Subclass (subclass formula)
- Frame (Frame formula)
- object (Member/Frame role, containing a TERM or an object description)
- op (Atom/Expr role for predicates/functions as operations)
- args (Atom/Expr positional arguments role, with ordered="yes" attribute, containing n TERMs)
- instance (Member instance role)
- class (Member class role)
- sub (Subclass sub-class role)
- super (Subclass super-class role)
- slot (Atom/Expr or Frame slot role, with ordered="yes" attribute, containing a Name or TERM followed by a TERM)
- Equal (prefix version of term equation '=')
- left (Equal left-hand side role)
- right (Equal right-hand side role)
- Expr (expression formula, positional or with named arguments)
- List (list term, closed or open)
- items (list items role, with ordered="yes" attribute, containing n TERMs)
- rest (list rest role, corresponding to '|')
- Const (individual, function, or predicate symbol, with 'type' attribute)
- Name (name of named argument)
- Var (logic variable)
- id (identifier role, containing IRICONST)
- meta (meta role, containing metadata as a Frame or Frame conjunction)
</pre>
<p>The name of a base or prefix is not associated with a RIF/XML element, since it is handled via preprocessing as discussed in Section <a href="#sec-translation-rule-language" title="">Mapping of the Rule Language</a>.
</p><p>The <tt>id</tt> and <tt>meta</tt> elements, which are expansions of the <tt>IRIMETA</tt> element, can occur optionally as the initial children of any Class element.
</p><p>For the XML Schema definition of the RIF-BLD condition language see Appendix <a href="#sec-xsd-bld" title="">XML Schema for BLD</a>.
</p><p>The XML syntax for symbol spaces uses the <tt>type</tt> attribute associated with the XML element <tt>Const</tt>. For instance, a literal in the <tt>xs:dateTime</tt> datatype is represented as follows:
</p><p><tt><Const type="&xs;dateTime">2007-11-23T03:55:44-02:30</Const></tt>
</p><p>The <tt>xml:lang</tt> attribute, as defined by <a class="external text" href="http://www.w3.org/TR/REC-xml/#sec-lang-tag" title="http://www.w3.org/TR/REC-xml/#sec-lang-tag">2.12 Language Identification</a> of <a class="external text" href="http://www.w3.org/TR/2000/REC-xml-20001006" title="http://www.w3.org/TR/2000/REC-xml-20001006">XML 1.0</a> or its successor specifications in the W3C recommendation track, is optionally used to identify the language for the presentation of the <tt>Const</tt> to the user. It is allowed only in association with constants of the type <tt>rdf:plainLiteral</tt>. A compliant implementation MUST ignore the <tt>xml:lang</tt> attribute if the type of the <tt>Const</tt> is not <tt>rdf:plainLiteral</tt>.
</p><p>RIF-BLD also uses the <tt>ordered="yes"</tt> attribute to indicate that the children of
<tt>args</tt> and <tt>slot</tt> elements are ordered.
</p><p><br />
<span class="anchor" id="ex-RIF-condition-serialization">
<b>Example 6</b> (A RIF condition and its XML serialization).
</span>
</p><p>This example illustrates XML serialization for RIF conditions. As before, the compact URI notation is used for better readability. Assume that the following prefix directives are found in the preamble to the document, whose XML form will be illustrated in Example 8:
</p>
<pre>Prefix(bks <http://example.com/books#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(curr <http://example.com/currencies#>)
Prefix(rif <http://www.w3.org/2007/rif#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)
</pre>
<p>RIF condition:
</p>
<pre> And (Exists ?Buyer (cpt:purchase(?Buyer ?Seller
cpt:book(?Author bks:LeRif)
curr:USD(49)))
?Seller=?Author )
</pre>
<p>XML serialization:
</p>
<pre> <And>
<formula>
<Exists>
<declare><Var>Buyer</Var></declare>
<formula>
<Atom>
<op><Const type="&rif;iri">&cpt;purchase</Const></op>
<args ordered="yes">
<Var>Buyer</Var>
<Var>Seller</Var>
<Expr>
<op><Const type="&rif;iri">&cpt;book</Const></op>
<args ordered="yes">
<Var>Author</Var>
<Const type="&rif;iri">&bks;LeRif</Const>
</args>
</Expr>
<Expr>
<op><Const type="&rif;iri">&curr;USD</Const></op>
<args ordered="yes"><Const type="&xs;integer">49</Const></args>
</Expr>
</args>
</Atom>
</formula>
</Exists>
</formula>
<formula>
<Equal>
<left><Var>Seller</Var></left>
<right><Var>Author</Var></right>
</Equal>
</formula>
</And>
</pre>
<p><br />
<span class="anchor" id="ex-rif-bld-namedargs-pres-syntax">
<b>Example 7</b> (An XML serialization of a RIF condition with a frame and a named-argument term).
</span>
</p><p>This example illustrates XML serialization of RIF conditions that involve terms with named arguments. As in Example 6, we assume the following prefix directives, whose XML form will be illustrated in Example 8:
</p>
<pre>Prefix(bks <http://example.com/books#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(curr <http://example.com/currencies#>)
Prefix(rif <http://www.w3.org/2007/rif#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)
</pre>
<p>RIF condition:
</p>
<pre> And (Exists ?Buyer ?P (
And (?P#cpt:purchase
?P[cpt:buyer->?Buyer
cpt:seller->?Seller
cpt:item->cpt:book(cpt:author->?Author cpt:title->bks:LeRif)
cpt:price->49
cpt:currency->curr:USD]))
?Seller=?Author)
</pre>
<p>XML serialization:
</p>
<pre> <And>
<formula>
<Exists>
<declare><Var>Buyer</Var></declare>
<declare><Var>P</Var></declare>
<formula>
<And>
<formula>
<Member>
<instance><Var>P</Var></instance>
<class><Const type="&rif;iri">&cpt;purchase</Const></class>
</Member>
</formula>
<formula>
<Frame>
<object>
<Var>P</Var>
</object>
<slot ordered="yes">
<Const type="&rif;iri">&cpt;buyer</Const>
<Var>Buyer</Var>
</slot>
<slot ordered="yes">
<Const type="&rif;iri">&cpt;seller</Const>
<Var>Seller</Var>
</slot>
<slot ordered="yes">
<Const type="&rif;iri">&cpt;item</Const>
<Expr>
<op><Const type="&rif;iri">&cpt;book</Const></op>
<slot ordered="yes">
<Name>&cpt;author</Name>
<Var>Author</Var>
</slot>
<slot ordered="yes">
<Name>&cpt;title</Name>
<Const type="&rif;iri">&bks;LeRif</Const>
</slot>
</Expr>
</slot>
<slot ordered="yes">
<Const type="&rif;iri">&cpt;price</Const>
<Const type="&xs;integer">49</Const>
</slot>
<slot ordered="yes">
<Const type="&rif;iri">&cpt;currency</Const>
<Const type="&rif;iri">&curr;USD</Const>
</slot>
</Frame>
</formula>
</And>
</formula>
</Exists>
</formula>
<formula>
<Equal>
<left><Var>Seller</Var></left>
<right><Var>Author</Var></right>
</Equal>
</formula>
</And>
</pre>
<p><br />
</p><p><span class="anchor" id="sec-xml-rule-language"></span>
</p>
<a id="XML_for_the_Rule_Language" name="XML_for_the_Rule_Language"></a><h3> <span class="mw-headline">4.2 XML for the Rule Language </span></h3>
<p>We now extend the set of RIF-BLD serialization elements from Section <a href="#sec-xml-condition-language" title="">XML for RIF-BLD Condition Language</a> by including rules, along with their enclosing groups and documents, as described in Section <a href="#sec-ebnf-rule-language" title="">EBNF for RIF-BLD Rule Language</a>. The extended set includes the tags listed below.
</p>
<pre>- Document (document, containing optional directive and payload roles)
- directive (directive role, containing Import)
- payload (payload role, containing Group)
- Import (importation, containing location and optional profile)
- location (location role, containing ANYURICONST)
- profile (profile role, containing PROFILE)
- Group (nested collection of sentences)
- sentence (sentence role, containing RULE or Group)
- Forall (quantified formula for 'Forall', containing declare and formula roles)
- Implies (implication, containing if and then roles)
- if (antecedent role, containing FORMULA)
- then (consequent role, containing ATOMIC or conjunction of ATOMICs)
</pre>
<p>The XML Schema Definition of RIF-BLD is given in Appendix <a href="#sec-xsd-bld" title="">XML Schema for BLD</a>.
</p><p>While there is a RIF-BLD element tag for the <tt>Import</tt> directive, the <tt>Base</tt> and <tt>Prefix</tt> directives are not represented by RIF/XML tags: they are handled as follows (see also Section <a href="#sec-translation-rule-language" title="">Mapping of the Rule Language</a>).
A <tt>Base</tt> directive in the presentation syntax becomes an <tt>xml:base</tt> attribute [<a href="#ref-xml-base" title="">XML-Base</a>] in the XML <tt>Document</tt> tag.
The base IRI specified as the value of that attribute applies to content of the RIF/XML element that deals with <tt>rif:iri</tt> constants, namely to relative-IRI content of the <tt><Const type="&rif;iri"></tt> element.
A collection of <tt>Prefix</tt> directives in the presentation syntax becomes a <tt>DOCTYPE</tt> DTD [<a href="#ref-xml-1-point-0" title="">XML1.0</a>] preceding the RIF-BLD <tt>Document</tt> and containing a declaration of an <tt>ENTITY</tt> for each <tt>Prefix</tt> directive.
</p><p><br />
<span class="anchor" id="ex-RIF-doc-with-annotation-serialization">
<b>Example 8</b> (Serializing a RIF-BLD document containing an annotated group).
</span>
</p><p>This example shows a serialization for the document from Example 5. For convenience, the presentation syntax is reproduced at the top, and is followed by its serialization.
The base IRI <tt>http://example.com/people#</tt> applies to the relative <tt>rif:iri</tt> constants with content <tt>John</tt> (twice) and <tt>Fred</tt> (once).
