index.html 454 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
<!DOCTYPE html  PUBLIC '-//W3C//DTD XHTML 1.0 Transitional//EN'  'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'><html xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
  <title>OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax</title>
  <meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
  <style type="text/css">
   .editsection { display: none; }
</style>
<link href="owl.css" rel="stylesheet" type="text/css" />
<link href="http://www.w3.org/StyleSheets/TR/W3C-REC" rel="stylesheet" type="text/css" />

  <script src="http://www.w3.org/2007/OWL/toggles.js" type="text/javascript"></script>

</head>
<body>

<div class="head">
<a href="http://www.w3.org/"><img alt="W3C" height="48" src="http://www.w3.org/Icons/w3c_home" width="72" /></a><h1 id="title" style="clear:both">OWL 2 Web Ontology Language <br /><span id="short-title">Structural Specification and Functional-Style Syntax</span></h1>

<h2 id="W3C-doctype">W3C Recommendation 27 October 2009</h2>

<!-- no inplace warning -->
<dl>
<dt>This version:</dt>
<dd><a href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/" id="this-version-url">http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/</a></dd>

<dt>Latest version (series 2):</dt>
<dd><a href="http://www.w3.org/TR/owl2-syntax/">http://www.w3.org/TR/owl2-syntax/</a></dd>

<dt>Latest Recommendation:</dt>
<dd><a href="http://www.w3.org/TR/owl-syntax">http://www.w3.org/TR/owl-syntax</a></dd>

<dt>Previous version:</dt>
<dd><a href="http://www.w3.org/TR/2009/PR-owl2-syntax-20090922/">http://www.w3.org/TR/2009/PR-owl2-syntax-20090922/</a> (<a href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/diff-from-20090922">color-coded diff</a>)</dd>
</dl>

<dl><dt>Editors:</dt><dd><a href="http://web.comlab.ox.ac.uk/people/Boris.Motik/">Boris Motik</a>, Oxford University Computing Laboratory</dd>
<dd><a href="http://ect.bell-labs.com/who/pfps/">Peter F. Patel-Schneider</a>, Bell Labs Research, Alcatel-Lucent</dd>
<dd><a href="http://www.cs.man.ac.uk/~bparsia/">Bijan Parsia</a>, University of Manchester</dd>
<dt>Contributors: (in alphabetical order)</dt><dd><a href="http://www.nist.gov/mel/msid/cbock.cfm">Conrad Bock</a>, National Institute of Standards and Technology (NIST)</dd>
<dd><a href="http://domino.research.ibm.com/comm/research_people.nsf/pages/achille.index.html">Achille Fokoue</a>, IBM Corporation</dd>
<dd><a href="http://peterhaase.org/">Peter Haase</a>, FZI Research Center for Information Technology</dd>
<dd><a href="http://www.leibnizcenter.org/~hoekstra/">Rinke Hoekstra</a>, University of Amsterdam</dd>
<dd><a href="http://web.comlab.ox.ac.uk/people/ian.horrocks/">Ian Horrocks</a>, Oxford University Computing Laboratory</dd>
<dd><a href="http://sciencecommons.org/about/whoweare/ruttenberg/">Alan Ruttenberg</a>, Science Commons (Creative Commons)</dd>
<dd><a href="http://www.cs.man.ac.uk/~sattler/">Uli Sattler</a>, University of Manchester</dd>
<dd><a href="http://www.clarkparsia.com/about/profiles/msmith">Michael Smith</a>, Clark &amp; Parsia</dd>
</dl>

<p>Please refer to the <a href="http://www.w3.org/2007/OWL/errata"><strong>errata</strong></a> for this document, which may include some normative corrections.</p>

<p>This document is also available in these non-normative formats: <a href="http://www.w3.org/2009/pdf/REC-owl2-syntax-20091027.pdf">PDF version</a>.</p>

<p>See also <a href="http://www.w3.org/2007/OWL/translation/owl2-syntax">translations</a>.</p>

<p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright">Copyright</a> &copy; 2009 <a href="http://www.w3.org/"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>&reg;</sup> (<a href="http://www.csail.mit.edu/"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.org/"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/">Keio</a>), All Rights Reserved. W3C <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks">trademark</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-documents">document use</a> rules apply.</p>

</div>
<hr />
<h2><a id="abstract" name="abstract">Abstract</a></h2>

<div>
<div><p>The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning.  OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents.  OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents.  The OWL 2 <a href="http://www.w3.org/TR/2009/REC-owl2-overview-20091027/" title="Document Overview">Document Overview</a> describes the overall state of OWL 2, and should be read before other OWL 2 documents.</p><p>The meaningful constructs provided by OWL 2 are defined in terms of their structure. As well, a functional-style syntax is defined for these constructs, with examples and informal descriptions. One can reason with OWL 2 ontologies under either the RDF-Based Semantics [<cite><a href="#ref-owl-2-rdf-semantics" title="">OWL 2 RDF-Based Semantics</a></cite>] or the Direct Semantics [<cite><a href="#ref-owl-2-direct-semantics" title="">OWL 2 Direct Semantics</a></cite>]. If certain restrictions on OWL 2 ontologies are satisfied and the ontology is in OWL 2 DL, reasoning under the Direct Semantics can be implemented using techniques well known in the literature.</p></div>
</div>