</p><p>Presentation syntax:
</p>
<pre>Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(dc <http://purl.org/dc/terms/>)
Prefix(rif <http://www.w3.org/2007/rif#>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)
(* "http://sample.org"^^rif:iri _pd[dc:publisher -> "http://www.w3.org/"^^rif:iri
dc:date -> "2008-04-04"^^xs:date] *)
Group
(
Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (
cpt:reject(<John> ?item) :-
And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))
)
Forall ?item (
cpt:reject(<Fred> ?item) :- cpt:unsolicited(?item)
)
)
)
</pre>
<p>XML syntax:
</p>
<pre><!DOCTYPE Document [
<!ENTITY cpt "http://example.com/concepts#">
<!ENTITY dc "http://purl.org/dc/terms/">
<!ENTITY rif "http://www.w3.org/2007/rif#">
<!ENTITY func "http://www.w3.org/2007/rif-builtin-function#">
<!ENTITY pred "http://www.w3.org/2007/rif-builtin-predicate#">
<!ENTITY xs "http://www.w3.org/2001/XMLSchema#">
]>
<Document
xml:base="http://example.com/people#"
xmlns="http://www.w3.org/2007/rif#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema#">
<payload>
<Group>
<id>
<Const type="&rif;iri">http://sample.org</Const>
</id>
<meta>
<Frame>
<object>
<Const type="&rif;local">pd</Const>
</object>
<slot ordered="yes">
<Const type="&rif;iri">&dc;publisher</Const>
<Const type="&rif;iri">http://www.w3.org/</Const>
</slot>
<slot ordered="yes">
<Const type="&rif;iri">&dc;date</Const>
<Const type="&xs;date">2008-04-04</Const>
</slot>
</Frame>
</meta>
<sentence>
<Forall>
<declare><Var>item</Var></declare>
<declare><Var>deliverydate</Var></declare>
<declare><Var>scheduledate</Var></declare>
<declare><Var>diffduration</Var></declare>
<declare><Var>diffdays</Var></declare>
<formula>
<Implies>
<if>
<And>
<formula>
<Atom>
<op><Const type="&rif;iri">&cpt;perishable</Const></op>
<args ordered="yes"><Var>item</Var></args>
</Atom>
</formula>
<formula>
<Atom>
<op><Const type="&rif;iri">&cpt;delivered</Const></op>
<args ordered="yes">
<Var>item</Var>
<Var>deliverydate</Var>
<Const type="&rif;iri">John</Const>
</args>
</Atom>
</formula>
<formula>
<Atom>
<op><Const type="&rif;iri">&cpt;scheduled</Const></op>
<args ordered="yes">
<Var>item</Var>
<Var>scheduledate</Var>
</args>
</Atom>
</formula>
<formula>
<Equal>
<left><Var>diffduration</Var></left>
<right>
<External>
<content>
<Expr>
<op><Const type="&rif;iri">&func;subtract-dateTimes</Const></op>
<args ordered="yes">
<Var>deliverydate</Var>
<Var>scheduledate</Var>
</args>
</Expr>
</content>
</External>
</right>
</Equal>
</formula>
<formula>
<Equal>
<left><Var>diffdays</Var></left>
<right>
<External>
<content>
<Expr>
<op><Const type="&rif;iri">&func;days-from-duration</Const></op>
<args ordered="yes">
<Var>diffduration</Var>
</args>
</Expr>
</content>
</External>
</right>
</Equal>
</formula>
<formula>
<External>
<content>
<Atom>
<op><Const type="&rif;iri">&pred;numeric-greater-than</Const></op>
<args ordered="yes">
<Var>diffdays</Var>
<Const type="&xs;integer">10</Const>
</args>
</Atom>
</content>
</External>
</formula>
</And>
</if>
<then>
<Atom>
<op><Const type="&rif;iri">&cpt;reject</Const></op>
<args ordered="yes">
<Const type="&rif;iri">John</Const>
<Var>item</Var>
</args>
</Atom>
</then>
</Implies>
</formula>
</Forall>
</sentence>
<sentence>
<Forall>
<declare><Var>item</Var></declare>
<formula>
<Implies>
<if>
<Atom>
<op><Const type="&rif;iri">&cpt;unsolicited</Const></op>
<args ordered="yes"><Var>item</Var></args>
</Atom>
</if>
<then>
<Atom>
<op><Const type="&rif;iri">&cpt;reject</Const></op>
<args ordered="yes">
<Const type="&rif;iri">Fred</Const>
<Var>item</Var>
</args>
</Atom>
</then>
</Implies>
</formula>
</Forall>
</sentence>
</Group>
</payload>
</Document>
</pre>
<p><br />
</p><p><span class="anchor" id="sec-translation"></span>
</p>
<a id="Mapping_from_the_Presentation_Syntax_to_the_XML_Syntax" name="Mapping_from_the_Presentation_Syntax_to_the_XML_Syntax"></a><h3> <span class="mw-headline">4.3 Mapping from the Presentation Syntax to the XML Syntax </span></h3>
<p>This section defines a normative mapping, <tt>χ<sub>bld</sub></tt>, from the presentation syntax to the XML syntax of RIF-BLD.
The mapping is given via tables where each row specifies the mapping of a particular syntactic pattern in the presentation syntax. These patterns appear in the first column of the tables and the <i><b>bold-italic</b></i> symbols represent metavariables. The second column represents the corresponding XML patterns, which may contain applications of the mapping <tt>χ<sub>bld</sub></tt> to these metavariables. When an expression <tt>χ<sub>bld</sub></tt><tt>(<b><i>metavar</i></b>)</tt> occurs in an XML pattern in the right column of a translation table, it should be understood as a recursive application of <tt>χ<sub>bld</sub></tt> to the presentation syntax represented by the metavariable. The XML syntax result of such an application is substituted for the expression <tt>χ<sub>bld</sub></tt><tt>(<b><i>metavar</i></b>)</tt>.
A sequence of terms containing metavariables with subscripts is indicated by an ellipsis.
For the subscript <tt>m</tt> it is understood that
<tt>m≥1</tt>, i.e. the ellipsis indicates at least one term.
For the subscript <tt>n</tt> it is understood that
<tt>n≥0</tt>, i.e. the ellipsis indicates zero or more terms.
A metavariable or a well-formed XML subelement is marked as optional by appending a bold-italic question mark, <i><b>?</b></i>, on its right.
</p><p><br />
<span class="anchor" id="sec-translation-condition-language"></span>
</p>
<a id="Mapping_of_the_Condition_Language" name="Mapping_of_the_Condition_Language"></a><h4> <span class="mw-headline">4.3.1 Mapping of the Condition Language </span></h4>
<p>The <tt>χ<sub>bld</sub></tt> mapping from the presentation syntax to the XML syntax of the RIF-BLD Condition Language is specified by the table below.
Each row indicates a translation
<tt>χ<sub>bld</sub></tt>(<tt>Presentation</tt>) = <tt>XML</tt>. The function <tt><i>remove-outer-quotes</i></tt> used in the translation removes enclosing double quotes from a string and leaves unquoted strings untouched.
Since the presentation syntax of RIF-BLD is context sensitive, the mapping must differentiate between the terms that occur in the position of individuals and the terms that occur as atomic formulas. To this end, in the translation table, the positional and named-argument terms that occur in the context of atomic formulas are denoted by expressions of the form <i><b>pred</b></i>(...) and the terms that occur as individuals are denoted by expressions of the form <i><b>func</b></i>(...).
In the table, each metavariable for an (unnamed) positional <i><b>argument<sub>i</sub></b></i> is assumed to be instantiated to values unequal to the instantiations of named arguments <i><b>name<sub>j</sub></b></i> <tt>-></tt> <i><b>filler<sub>j</sub></b></i>. Regarding the last but first row, we assume that shortcuts for constants [<a href="#ref-rif-dtb" title="">RIF-DTB</a>] have already been expanded to their full form (<tt>"..."^^</tt><i><b>symspace</b></i>).
</p>
<table class="syntax-translation-table">
<tr>
<th colspan="1" rowspan="1"> Presentation Syntax
</th><th colspan="1" rowspan="1"> XML Syntax
</th></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>And (
<i><b>conjunct<sub>1</sub></b></i>
. . .
<i><b>conjunct<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><And>
<formula><tt>χ<sub>bld</sub></tt>(<i><b>conjunct<sub>1</sub></b></i>)</formula>
. . .
<formula><tt>χ<sub>bld</sub></tt>(<i><b>conjunct<sub>n</sub></b></i>)</formula>
</And>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>Or (
<i><b>disjunct<sub>1</sub></b></i>
. . .
<i><b>disjunct<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Or>
<formula><tt>χ<sub>bld</sub></tt>(<i><b>disjunct<sub>1</sub></b></i>)</formula>
. . .
<formula><tt>χ<sub>bld</sub></tt>(<i><b>disjunct<sub>n</sub></b></i>)</formula>
</Or>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>Exists
<i><b>variable<sub>1</sub></b></i>
. . .
<i><b>variable<sub>n</sub></b></i> (
<i><b>premise</b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Exists>
<declare><tt>χ<sub>bld</sub></tt>(<i><b>variable<sub>1</sub></b></i>)</declare>
. . .
<declare><tt>χ<sub>bld</sub></tt>(<i><b>variable<sub>n</sub></b></i>)</declare>
<formula><tt>χ<sub>bld</sub></tt>(<i><b>premise</b></i>)</formula>
</Exists>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>External (
<i><b>atomexpr</b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><External>
<content><tt>χ<sub>bld</sub></tt>(<i><b>atomexpr</b></i>)</content>
</External>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>pred</b></i> (
<i><b>argument<sub>1</sub></b></i>
. . .
<i><b>argument<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Atom>
<op><tt>χ<sub>bld</sub></tt>(<i><b>pred</b></i>)</op>
<args ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>n</sub></b></i>)
</args>
</Atom>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>func</b></i> (
<i><b>argument<sub>1</sub></b></i>
. . .
<i><b>argument<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Expr>
<op><tt>χ<sub>bld</sub></tt>(<i><b>func</b></i>)</op>
<args ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>n</sub></b></i>)
</args>
</Expr>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>List (
<i><b>element<sub>1</sub></b></i>
. . .
<i><b>element<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><List>
<items ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>n</sub></b></i>)
</items>
</List>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>List (
<i><b>element<sub>1</sub></b></i>
. . .
<i><b>element<sub>n</sub></b></i>
|
<i><b>remainder</b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><List>
<items ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>n</sub></b></i>)
</items>
<rest><tt>χ<sub>bld</sub></tt>(<i><b>remainder</b></i>)</rest>
</List>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>pred</b></i> (
<i><b>name<sub>1</sub></b></i> -> <i><b>filler<sub>1</sub></b></i>
. . .
<i><b>name<sub>n</sub></b></i> -> <i><b>filler<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Atom>
<op><tt>χ<sub>bld</sub></tt>(<i><b>pred</b></i>)</op>
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>1</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>1</sub></b></i>)
</slot>
. . .
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>n</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>n</sub></b></i>)
</slot>
</Atom>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>func</b></i> (
<i><b>name<sub>1</sub></b></i> -> <i><b>filler<sub>1</sub></b></i>
. . .
<i><b>name<sub>n</sub></b></i> -> <i><b>filler<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Expr>
<op><tt>χ<sub>bld</sub></tt>(<i><b>func</b></i>)</op>
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>1</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>1</sub></b></i>)
</slot>
. . .
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>n</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>n</sub></b></i>)
</slot>
</Expr>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>inst</b></i> [
<i><b>key<sub>1</sub></b></i> -> <i><b>filler<sub>1</sub></b></i>
. . .
<i><b>key<sub>n</sub></b></i> -> <i><b>filler<sub>n</sub></b></i>
]
</pre>
</td><td colspan="1" rowspan="1">
<pre><Frame>
<object><tt>χ<sub>bld</sub></tt>(<i><b>inst</b></i>)</object>
<slot ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>key<sub>1</sub></b></i>)
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>1</sub></b></i>)
</slot>
. . .
<slot ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>key<sub>n</sub></b></i>)
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>n</sub></b></i>)
</slot>
</Frame>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>inst</b></i> # <i><b>class</b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Member>
<instance><tt>χ<sub>bld</sub></tt>(<i><b>inst</b></i>)</instance>
<class><tt>χ<sub>bld</sub></tt>(<i><b>class</b></i>)</class>
</Member>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>sub</b></i> ## <i><b>super</b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Subclass>
<sub><tt>χ<sub>bld</sub></tt>(<i><b>sub</b></i>)</sub>
<super><tt>χ<sub>bld</sub></tt>(<i><b>super</b></i>)</super>
</Subclass>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>left</b></i> = <i><b>right</b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Equal>
<left><tt>χ<sub>bld</sub></tt>(<i><b>left</b></i>)</left>
<right><tt>χ<sub>bld</sub></tt>(<i><b>right</b></i>)</right>
</Equal>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>"<i><b>unicodestring</b></i>"^^<i><b>symspace</b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Const type="<i><b>symspace</b></i>"><i><b>unicodestring</b></i></Const>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>?<i><b>name<sub>1</sub></b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Var><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>1</sub></b></i>)</Var>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>name<sub>i</sub></b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre> <i>remove-outer-quotes</i>(<i><b>name<sub>i</sub></b></i>)
</pre>
</td></tr></table>
<p><br />
<span class="anchor" id="sec-translation-rule-language"></span>
</p>
<a id="Mapping_of_the_Rule_Language" name="Mapping_of_the_Rule_Language"></a><h4> <span class="mw-headline">4.3.2 Mapping of the Rule Language </span></h4>
<p>The <tt>χ<sub>bld</sub></tt> mapping from the presentation syntax to the XML syntax of the RIF-BLD Rule Language is specified by the table below. It extends the translation table of Section <a href="#sec-translation-condition-language" title="">Mapping of the Condition Language</a>. While the <tt>Import</tt> directive is handled by the presentation-to-XML syntax mapping, the <tt>Prefix</tt> and <tt>Base</tt> directives are not. Instead, these directives should be handled by expanding the associated shortcuts (compact URIs).
Namely, a prefix name declared in a <tt>Prefix</tt> directive is expanded into the associated IRI, while relative IRIs are completed using the IRI declared in the <tt>Base</tt> directive. The mapping <tt>χ<sub>bld</sub></tt> applies only to such expanded documents.
RIF-BLD also allows other treatments of <tt>Prefix</tt> and <tt>Base</tt> provided that they produce equivalent XML documents. One such treatment is employed in the examples in this document, especially Example 8. It replaces prefix names with definitions of XML entities as follows.
Each <tt>Prefix</tt> declaration becomes an <tt>ENTITY</tt> declaration [<a href="#ref-xml-1-point-0" title="">XML1.0</a>] within a <tt>DOCTYPE</tt> DTD attached to the RIF-BLD <tt>Document</tt>. The <tt>Base</tt> directive is mapped to the <tt>xml:base</tt> attribute [<a href="#ref-xml-base" title="">XML-Base</a>] in the XML <tt>Document</tt> tag.
Compact URIs of the form <tt>prefix:suffix</tt> are then mapped to <tt>&prefix;suffix</tt>.
</p>
<table class="syntax-translation-table">
<tr>
<th colspan="1" rowspan="1"> Presentation Syntax
</th><th colspan="1" rowspan="1"> XML Syntax
</th></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>Document(
Import(<i><b>loc<sub>1</sub></b></i> <i><b>prfl<sub>1</sub>?</b></i>)
. . .
Import(<i><b>loc<sub>n</sub></b></i> <i><b>prfl<sub>n</sub>?</b></i>)
<i><b>group?</b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Document>
<directive>
<Import>
<location><tt>χ<sub>bld</sub></tt>(<i><b>loc<sub>1</sub></b></i>)</location>
<profile><tt>χ<sub>bld</sub></tt>(<i><b>prfl<sub>1</sub></b></i>)</profile><i><b>?</b></i>
</Import>
</directive>
. . .
<directive>
<Import>
<location><tt>χ<sub>bld</sub></tt>(<i><b>loc<sub>n</sub></b></i>)</location>
<profile><tt>χ<sub>bld</sub></tt>(<i><b>prfl<sub>n</sub></b></i>)</profile><i><b>?</b></i>
</Import>
</directive>
<payload><tt>χ<sub>bld</sub></tt>(<i><b>group</b></i>)</payload><i><b>?</b></i>
</Document>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>Group(
<i><b>clause<sub>1</sub></b></i>
. . .
<i><b>clause<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Group>
<sentence><tt>χ<sub>bld</sub></tt>(<i><b>clause<sub>1</sub></b></i>)</sentence>
. . .
<sentence><tt>χ<sub>bld</sub></tt>(<i><b>clause<sub>n</sub></b></i>)</sentence>
</Group>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>Forall
<i><b>variable<sub>1</sub></b></i>
. . .
<i><b>variable<sub>n</sub></b></i> (
<i><b>rule</b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Forall>
<declare><tt>χ<sub>bld</sub></tt>(<i><b>variable<sub>1</sub></b></i>)</declare>
. . .
<declare><tt>χ<sub>bld</sub></tt>(<i><b>variable<sub>n</sub></b></i>)</declare>
<formula><tt>χ<sub>bld</sub></tt>(<i><b>rule</b></i>)</formula>
</Forall>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre><i><b>conclusion</b></i> :- <i><b>condition</b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Implies>
<if><tt>χ<sub>bld</sub></tt>(<i><b>condition</b></i>)</if>
<then><tt>χ<sub>bld</sub></tt>(<i><b>conclusion</b></i>)</then>
</Implies>
</pre>
</td></tr></table>
<a id="Mapping_of_Annotations" name="Mapping_of_Annotations"></a><h4> <span class="mw-headline">4.3.3 Mapping of Annotations </span></h4>
<p>The <tt>χ<sub>bld</sub></tt> mapping from RIF-BLD annotations in the presentation syntax to the XML syntax is specified by the table below.
It extends the translation tables of Sections <a href="#sec-translation-condition-language" title="">Mapping of the Condition Language</a> and <a href="#sec-translation-rule-language" title="">Mapping of the Rule Language</a>.
The metavariable <i><b>Typetag</b></i> in the presentation and XML syntaxes stands for any of the class names <tt>And</tt>, <tt>Or</tt>, <tt>External</tt>, <tt>Document</tt>, or <tt>Group</tt>, and <i><b>Quantifier</b></i> for <tt>Exists</tt> or <tt>Forall</tt>. The dollar sign, <b>$</b>, stands for any of the binary infix operator names <tt>#</tt>, <tt>##</tt>, <tt>=</tt>, or <tt>:-</tt>, while <i><b>Binop</b></i> stands for their respective class names <tt>Member</tt>, <tt>Subclass</tt>, <tt>Equal</tt>, or <tt>Implies</tt>.
Again, each metavariable for an (unnamed) positional <i><b>argument<sub>i</sub></b></i> is assumed to be instantiated to values unequal to the instantiations of named arguments <i><b>name<sub>j</sub></b></i> <tt>-></tt> <i><b>filler<sub>j</sub></b></i>.
</p>
<table class="syntax-translation-table">
<tr>
<th colspan="1" rowspan="1"> Presentation Syntax
</th><th colspan="1" rowspan="1"> XML Syntax
</th></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>Typetag</b></i> ( <i><b>e<sub>1</sub></b></i> . . . <i><b>e<sub>n</sub></b></i> )
</pre>
</td><td colspan="1" rowspan="1">
<pre><<i><b>Typetag</b></i>>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<i><b>e<sub>1</sub>'</b></i> . . . <i><b>e<sub>n</sub>'</b></i>
</<i><b>Typetag</b></i>>
<tt>where <i><b>e<sub>1</sub>'</b></i>, . . ., <i><b>e<sub>n</sub>'</b></i> are defined by the equation</tt>
<tt>χ<sub>bld</sub></tt><tt>(<i><b>Typetag</b></i>(<i><b>e<sub>1</sub></b></i> . . . <i><b>e<sub>n</sub></b></i>)) = <<i><b>Typetag</b></i>><i><b>e<sub>1</sub>'</b></i> . . . <i><b>e<sub>n</sub>'</b></i></<i><b>Typetag</b></i>></tt>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>Quantifier</b></i> <i><b>variable<sub>1</sub></b></i> . . . <i><b>variable<sub>n</sub></b></i> ( <i><b>formula</b></i> )
</pre>
</td><td colspan="1" rowspan="1">
<pre><<i><b>Quantifier</b></i>>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<declare><tt>χ<sub>bld</sub></tt>(<i><b>variable<sub>1</sub></b></i>)</declare>
. . .
<declare><tt>χ<sub>bld</sub></tt>(<i><b>variable<sub>n</sub></b></i>)</declare>
<formula><tt>χ<sub>bld</sub></tt>(<i><b>formula</b></i>)</formula>
</<i><b>Quantifier</b></i>>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>pred</b></i> (
<i><b>argument<sub>1</sub></b></i>
. . .
<i><b>argument<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Atom>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<op><tt>χ<sub>bld</sub></tt>(<i><b>pred</b></i>)</op>
<args ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>n</sub></b></i>)
</args>
</Atom>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>func</b></i> (
<i><b>argument<sub>1</sub></b></i>
. . .
<i><b>argument<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Expr>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<op><tt>χ<sub>bld</sub></tt>(<i><b>func</b></i>)</op>
<args ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>argument<sub>n</sub></b></i>)
</args>
</Expr>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
List (
<i><b>element<sub>1</sub></b></i>
. . .
<i><b>element<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><List>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<items ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>n</sub></b></i>)
</items>
</List>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
List (
<i><b>element<sub>1</sub></b></i>
. . .
<i><b>element<sub>n</sub></b></i>
|
<i><b>remainder</b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><List>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<items ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>1</sub></b></i>)
. . .
<tt>χ<sub>bld</sub></tt>(<i><b>element<sub>n</sub></b></i>)
</items>
<rest><tt>χ<sub>bld</sub></tt>(<i><b>remainder</b></i>)</rest>
</List>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>pred</b></i> (
<i><b>name<sub>1</sub></b></i> -> <i><b>filler<sub>1</sub></b></i>
. . .
<i><b>name<sub>n</sub></b></i> -> <i><b>filler<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Atom>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<op><tt>χ<sub>bld</sub></tt>(<i><b>pred</b></i>)</op>
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>1</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>1</sub></b></i>)
</slot>
. . .
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>n</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>n</sub></b></i>)
</slot>
</Atom>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>func</b></i> (
<i><b>name<sub>1</sub></b></i> -> <i><b>filler<sub>1</sub></b></i>
. . .
<i><b>name<sub>n</sub></b></i> -> <i><b>filler<sub>n</sub></b></i>
)
</pre>
</td><td colspan="1" rowspan="1">
<pre><Expr>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<op><tt>χ<sub>bld</sub></tt>(<i><b>func</b></i>)</op>
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>1</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>1</sub></b></i>)
</slot>
. . .
<slot ordered="yes">
<Name><tt>χ<sub>bld</sub></tt>(<i><b>name<sub>n</sub></b></i>)</Name>
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>n</sub></b></i>)
</slot>
</Expr>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>inst</b></i> [
<i><b>key<sub>1</sub></b></i> -> <i><b>filler<sub>1</sub></b></i>
. . .
<i><b>key<sub>n</sub></b></i> -> <i><b>filler<sub>n</sub></b></i>
]
</pre>
</td><td colspan="1" rowspan="1">
<pre><Frame>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<object><tt>χ<sub>bld</sub></tt>(<i><b>inst</b></i>)</object>
<slot ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>key<sub>1</sub></b></i>)
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>1</sub></b></i>)
</slot>
. . .
<slot ordered="yes">
<tt>χ<sub>bld</sub></tt>(<i><b>key<sub>n</sub></b></i>)
<tt>χ<sub>bld</sub></tt>(<i><b>filler<sub>n</sub></b></i>)
</slot>
</Frame>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>e<sub>1</sub></b></i> <b>$</b> <i><b>e<sub>2</sub></b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><<i><b>Binop</b></i>>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<i><b>e<sub>1</sub>'</b></i> <i><b>e<sub>2</sub>'</b></i>
</<i><b>Binop</b></i>>
<tt>where <i><b>Binop</b></i>, <i><b>e<sub>1</sub>'</b></i>, <i><b>e<sub>2</sub>'</b></i> are defined by the equation</tt>
<tt>χ<sub>bld</sub></tt><tt>(<i><b>e<sub>1</sub></b></i> <b>$</b> <i><b>e<sub>2</sub></b></i>) = <<i><b>Binop</b></i>><i><b>e<sub>1</sub>'</b></i> <i><b>e<sub>2</sub>'</b></i></<i><b>Binop</b></i>></tt>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
<i><b>unicodestring</b></i>^^<i><b>symspace</b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Const type="<i><b>symspace</b></i>">
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<i><b>unicodestring</b></i>
</Const>
</pre>
</td></tr>
<tr>
<td colspan="1" rowspan="1">
<pre>(* <i><b>iriconst?</b></i> <i><b>frameconj?</b></i> *)
?<i><b>name<sub>1</sub></b></i>
</pre>
</td><td colspan="1" rowspan="1">
<pre><Var>
<id><tt>χ<sub>bld</sub></tt>(<i><b>iriconst</b></i>)</id><i><b>?</b></i>
<meta><tt>χ<sub>bld</sub></tt>(<i><b>frameconj</b></i>)</meta><i><b>?</b></i>
<tt>χ<sub>bld</sub></tt>(<i><b>name<sub>1</sub></b></i>)
</Var>
</pre>
</td></tr></table>
<p><br />
<span class="anchor" id="sec-conformance"></span>
</p>
<a id="Conformance_Clauses" name="Conformance_Clauses"></a><h2> <span class="mw-headline">5 Conformance Clauses </span></h2>
<p>RIF-BLD does not require or expect conformant systems to implement the RIF-BLD presentation syntax. Instead, conformance is described in terms of semantics-preserving transformations between the native syntax of a compliant system and the XML syntax of RIF-BLD.
</p><p>Let Τ be a set of datatypes and symbol spaces that includes the datatypes specified in
[<a href="#ref-rif-dtb" title="">RIF-DTB</a>], and the symbol spaces <tt>rif:iri</tt>, and <tt>rif:local</tt>. Suppose Ε is a <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">coherent set of external schemas</a> that includes the built-ins listed in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>]. We say that a formula φ is a <i>BLD</i><sub>Τ,Ε</sub> formula iff
</p>
<ul>
<li>
it is a well-formed BLD formula,
</li>
<li>
all datatypes and symbol spaces used in φ are in Τ, and
</li>
<li>
all externally defined terms used in φ are instantiations of external schemas from Ε.
</li>
</ul>
<p><span class="anchor" id="def-conformance"></span>
A RIF processor is a <i><b>conformant</b></i> <i>BLD</i><sub>Τ,Ε</sub> <i><b>consumer</b></i> iff it implements a <span class="anchor" id="def-sem-preserving-map-to"><i>semantics-preserving mapping</i></span>, μ, from the set of all <i>BLD</i><sub>Τ,Ε</sub> formulas to the language <i>L</i> of the processor (μ does not need to be an "onto" mapping).
</p><p>Formally, this means that for any pair φ, ψ of <i>BLD</i><sub>Τ,Ε</sub> formulas for which φ |=<sub><tt><i>BLD</i></tt></sub> ψ is defined, φ |=<sub><tt><i>BLD</i></tt></sub> ψ iff μ(φ) |=<sub><tt><i>L</i></tt></sub> μ(ψ). Here |=<sub><tt><i>BLD</i></tt></sub> denotes the logical entailment in RIF-BLD and |=<sub><tt><i>L</i></tt></sub> is the logical entailment in the language <i>L</i> of the RIF processor.
</p><p>A RIF processor is a <i><b>conformant</b></i> <i>BLD</i><sub>Τ,Ε</sub> <i><b>producer</b></i> iff it implements a <span class="anchor" id="def-sem-preserving-map-from"><i>semantics-preserving mapping</i></span>, ν, from the language <i>L</i> of the processor to the set of all <i>BLD</i><sub>Τ,Ε</sub> formulas (ν does not need to be an "onto" mapping).
</p><p>Formally, this means that for any pair φ, ψ of formulas in <i>L</i> for which φ |=<sub><tt><i>L</i></tt></sub> ψ is defined, φ |=<sub><tt><i>L</i></tt></sub> ψ iff ν(φ) |=<sub><tt><i>BLD</i></tt></sub> ν(ψ).
</p><p>An <i><b>admissible document</b></i> is one which conforms to all the syntactic constraints of RIF-BLD, including ones that cannot be checked by an XML Schema validator (cf. Definition <a href="#def-bld-admissible-xml" title="">Admissible BLD document in XML syntax</a>).
</p><p>The above definitions are specializations to BLD of the general conformance clauses defined in the RIF framework for logic dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>]. The following clauses are further restrictions that are specific to RIF-BLD.
</p><p><b>RIF-BLD specific clauses</b>
</p>
<ul><li> Conformant BLD producers and consumers are required to support only the entailments of the form φ |=<sub><tt><i>BLD</i></tt></sub> ψ, where ψ is a <span class="anchor" id="ptr-closed-rif-condform"><i>closed RIF condition formula</i></span>, i.e., a RIF condition in which every variable, <tt>?V</tt>, is in the scope of a quantifier of the form <tt>Exists ?V</tt>. In addition, conformant BLD producers and consumers <i>should</i> preserve all annotations where possible.
</li></ul>
<ul><li> A <i><b>conformant BLD consumer</b></i> must reject any document containing features it does not support.
</li></ul>
<ul><li> A <i><b>conformant BLD producer</b></i> is a conformant BLD<sub>Τ,Ε</sub> producer, which produces documents that include only the datatypes and externals that are required by BLD.
</li></ul>
<p>RIF-BLD supports a wide variety of syntactic forms for terms and formulas, which creates infrastructure for exchanging syntactically diverse rule languages. It is important to realize, however, that the above conformance statements make it possible for systems that do not support some of the syntax directly to still support it through syntactic transformations. For instance, disjunctions in rule premises can be eliminated through a standard transformation, such as replacing <tt>p :- Or(q r)</tt> with a pair of rules <tt>p :- q, p :- r</tt>. Terms with named arguments can be reduced to positional terms by ordering the arguments by their names and incorporating the ordered argument names into the predicate name. For instance, <tt>p(bb->1 aa->2)</tt> can be represented as <tt>p_aa_bb(2 1)</tt>.
</p><p><br />
<span class="anchor" id="sec-bld-fld-spec"></span>
</p>
<a id="RIF-BLD_as_a_Specialization_of_the_RIF_Framework_for_Logic_Dialects_.5BRIF-FLD.5D" name="RIF-BLD_as_a_Specialization_of_the_RIF_Framework_for_Logic_Dialects_.5BRIF-FLD.5D"></a><h2> <span class="mw-headline">6 RIF-BLD as a Specialization of the RIF Framework for Logic Dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>] </span></h2>
<p>This normative section describes RIF-BLD by specializing RIF-FLD. The reader is
assumed to be familiar with RIF-FLD as described in RIF framework for
logic dialects [<a href="#ref-rif-fld" title="">RIF-FLD</a>]. The reader who is not interested in how RIF-BLD is
derived from the framework can skip this section.
</p><p><br />
</p>
<a id="The_Presentation_Syntax_of_RIF-BLD_as_a_Specialization_of_RIF-FLD" name="The_Presentation_Syntax_of_RIF-BLD_as_a_Specialization_of_RIF-FLD"></a><h4> <span class="mw-headline">6.1 The Presentation Syntax of RIF-BLD as a Specialization of RIF-FLD </span></h4>
<p>This section defines the precise relationship between the presentation syntax of RIF-BLD and the syntactic framework of RIF-FLD.
</p><p>The presentation syntax of the RIF Basic Logic Dialect is defined by specialization from the presentation syntax of the <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-syntactic-framework" title="FLD">RIF Syntactic Framework for Logic Dialects</a> described in [<a href="#ref-rif-fld" title="">RIF-FLD</a>]. Section <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-dialect-syntax" title="FLD">Syntax of a RIF Dialect as a Specialization of the RIF Framework</a> in [<a href="#ref-rif-fld" title="">RIF-FLD</a>] lists the parameters of the syntactic framework in mathematical English, which we will now specialize for RIF-BLD.
</p>
<ol>
<li>
<i>Extension points</i>.
<p>
All extension points of RIF-FLD are removed (specialized by replacing them with zero objects).
</p>
</li>
<li> <i>Alphabet</i>.
<p>
The alphabet of the RIF-BLD presentation syntax is the alphabet of RIF-FLD with the symbols <tt>Dialect</tt>, <tt>Neg</tt>, and <tt>Naf</tt> excluded.
</p>
</li>
<li> <i>Assignment of signatures to each constant and variable symbol</i>.
<p>
The signature set of RIF-BLD contains the following signatures:
</p>
<ol style="list-style-type:lower-alpha">
<li>Basic
<ul>
<li><tt>individual{ }</tt></li>
<li><tt>atomic{ }</tt></li>
</ul>
<p>
The signature <tt>individual{ }</tt> represents the context in which individual objects (but not atomic formulas) can appear.
<br />
The signature <tt>atomic{ }</tt> represents the context where atomic formulas can occur.
</p>
</li>
<li>
Signatures for lists
<ul>
<li>
The signature <tt>list</tt> for closed lists. It has the following arrow expressions: <tt>() ⇒ individual</tt>, <tt>(individual) ⇒ individual</tt>, <tt>(individual individual) ⇒ individual</tt>, ...
</li>
<li>
The signature <tt>openlist</tt> for open lists (that have tails). It has the following arrow expressions: <tt>(individual individual) ⇒ individual</tt>, <tt>(individual individual individual) ⇒ individual</tt>, ...
</li>
</ul>
</li>
<li>Signatures for functions, predicates, and external functions and predicates
<ul>
<li>
Function signature <tt>f</tt>. This signature has the arrow expressions for positional functions: <tt>() ⇒ individual</tt>, <tt>(individual) ⇒ individual</tt>, <tt>(individual individual) ⇒ individual</tt>, ..., plus the arrow expressions for functions with named arguments: <tt>(s1->individual ... sk->individual) ⇒ individual}</tt>, for all k>0 and all <tt>s1, ..., sk</tt> ∈ <tt>ArgNames</tt>.
</li>
<li>
Predicate signature <tt>p</tt>. This signature has the arrow expressions for positional predicates: <tt>() ⇒ atomic</tt>, <tt>(individual) ⇒ atomic</tt>, <tt>(individual individual) ⇒ atomic</tt>, ..., plus the arrow expressions for predicates with named arguments: <tt>(s1->individual ... sk->individual) ⇒ atomic}</tt>, for all k>0 and all <tt>s1, ..., sk</tt> ∈ <tt>ArgNames</tt>.
</li>
</ul>
<p>
In the RIF-BLD specialization of RIF-FLD, the argument names <tt>s1</tt>, ..., <tt>sk</tt> must be pairwise distinct.
</p>
</li>
<li>Every symbol in <tt>Const</tt> has exactly one signature: <tt>individual</tt>, <tt>f</tt>, or <tt>p</tt>.
<p>
A constant cannot have the signature <tt>atomic</tt> -- only complex terms can have such signatures. Thus, by itself a symbol, <tt>s</tt>, cannot be a proposition in RIF-BLD, but a term of the form <tt>s()</tt> can.
</p>
<p>
According to the above, each constant symbol in RIF-BLD can be either an individual, a function, or a predicate. However, the same function or predicate symbol (normal or external) can occur with different numbers of arguments in different places. Also, the <a href="#cond-specialization-external" title="">additional restrictions spelled out below</a> ensure that the same symbol cannot represent both an externally defined predicate or function and a regular predicate or function.
</p>
</li>
<li>The constant symbols that correspond to RIF datatypes (XML Schema datatypes, <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-xmlliteral-space" title="DTB">rdf:XMLLiteral</a></tt>, <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rdf-PlainLiteral-space" title="DTB">rdf:PlainLiteral</a></tt>, etc.) all have the signature <tt>individual</tt> in RIF-BLD.
</li>
<li>The symbols of type <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-iri-space" title="DTB">rif:iri</a></tt> and <tt><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#rif-local-space" title="DTB">rif:local</a></tt> can have the following signatures in RIF-BLD: <tt>individual</tt>, <tt>f</tt>, or <tt>p</tt>.
</li>
<li>All variables are associated with signature <tt>individual</tt>, so they can range only over individuals.
</li>
<li>The signature for equality is <tt>={(individual individual)</tt> ⇒ <tt>atomic}</tt>.
<p>
This means that equality can compare only those terms whose signature is <tt>individual</tt>; it cannot compare predicate or function symbols. Equality terms are also not allowed to occur inside other terms, since the above signature implies that any term of the form <tt>t = s</tt> has signature <tt>atomic</tt> and not <tt>individual</tt>.
</p>
</li>
<li>The frame signature, <tt>-></tt>, is <tt>->{(individual individual individual)</tt> ⇒ <tt>atomic}</tt>.
<p>
Note that this precludes the possibility that a frame term might occur as an argument to a predicate, a function, or inside some other term.
</p>
</li>
<li>The membership signature, <tt>#</tt>, is <tt>#{(individual individual) ⇒ atomic}</tt>.
<p>
Note that this precludes the possibility that a membership term might occur as an argument to a predicate, a function, or inside some other term.
</p>
</li>
<li>The signature for the subclass relationship is <tt>##{(individual individual)</tt> ⇒ <tt>atomic}</tt>.
<p>
As with frames and membership terms, this precludes the possibility that a subclass term might occur inside some other term.
</p>
</li>
</ol>
<p>
RIF-BLD uses no special syntax for declaring signatures. Instead, the rule author specifies signatures <i>contextually</i>. That is, since RIF-BLD requires that each symbol is associated with a unique signature, the signature is determined from the context in which the symbol is used. If a symbol is used in more than one context, the parser must treat this as a syntax error. If no errors are found, all terms and atomic formulas are guaranteed to be well-formed. Thus, signatures are <i>not</i> part of the RIF-BLD language, and <tt>individual</tt>, <tt>atomic</tt>, <tt>list</tt>, etc., are not reserved keywords.
</p>
</li>
<li><i>Supported types of terms</i>.
<ul>
<li>
RIF-BLD supports the following types of terms defined by the syntactic framework (see the Section <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-terms" title="FLD">Terms</a> of [<a href="#ref-rif-fld" title="">RIF-FLD</a>]):
<ol style="list-style-type:lower-alpha">
<li>constants</li>
<li>variables</li>
<li>positional</li>
<li>with named arguments</li>
<li>equality</li>
<li>frame</li>
<li>membership</li>
<li>subclass</li>
<li>list</li>
<li>external</li>
<li>formula</li>
</ol>
</li>
<li>Compared to RIF-FLD, terms (both positional and with named arguments) have significant restrictions, which are intended to keep BLD relatively simple.
<ul>
<li><i>Variables</i>: The signature for the variable symbols does not permit them to occur in the context of predicates, functions, or formulas. In particular, in the RIF-BLD specialization of RIF-FLD, a variable is not an atomic formula. </li>
<li><i>Symbols as atomic formulas</i>: A symbol cannot be an atomic formula by itself. That is, if <tt>s</tt> ∈ <tt>Const</tt> then <tt>s</tt> is not a well-formed atomic formula. However, <tt>s()</tt> can be an atomic formula. Note that Propositional Logic can thus be expressed in RIF-BLD using zero-argument predicate formulas.</li>
<li><i>Functions and predicates</i>: Signatures permit only constant symbols to occur in the context of functions or predicate. Indeed, RIF-BLD signatures ensure that all variables have the signature <tt>individual{ }</tt> and all other terms, except for the constants from <tt>Const</tt>, can have either the signature <tt>individual{ }</tt> or <tt>atomic{ }</tt>. Therefore, if <tt>t</tt> is a (non-<tt>Const</tt>) term then <tt>t(...)</tt> is not a well-formed term.
</li>
<li><i>External</i>:
<ul>
<li>
<span class="anchor" id="cond-specialization-external">
A term, <tt>t</tt>, may appear as an external term or an external atomic formula (i.e., in the context <tt>External(t)</tt>) <i>if and only if</i> <tt>t</tt> is an instantiation of an externally defined schema from <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">the coherent set of external schemas associated with the language</a>.
</span>
<p>
It thus follows that a predicate or a function symbol, <tt>s</tt>, that occurs in an external term <tt>External(s(...))</tt> cannot also occur as a non-external symbol.
</p>
</li>
<li>
In an externally defined term, <tt>External(t)</tt>, the subterm <tt>t</tt> can be only a positional or a named-argument term of the form <tt>s(...)</tt> where <tt>s</tt> has the signature <tt>f</tt> or <tt>p</tt>. Compared to RIF-FLD, this restricts <tt>t</tt> so that it cannot be a constant, a frame, an equality, or a classification term. RIF-FLD's two-argument form of <tt>External</tt> is not supported in RIF-BLD either.
</li>
</ul>
</li>
<li>
<i>Formula</i>: The formula terms are restricted, as specified in <a href="#supported-formulas" title="">Supported formulas</a> below. In particular, they cannot appear as arguments to predicates, functions, etc.
</li>
</ul>
</li>
</ul>
</li>
<li>
No <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#ref-aggregate-term" title="FLD">aggregate terms</a> or <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#ref-module-term" title="FLD">module terms</a> are allowed. (In RIF-FLD, formula terms correspond to compound formulas that involve logical connectives and quantifiers.)
</li>
<li><i>Required symbol spaces</i>.
<p>RIF-BLD requires the symbol spaces defined in Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-constants" title="DTB">Constants, Symbol Spaces, and Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p>
</li>
<li>
<span class="anchor" id="supported-formulas">
<i>Supported formulas</i>.
</span>
<p>RIF-BLD supports the following types of formulas (see <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-fld-wff" title="FLD">Well-formed Terms and Formulas</a> in [<a href="#ref-rif-fld" title="">RIF-FLD</a>] for the definitions): </p>
<ul>
<li><i><b>RIF-BLD condition</b></i>
<p>
A RIF-BLD condition is an atomic formula, and external atomic formula, or a conjunctive or disjunctive combination of such atomic formulas. All these formulas and their combinations can be optionally preceded with existential quantifiers.
</p>
</li>
<li><i><b>RIF-BLD rule</b></i>
<p>A RIF-BLD rule is a universally quantified RIF-FLD rule with the following restrictions: </p>
<ul>
<li>The conclusion of the rule is an atomic formula or a conjunction of atomic formulas.
</li>
<li>
None of the atomic formulas mentioned in the rule conclusion is externally defined (i.e., cannot have the form <tt>External(...)</tt>).
</li>
<li>The premise of the rule is a RIF-BLD condition. </li>
<li>All free (non-quantified) variables in the rule must be quantified with <tt>Forall</tt> outside of the rule (i.e., <tt>Forall ?vars (conclusion :- premise)</tt>). </li>
</ul>
</li>
<li>
<i><b>Universal fact</b></i>
<p>
A universal fact is a universally quantified atomic formula with no free variables.
</p>
</li>
<li>
<i><b>RIF-BLD group</b></i>
<p>
A RIF-BLD group is a RIF-FLD group that contains only RIF-BLD rules,
universal facts, variable-free rule implications, variable-free atomic formulas, and RIF-BLD groups.
</p>
</li>
<li>
<i><b>RIF-BLD document</b></i>
<p>
A RIF-BLD document is a RIF-FLD document that consists of directives and a RIF-BLD group formula. There is no <tt>Dialect</tt> or <tt>Module</tt> directives, and the <tt>Import(<loc>)</tt> directive (with one argument) can import RIF-BLD documents only. Here <tt>loc</tt> must be a Unicode character sequence that forms an IRI. There are no BLD-specific restrictions on the two-argument directive <tt>Import</tt> except that the second argument must be a Unicode sequence of characters of the form <tt><loc></tt>, where <tt>loc</tt> is an IRI.
</p>
</li>
</ul>
<p>
Negation (<tt>Neg</tt> and <tt>Naf</tt>) is not allowed in RIF-BLD rules: neither in rule conclusions nor in premises.
</p>
</li>
</ol>
<p><br />
</p><p><br />
<span class="anchor" id="sec-bld-specialization-semantics"></span>
</p>
<a id="The_Semantics_of_RIF-BLD_as_a_Specialization_of_RIF-FLD" name="The_Semantics_of_RIF-BLD_as_a_Specialization_of_RIF-FLD"></a><h4> <span class="mw-headline">6.2 The Semantics of RIF-BLD as a Specialization of RIF-FLD </span></h4>
<p>This normative section defines the precise relationship between the semantics
of RIF-BLD and the semantic framework of RIF-FLD. Specification of the
semantics that does not rely on RIF-FLD is given in Section <a href="#sec-bld-direct-semantics" title="">Direct Specification of RIF-BLD Semantics</a>.
</p><p>The semantics of the RIF Basic Logic Dialect is defined by specialization from the semantics of the <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-fld-semantic-framework" title="FLD">semantic framework for logic dialects</a> of RIF. Section <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-rif-dialect-semantics" title="FLD">Semantics of a RIF Dialect as a Specialization of the RIF Framework</a> in [<a href="#ref-rif-fld" title="">RIF-FLD</a>] lists the parameters of the semantic framework that can be specialized. Thus, for RIF-BLD, we need to look at the following parameters:
</p>
<ul>
<li><i>The effect of the syntax</i>.
<p>
RIF-BLD does not support negation. This is the only obvious simplification with respect to RIF-FLD as far as the semantics is concerned. The restrictions on the signatures of symbols in RIF-BLD do not affect the semantics in a significant way.
</p>
</li>
<li><i>Truth values</i>.
<p>
The set <i><b>TV</b></i> of truth values in RIF-BLD consists of two values, <b>t</b> and <b>f</b>, such that <b>f</b> <<sub>t</sub> <b>t</b>.
</p>
</li>
<li><i>Datatypes</i>.
<p>
RIF-BLD supports the datatypes listed in Section <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#sec-data-types" title="DTB">Datatypes</a> of [<a href="#ref-rif-dtb" title="">RIF-DTB</a>].
</p>
</li>
<li><i>Logical entailment</i>.
<p>
Recall that logical entailment in RIF-FLD is defined with respect to an unspecified set of intended semantic structures and that dialects of RIF must make this notion concrete. For RIF-BLD, this set is defined as the set of all models.
</p>
</li>
<li>
<i>Import directive</i>.
<p>
The semantics of the two-argument <tt>Import</tt> directive is given in [<a href="#ref-rif-swc" title="">RIF-RDF+OWL</a>]. The semantics of the one-argument directive is the same as in RIF-FLD.
</p>
</li>
</ul>
<p><span class="anchor" id="sec-bld-specialization-xml"></span>
</p>
<a id="The_XML_Serialization_of_RIF-BLD_as_a_Specialization_of_RIF-FLD" name="The_XML_Serialization_of_RIF-BLD_as_a_Specialization_of_RIF-FLD"></a><h4> <span class="mw-headline">6.3 The XML Serialization of RIF-BLD as a Specialization of RIF-FLD </span></h4>
<p>Section <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-translate-fld-to-xml" title="FLD">Mapping from the RIF-FLD
Presentation Syntax to the XML Syntax</a> of
[<a href="#ref-rif-fld" title="">RIF-FLD</a>]
defines a mapping, <tt>χ<sub>fld</sub></tt>, from the presentation syntax of
RIF-FLD to its XML serialization. When restricted to well-formed
RIF-BLD formulas, <tt>χ<sub>fld</sub></tt> coincides with the
<a href="#sec-translation" title="">BLD-to-XML mapping</a> <tt>χ<sub>bld</sub></tt>.
In this way, the XML serialization of RIF-BLD is a specialization of the
<a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-fld-specialization-framework" title="FLD">RIF-FLD XML Serialization Framework</a>
defined in [<a href="#ref-rif-fld" title="">RIF-FLD</a>].
</p><p><br />
</p>
<a id="RIF-BLD_Conformance_as_a_Specialization_of_RIF-FLD" name="RIF-BLD_Conformance_as_a_Specialization_of_RIF-FLD"></a><h4> <span class="mw-headline">6.4 RIF-BLD Conformance as a Specialization of RIF-FLD </span></h4>
<p>If T is a set of datatypes and symbol spaces and E a <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/#def-external-schema-set" title="DTB">coherent set of external schemas</a> for functions and predicates, then the general definition of <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/#sec-conformance" title="FLD">conformance in RIF-FLD</a> yields the notion of conformant BLD<sub>T,E</sub> producers and consumers.
</p><p>BLD further requires <i>strictness</i>, i.e., that a conformant producer produces only the documents where T are precisely the datatypes/symbol spaces and E are the external schemas specified in [<a href="#ref-rif-dtb" title="">RIF-DTB</a>], and that a conformant consumer consumes only such documents.
</p>
<a id="Acknowledgements" name="Acknowledgements"></a><h2> <span class="mw-headline">7 Acknowledgements </span></h2>
<p>This document is the product of the Rules Interchange Format (RIF) Working Group (see below) whose
members deserve recognition for their time and commitment. The editors extend special thanks to:
Jos de Bruijn, Gary Hallmark, Stella Mitchell, Leora Morgenstern, Adrian Paschke, Axel Polleres, and Dave Reynolds,
for their thorough reviews and insightful discussions; the working group chairs, Chris Welty and Christian de Sainte-Marie, for their invaluable technical help and inspirational leadership; and W3C staff contact Sandro Hawke, a constant source of ideas, help, and feedback.
</p><p><br />
The regular attendees at meetings of the Rule Interchange Format (RIF) Working Group at the time of the publication were:
Adrian Paschke (Freie Universitaet Berlin),
Axel Polleres (DERI),
Changhai Ke (IBM),
Chris Welty (IBM),
Christian de Sainte Marie (IBM),
Dave Reynolds (HP),
Gary Hallmark (ORACLE),
Harold Boley (NRC),
Hassan Aït-Kaci (IBM),
Jos de Bruijn (FUB),
Leora Morgenstern (IBM),
Michael Kifer (Stony Brook),
Mike Dean (BBN),
Sandro Hawke (W3C/MIT), and
Stella Mitchell (IBM).
We would also like to thank past members of the working group, Allen Ginsberg, David Hirtle, Igor Mozetic, and Paula-Lavinia Patranjan.
</p>
<a id="References" name="References"></a><h2> <span class="mw-headline">8 References </span></h2>
<a id="Normative_References" name="Normative_References"></a><h3> <span class="mw-headline">8.1 Normative References </span></h3>
<p><span class="anchor" id="ref-rdf-concepts"></span>
</p>
<dl><dt> [RDF-CONCEPTS]
</dt><dd> <i>Resource Description Framework (RDF): Concepts and Abstract Syntax</i>, Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/</a>. Latest version available at <a class="external free" href="http://www.w3.org/TR/rdf-concepts/" title="http://www.w3.org/TR/rdf-concepts/">http://www.w3.org/TR/rdf-concepts/</a>.
</dd></dl>
<p><span class="anchor" id="ref-rfc-3066"></span>
</p>
<dl><dt> [RFC-3066]
</dt><dd> <i><a class="external" href="http://tools.ietf.org/html/rfc3066" title="http://tools.ietf.org/html/rfc3066">RFC 3066</a> - Tags for the Identification of Languages</i>, H. Alvestrand, IETF, January 2001. This document is at <a class="external free" href="http://www.ietf.org/rfc/rfc3066" title="http://www.ietf.org/rfc/rfc3066">http://www.ietf.org/rfc/rfc3066</a>.
</dd></dl>
<p><span class="anchor" id="ref-rfc-3987"></span>
</p>
<dl><dt> [RFC-3987]
</dt><dd> <i><a class="external" href="http://tools.ietf.org/html/rfc3987" title="http://tools.ietf.org/html/rfc3987">RFC 3987</a> - Internationalized Resource Identifiers (IRIs)</i>, M. Duerst and M. Suignard, IETF, January 2005. This document is <a class="external free" href="http://www.ietf.org/rfc/rfc3987.txt" title="http://www.ietf.org/rfc/rfc3987.txt">http://www.ietf.org/rfc/rfc3987.txt</a>.
</dd></dl>
<p><span class="anchor" id="ref-rif-core"></span>
</p>
<dl><dt> [RIF-Core]
</dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/"><span>RIF Core Dialect</span></a></cite> Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, Dave Reynolds, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-core-20100622/">http://www.w3.org/TR/2010/REC-rif-core-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-core/">http://www.w3.org/TR/rif-core/</a>.</span></dd></dl>
<p><span class="anchor" id="ref-rif-dtb"></span>
</p>
<dl><dt> [RIF-DTB]
</dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/"><span>RIF Datatypes and Built-Ins 1.0</span></a></cite> Axel Polleres, Harold Boley, Michael Kifer, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-dtb-20100622/">http://www.w3.org/TR/2010/REC-rif-dtb-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-dtb/">http://www.w3.org/TR/rif-dtb/</a>.</span></dd></dl>
<p><span class="anchor" id="ref-rif-fld"></span>
</p>
<dl><dt> [RIF-FLD]
</dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/"><span>RIF Framework for Logic Dialects</span></a></cite> Harold Boley, Michael Kifer, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-fld-20100622/">http://www.w3.org/TR/2010/REC-rif-fld-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-fld/">http://www.w3.org/TR/rif-fld/</a>.</span></dd></dl>
<p><span class="anchor" id="ref-rif-prd"></span>
</p>
<dl><dt> [RIF-PRD]
</dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-prd-20100622/"><span>RIF Production Rule Dialect</span></a></cite> Christian de Sainte Marie, Gary Hallmark, Adrian Paschke, eds. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-prd-20100622/">http://www.w3.org/TR/2010/REC-rif-prd-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-prd/">http://www.w3.org/TR/rif-prd/</a>.</span></dd></dl>
<p><span class="anchor" id="ref-rif-swc"></span>
</p>
<dl><dt> [RIF-RDF+OWL]
</dt><dd><span><cite><a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/"><span>RIF RDF and OWL Compatibility</span></a></cite> Jos de Bruijn, editor. W3C Recommendation, 22 June 2010, <a href="http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/">http://www.w3.org/TR/2010/REC-rif-rdf-owl-20100622/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-rdf-owl/">http://www.w3.org/TR/rif-rdf-owl/</a>.</span></dd></dl>
<p><span class="anchor" id="ref-xml-1-point-0"></span>
</p>
<dl><dt> [XML1.0]
</dt><dd> <i>Extensible Markup Language (XML) 1.0 (Fourth Edition)</i>, W3C Recommendation, World Wide Web Consortium, 16 August 2006, edited in place 29 September 2006. This version is <a class="external free" href="http://www.w3.org/TR/2006/REC-xml-20060816/" title="http://www.w3.org/TR/2006/REC-xml-20060816/">http://www.w3.org/TR/2006/REC-xml-20060816/</a>.
</dd></dl>
<p><span class="anchor" id="ref-xml-base"></span>
</p>
<dl><dt> [XML-Base]
</dt><dd> <i>XML Base</i>, W3C Recommendation, World Wide Web Consortium, 27 June 2001. This version is <a class="external free" href="http://www.w3.org/TR/2001/REC-xmlbase-20010627/" title="http://www.w3.org/TR/2001/REC-xmlbase-20010627/">http://www.w3.org/TR/2001/REC-xmlbase-20010627/</a>. The latest version is available at <a class="external free" href="http://www.w3.org/TR/xmlbase/" title="http://www.w3.org/TR/xmlbase/">http://www.w3.org/TR/xmlbase/</a>.
</dd></dl>
<p>
</p>
<dl><dt> <span id="ref-xml-schema2">[XML Schema Datatypes]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/" title="http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/">W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</a></cite>. David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S. Thompson, eds. W3C Candidate Recommendation, 30 April 2009, http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/. Latest version available as http://www.w3.org/TR/xmlschema11-2/.
</dd></dl>
<a id="Informational_References" name="Informational_References"></a><h3> <span class="mw-headline">8.2 Informational References </span></h3>
<p><span class="anchor" id="ref-alternating-normal-form"></span>
</p>
<dl><dt> [ANF01]
</dt><dd> <i>Normal Form Conventions for XML Representations of Structured Data</i>, Henry S. Thompson. October 2001. Available at <a class="external free" href="http://www.ltg.ed.ac.uk/~ht/normalForms.html" title="http://www.ltg.ed.ac.uk/~ht/normalForms.html">http://www.ltg.ed.ac.uk/~ht/normalForms.html</a>.
</dd></dl>
<p><span class="anchor" id="ref-sparql-expr"></span>
</p>
<dl><dt> [AG08]
</dt><dd> The Expressive Power of SPARQL, Renzo Angles and Claudio Gutierrez. <i>International Semantic Web Conference 2008</i>: 114-129
</dd></dl>
<p><span class="anchor" id="ref-sparql-rules"></span>
</p>
<dl><dt> [AP07]
</dt><dd> From SPARQL to rules (and back), Axel Polleres. <i>WWW 2007</i>: 787-796
</dd></dl>
<p><span class="anchor" id="ref-cg"></span>
</p>
<dl><dt> [CG]
</dt><dd> Information Processing, John Sowa, in <i>Mind and Machine.</i> JReading, MA: Addison-Wesley Publ., 1984.
</dd></dl>
<p><span class="anchor" id="ref-chang-lee"></span>
</p>
<dl><dt> [CL73]
</dt><dd> <i>Symbolic Logic and Mechanical Theorem Proving</i>, C.L. Chang and R.C.T. Lee. Academic Press, 1973.
</dd></dl>
<p><span class="anchor" id="ref-common-logic"></span>
</p>
<dl><dt> [CL07]
</dt><dd> <i>ISO/IEC 24707:2007</i>. The ISO Common Logic Standard. Available through <a class="external free" href="http://common-logic.org" title="http://common-logic.org">http://common-logic.org</a>
</dd></dl>
<p><span class="anchor" id="ref-curie"></span>
</p>
<dl><dt> [CURIE]
</dt><dd> <i>CURIE Syntax 1.0: A syntax for expressing Compact URIs</i>, Mark Birbeck, Shane McCarron. W3C Candidate Recommendation 16 January 2009. Available at <a class="external free" href="http://www.w3.org/TR/curie/" title="http://www.w3.org/TR/curie/">http://www.w3.org/TR/curie/</a>.
</dd></dl>
<p><span class="anchor" id="ref-enderton01"></span>
</p>
<dl><dt> [Enderton01]
</dt><dd> <i>A Mathematical Introduction to Logic, Second Edition</i>, H. B. Enderton. Academic Press, 2001.
</dd></dl>
<p><span class="anchor" id="ref-kif"></span>
</p>
<dl><dt> [KIF]
</dt><dd> <i>Knowledge Interchange Format,</i> M. Genesereth, et al. 1998. Available at <a class="external free" href="http://logic.stanford.edu/kif/dpans.html" title="http://logic.stanford.edu/kif/dpans.html">http://logic.stanford.edu/kif/dpans.html</a>
</dd></dl>
<p><span class="anchor" id="ref-flogic-95"></span>
</p>
<dl><dt> [KLW95]
</dt><dd> <i>Logical foundations of object-oriented and frame-based languages,</i> M. Kifer, G. Lausen, J. Wu. Journal of ACM, July 1995, pp. 741--843.
</dd></dl>
<p><span class="anchor" id="ref-mendelson97"></span>
</p>
<dl><dt> [Mendelson97]
</dt><dd> <i>Introduction to Mathematical Logic, Fourth Edition</i>, E. Mendelson. Chapman & Hall, 1997.
</dd></dl>
<dl><dt><span id="ref-owl-reference">[OWL-Reference]</span>
</dt><dd> <i><a class="external text" href="http://www.w3.org/TR/2004/REC-owl-ref-20040210/" title="http://www.w3.org/TR/2004/REC-owl-ref-20040210/">OWL Web Ontology Language Reference</a></i>, M. Dean, G. Schreiber, Editors, W3C Recommendation, 10 February 2004. Latest version available at <a class="external free" href="http://www.w3.org/TR/owl-ref/" title="http://www.w3.org/TR/owl-ref/">http://www.w3.org/TR/owl-ref/</a>.
</dd></dl>
<p><span class="anchor" id="ref-rdf-syntax"></span>
</p>
<dl><dt> [RDFSYN04]
</dt><dd> <i>RDF/XML Syntax Specification (Revised)</i>, Dave Beckett, Editor, W3C Recommendation, 10 February 2004, <a class="external free" href="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/">http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/</a>. Latest version available at <a class="external free" href="http://www.w3.org/TR/rdf-syntax-grammar/" title="http://www.w3.org/TR/rdf-syntax-grammar/">http://www.w3.org/TR/rdf-syntax-grammar/</a>.
</dd></dl>
<p><span class="anchor" id="ref-rif-ucr"></span>
</p>
<dl><dt> [RIF-UCR]
</dt><dd><span><cite><a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/">RIF Use Cases and Requirements</a></cite> Adrian Paschke, David Hirtle, Allen Ginsberg, Paula-Lavinia Patranjan, Frank McCabe, Eds. W3C Working Draft, 18 December 2008, <a href="http://www.w3.org/TR/2008/WD-rif-ucr-20081218/">http://www.w3.org/TR/2008/WD-rif-ucr-20081218/</a>. Latest version available at <a href="http://www.w3.org/TR/rif-ucr/">http://www.w3.org/TR/rif-ucr/</a>.</span></dd></dl>
<p><span class="anchor" id="ref-steele90"></span>
</p>
<dl><dt> [Steele90]
</dt><dd> <i>Common LISP: The Language, Second Edition</i>, G. L. Steele Jr. Digital Press, 1990.
</dd></dl>
<p><span class="anchor" id="ref-type-and-role-tags"></span>
</p>
<dl><dt> [TRT03]
</dt><dd> <i>Object-Oriented RuleML: User-Level Roles, URI-Grounded Clauses, and Order-Sorted Terms</i>, H. Boley. Springer LNCS 2876, Oct. 2003, pp. 1-16. Preprint at <a class="external free" href="http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-46502_e.html" title="http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-46502_e.html">http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-46502_e.html</a>.
</dd></dl>
<p><span class="anchor" id="ref-rif-urd"></span>
</p>
<dl><dt> [URD08]
</dt><dd> <i>Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension</i>, J. Zhao, H. Boley. 4th Int’l Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2008). Available at <a class="external free" href="http://c4i.gmu.edu/ursw/2008/papers/URSW2008_F9_ZhaoBoley.pdf" title="http://c4i.gmu.edu/ursw/2008/papers/URSW2008_F9_ZhaoBoley.pdf">http://c4i.gmu.edu/ursw/2008/papers/URSW2008_F9_ZhaoBoley.pdf</a>.
</dd></dl>
<p><span class="anchor" id="ref-vanemden-kowalski"></span>
</p>
<dl><dt> [vEK76]
</dt><dd> <i>The semantics of predicate logic as a programming language</i>, M. van Emden and R. Kowalski. Journal of the ACM 23 (1976), pp. 733-742.
</dd></dl>
<p><br />
</p><p><span class="anchor" id="sec-xsd-bld"></span>
</p>
<a id="Appendix:_XML_Schema_for_RIF-BLD" name="Appendix:_XML_Schema_for_RIF-BLD"></a><h2> <span class="mw-headline">9 Appendix: XML Schema for RIF-BLD </span></h2>
<p>The <b>namespace</b> of RIF is "<a class="external free" href="http://www.w3.org/2007/rif" title="http://www.w3.org/2007/rif#">http://www.w3.org/2007/rif#</a>".
</p><p>XML schemas for the RIF-BLD sublanguages are defined below and are also available at <a class="external free" href="http://www.w3.org/2010/rif-schema/bld/" title="http://www.w3.org/2010/rif-schema/bld/">http://www.w3.org/2010/rif-schema/bld/</a> with additional examples.
</p><p><br />
</p>
<a id="Condition_Language" name="Condition_Language"></a><h3> <span class="mw-headline">9.1 Condition Language </span></h3>
<pre>
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns="http://www.w3.org/2007/rif#"
targetNamespace="http://www.w3.org/2007/rif#"
elementFormDefault="qualified"
version="Id: BLDCond.xsd, v. 1.6, 2010-05-08, dhirtle/hboley">
<xs:import namespace='http://www.w3.org/XML/1998/namespace'
schemaLocation='http://www.w3.org/2001/xml.xsd'/>
<xs:annotation>
<xs:documentation>
This is the XML schema for the Condition Language as defined by
the Last Call Draft of the RIF Basic Logic Dialect.
The schema is based on the following EBNF for the RIF-BLD Condition Language:
FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |
IRIMETA? 'External' '(' Atom ')'
ATOMIC ::= IRIMETA? (Atom | Equal | Member | Subclass | Frame)
Atom ::= UNITERM
UNITERM ::= Const '(' (TERM* | (Name '->' TERM)*) ')'
Equal ::= TERM '=' TERM
Member ::= TERM '#' TERM
Subclass ::= TERM '##' TERM
Frame ::= TERM '[' (TERM '->' TERM)* ']'
TERM ::= IRIMETA? (Const | Var | Expr | List | 'External' '(' Expr ')')
Expr ::= UNITERM
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
Var ::= '?' Name
Name ::= NCName | '"' UNICODESTRING '"'
SYMSPACE ::= ANGLEBRACKIRI | CURIE
IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'
</xs:documentation>
</xs:annotation>
<xs:group name="FORMULA">
<!--
FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |
IRIMETA? 'External' '(' Atom ')'
-->
<xs:choice>
<xs:element ref="And"/>
<xs:element ref="Or"/>
<xs:element ref="Exists"/>
<xs:group ref="ATOMIC"/>
<xs:element name="External" type="External-FORMULA.type"/>
</xs:choice>
</xs:group>
<xs:complexType name="External-FORMULA.type">
<!-- sensitive to FORMULA (Atom) context-->
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-FORMULA.type"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="content-FORMULA.type">
<!-- sensitive to FORMULA (Atom) context-->
<xs:sequence>
<xs:element ref="Atom"/>
</xs:sequence>
</xs:complexType>
<xs:element name="And">
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="formula" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Or">
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="formula" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Exists">
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="formula"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="formula">
<xs:complexType>
<xs:sequence>
<xs:group ref="FORMULA"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="declare">
<xs:complexType>
<xs:sequence>
<xs:element ref="Var"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:group name="ATOMIC">
<!--
ATOMIC ::= IRIMETA? (Atom | Equal | Member | Subclass | Frame)
-->
<xs:choice>
<xs:element ref="Atom"/>
<xs:element ref="Equal"/>
<xs:element ref="Member"/>
<xs:element ref="Subclass"/>
<xs:element ref="Frame"/>
</xs:choice>
</xs:group>
<xs:element name="Atom">
<!--
Atom ::= UNITERM
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="UNITERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:group name="UNITERM">
<!--
UNITERM ::= Const '(' (TERM* | (Name '->' TERM)*) ')'
-->
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="op"/>
<xs:choice>
<xs:element ref="args" minOccurs="0" maxOccurs="1"/>
<xs:element name="slot" type="slot-UNITERM.type" minOccurs="0" maxOccurs="unbounded"/>
</xs:choice>
</xs:sequence>
</xs:group>
<xs:element name="op">
<xs:complexType>
<xs:sequence>
<xs:element ref="Const"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="args">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>
</xs:complexType>
</xs:element>
<xs:complexType name="slot-UNITERM.type">
<!-- sensitive to UNITERM (Name) context-->
<xs:sequence>
<xs:element ref="Name"/>
<xs:group ref="TERM"/>
</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>
</xs:complexType>
<xs:element name="Equal">
<!--
Equal ::= TERM '=' TERM
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="left"/>
<xs:element ref="right"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="left">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="right">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Member">
<!--
Member ::= TERM '#' TERM
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="instance"/>
<xs:element ref="class"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Subclass">
<!--
Subclass ::= TERM '##' TERM
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="sub"/>
<xs:element ref="super"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="instance">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="class">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="sub">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="super">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Frame">
<!--
Frame ::= TERM '[' (TERM '->' TERM)* ']'
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="object"/>
<xs:element name="slot" type="slot-Frame.type" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="object">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="slot-Frame.type">
<!-- sensitive to Frame (TERM) context-->
<xs:sequence>
<xs:group ref="TERM"/>
<xs:group ref="TERM"/>
</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>
</xs:complexType>
<xs:group name="TERM">
<!--
TERM ::= IRIMETA? (Const | Var | Expr | List | 'External' '(' Expr ')')
-->
<xs:choice>
<xs:element ref="Const"/>
<xs:element ref="Var"/>
<xs:element ref="Expr"/>
<xs:element ref="List"/>
<xs:element name="External" type="External-TERM.type"/>
</xs:choice>
</xs:group>
<xs:element name="List">
<!--
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
rewritten as
List ::= 'List' '(' LISTELEMENTS? ')'
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:group ref="LISTELEMENTS" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:group name="LISTELEMENTS">
<!--
LISTELEMENTS ::= TERM+ ('|' TERM)?
-->
<xs:sequence>
<xs:element ref="items"/>
<xs:element ref="rest" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:group>
<xs:element name="items">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>
</xs:complexType>
</xs:element>
<xs:element name="rest">
<xs:complexType>
<xs:sequence>
<xs:group ref="TERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="External-TERM.type">
<!-- sensitive to TERM (Expr) context-->
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-TERM.type"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="content-TERM.type">
<!-- sensitive to TERM (Expr) context-->
<xs:sequence>
<xs:element ref="Expr"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Expr">
<!--
Expr ::= UNITERM
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="UNITERM"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Const">
<!--
Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
-->
<xs:complexType mixed="true">
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="type" type="xs:anyURI" use="required"/>
<xs:attribute ref="xml:lang"/>
</xs:complexType>
</xs:element>
<xs:element name="Name" type="xs:string">
<!--
Name ::= NCName | '"' UNICODESTRING '"'
... i.e., 'Name' stands for either the NCName string or the UNICODESTRING with the outer quotes stripped off.
-->
</xs:element>
<xs:element name="Var">
<!--
Var ::= '?' Name
-->
<xs:complexType mixed="true">
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:group name="IRIMETA">
<!--
IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'
-->
<xs:sequence>
<xs:element ref="id" minOccurs="0" maxOccurs="1"/>
<xs:element ref="meta" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:group>
<xs:element name="id">
<xs:complexType>
<xs:sequence>
<xs:element name="Const" type="IRICONST.type"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="meta">
<xs:complexType>
<xs:choice>
<xs:element ref="Frame"/>
<xs:element name="And" type="And-meta.type"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:complexType name="And-meta.type">
<!-- sensitive to meta (Frame) context-->
<xs:sequence>
<xs:element name="formula" type="formula-meta.type" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="formula-meta.type">
<!-- sensitive to meta (Frame) context-->
<xs:sequence>
<xs:element ref="Frame"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="IRICONST.type" mixed="true">
<!-- sensitive to location/id context-->
<xs:sequence/>
<xs:attribute name="type" type="xs:anyURI" use="required" fixed="http://www.w3.org/2007/rif#iri"/>
</xs:complexType>
</xs:schema>
</pre>
<a id="Rule_Language" name="Rule_Language"></a><h3> <span class="mw-headline">9.2 Rule Language </span></h3>
<pre>
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns="http://www.w3.org/2007/rif#"
targetNamespace="http://www.w3.org/2007/rif#"
elementFormDefault="qualified"
version="Id: BLDRule.xsd, v. 1.6, 2010-02-02, dhirtle/hboley">
<xs:annotation>
<xs:documentation>
This is the XML schema for the Rule Language as defined by
the Last Call Draft of the RIF Basic Logic Dialect.
The schema is based on the following EBNF for the RIF-BLD Rule Language:
Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'
Base ::= 'Base' '(' ANGLEBRACKIRI ')'
Prefix ::= 'Prefix' '(' NCName ANGLEBRACKIRI ')'
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'
RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA
LOCATOR ::= ANGLEBRACKIRI
PROFILE ::= ANGLEBRACKIRI
Note that this is an extension of the syntax for the RIF-BLD Condition Language (BLDCond.xsd).
</xs:documentation>
</xs:annotation>
<!-- The Rule Language includes the Condition Language from the same directory -->
<xs:include schemaLocation="BLDCond.xsd"/>
<xs:element name="Document">
<!--
Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="directive" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="payload" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="directive">
<!--
Base and Prefix represented directly in XML
-->
<xs:complexType>
<xs:sequence>
<xs:element ref="Import"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="payload">
<xs:complexType>
<xs:sequence>
<xs:element ref="Group"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Import">
<!--
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
LOCATOR ::= ANGLEBRACKIRI
PROFILE ::= ANGLEBRACKIRI
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="location"/>
<xs:element ref="profile" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="location" type="xs:anyURI"/>
<xs:element name="profile" type="xs:anyURI"/>
<xs:element name="Group">
<!--
Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="sentence" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="sentence">
<xs:complexType>
<xs:choice>
<xs:group ref="RULE"/>
<xs:element ref="Group"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:group name="RULE">
<!--
RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
-->
<xs:choice>
<xs:element ref="Forall"/>
<xs:group ref="CLAUSE"/>
</xs:choice>
</xs:group>
<xs:element name="Forall">
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>
<!-- different from formula in And, Or and Exists -->
<xs:element name="formula">
<xs:complexType>
<xs:group ref="CLAUSE"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:group name="CLAUSE">
<!--
CLAUSE ::= Implies | ATOMIC
-->
<xs:choice>
<xs:element ref="Implies"/>
<xs:group ref="ATOMIC"/>
</xs:choice>
</xs:group>
<xs:element name="Implies">
<!--
Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA
-->
<xs:complexType>
<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="if"/>
<xs:element ref="then"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="if">
<xs:complexType>
<xs:sequence>
<xs:group ref="FORMULA"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="then">
<xs:complexType>
<xs:choice>
<xs:group ref="ATOMIC"/>
<xs:element name="And" type="And-then.type"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:complexType name="And-then.type">
<!-- sensitive to then (ATOMIC) context-->
<xs:sequence>
<xs:element name="formula" type="formula-then.type" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="formula-then.type">
<!-- sensitive to then (ATOMIC) context-->
<xs:sequence>
<xs:group ref="ATOMIC"/>
</xs:sequence>
</xs:complexType>
</xs:schema>
</pre>
<p><br />
</p><p><span class="anchor" id="sec-changelog"></span>
</p>
<div id="changelog">
<a id="Appendix:_Change_Log_.28Informative.29" name="Appendix:_Change_Log_.28Informative.29"></a><h2> <span class="mw-headline">10 Appendix: Change Log (Informative) </span></h2>
<p>This appendix summarizes the main changes to this document.
</p><p>Changes since the <a class="external text" href="http://www.w3.org/TR/2008/WD-rif-bld-20080730/" title="http://www.w3.org/TR/2008/WD-rif-bld-20080730/">draft of July 30, 2008</a>.
</p>
<ul><li> The definition of entailment in Section <a href="#sec-logical-entailment" title="">Logical Entailment</a> relied on the notion of a "query document," which was not defined. The definitions in Sections <a href="#sec-interpretation-of-documents" title="">Interpretation of Documents</a> and <a href="#sec-logical-entailment" title="">Logical Entailment</a> has been changed to eliminate this and related problems.
</li><li> Section <a href="#sec-concrete-syntax" title="">EBNF Grammar for the Presentation Syntax of RIF-BLD</a> now presents the EBNF of the entire language in one place. Previously the EBNF was given forst for the condition sublanguage and then repeated again when the entire rule language is defined.
</li><li> Symbols can now have many different arities.
</li><li> Lists have been added.
</li><li> Import: the first argument is now a character sequence that forms and IRI.
</li><li> Base, Prefix, Import: IRIs are now delimited with angle brackets.
</li><li> Numerous clarifications and explanations were added in response to the public comments.
</li><li> A number of typos were found and fixed.
</li></ul>
<p>Changes since the <a class="external text" href="http://www.w3.org/TR/2009/WD-rif-bld-20090703/" title="http://www.w3.org/TR/2009/WD-rif-bld-20090703/">draft of July 3, 2009</a>.
</p>
<ul><li> A definedness condition was added to the definition of logical entailment.
</li><li> The bag of attribute/value pairs example was better explained.
</li><li> IRICONST was replaced with ANYURICONST in BLDRule.xsd, v. 1.5.
</li><li> A number of typos were found and fixed.
</li><li> "instance" of an external schema was replaced with "instantiation" of an external schema.
</li></ul>
<p>Changes since the <a class="external text" href="http://www.w3.org/TR/2009/CR-rif-bld-20091001/" title="http://www.w3.org/TR/2009/CR-rif-bld-20091001/">Candidate Recommendation of October 1, 2009</a>.
</p>
<ul><li> Import's anyURIs were moved directly into location and profile.
</li><li> A number of typos was fixed and various clarifications added.
</li><li> Simplified notion of conformant BLD consumer.
</li><li> Fixed List by permitting IRIMETA and aligning syntax to Expr and Atom.
</li></ul>
</div>
</body>
</html>