<h2 class="no-toc no-num">
<a id="status" name="status">Status of this Document</a>
</h2>
    
<h4 class="no-toc no-num" id="may-be">May Be Superseded</h4>
    
<p><em>This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the <a href="http://www.w3.org/TR/">W3C technical reports index</a> at http://www.w3.org/TR/.</em></p>

    

<!-- no eventStatusExtra -->

<!-- no statusExtra -->

<div>

<h4 class="no-toc no-num" id="sotd-xml-dep">XML Schema Datatypes Dependency</h4>

<p>OWL 2 is defined to use datatypes defined in the <a href="http://www.w3.org/TR/xmlschema-2/">XML Schema Definition Language (XSD)</a>.  As of this writing, the latest W3C Recommendation for XSD is version 1.0, with <a href="http://www.w3.org/TR/xmlschema11-1/">version 1.1</a> progressing toward Recommendation.  OWL 2 has been designed to take advantage of the new datatypes and clearer explanations available in XSD 1.1, but for now those advantages are being partially put on hold.  Specifically, until XSD 1.1 becomes a W3C Recommendation, the elements of OWL 2 which are based on it should be considered <em>optional</em>, as detailed in <a href="http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/#XML_Schema_Datatypes">Conformance, section 2.3</a>.  Upon the publication of XSD 1.1 as a W3C Recommendation, those elements cease to be optional and are to be considered required as otherwise specified.</p>

<p>We suggest that for now developers and users follow the <a href="http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430/">XSD 1.1 Candidate Recommendation</a>.  Based on discussions between the Schema and OWL Working Groups, we do not expect any implementation changes will be necessary as XSD 1.1 advances to Recommendation.</p>
</div>



           <h4 class="no-toc no-num" id="status-changes">Summary of Changes</h4>

            <div>There have been no <a href="http://www.w3.org/2005/10/Process-20051014/tr#substantive-change">substantive</a> changes since the <a href="http://www.w3.org/TR/2009/PR-owl2-syntax-20090922/">previous version</a>.   For details on the minor changes see the <a href="#changelog">change log</a> and <a href="http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/diff-from-20090922">color-coded diff</a>.</div>



<h4 class="no-toc no-num" id="please">Please Send Comments</h4><p>Please send any comments to <a class="mailto" href="mailto:public-owl-comments@w3.org">public-owl-comments@w3.org</a>
    (<a class="http" href="http://lists.w3.org/Archives/Public/public-owl-comments/">public
    archive</a>).  Although work on this document by the <a href="http://www.w3.org/2007/OWL/">OWL Working Group</a> is complete, comments may be addressed in the <a href="http://www.w3.org/2007/OWL/errata">errata</a> or in future revisions.  Open discussion among developers is welcome at <a class="mailto" href="mailto:public-owl-dev@w3.org">public-owl-dev@w3.org</a> (<a class="http" href="http://lists.w3.org/Archives/Public/public-owl-dev/">public archive</a>).</p>
    
<h4 class="no-toc no-num" id="endorsement">Endorsed By W3C</h4>
    
<p><em>This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.</em></p>


<h4 class="no-toc no-num" id="patents">Patents</h4>
    
<p><em>This document was produced by a group operating under the <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/">5 February 2004 W3C Patent Policy</a>. W3C maintains a <a href="http://www.w3.org/2004/01/pp-impl/41712/status" rel="disclosure">public list of any patent disclosures</a> made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent.</em></p>

<hr title="Separator After Status Section" />


<p>
</p>
<script type="text/javascript">/*<![CDATA[*/

function show_short_toc() {
    set_display_by_class('li','toclevel-3','none');
    set_display_by_id('short-toc','none');
    set_display_by_id('full-toc','');
}

function show_full_toc() {
    set_display_by_class('li','toclevel-3','');
    set_display_by_id('short-toc','');
    set_display_by_id('full-toc','none');
}

var bFSSVisible=true;
var bRDFVisible=false;

function show_syntaxes(bShowFSS,bShowRDF) {
    bFSSVisible=bShowFSS;
    bRDFVisible=bShowRDF;
    if (bShowFSS)
        set_display_by_class('table','fss','');
    else
        set_display_by_class('table','fss','none');
    if (bShowRDF)
        set_display_by_class('table','rdf','');
    else
        set_display_by_class('table','rdf','none');
    /* I cannot make Mediawiki accept the ampersand character, so we implement conjunction in a roundabout way. */
    var bBothOn=true;
    if (!bShowFSS)
        bBothOn=false;
    if (!bShowRDF)
        bBothOn=false;
    if (bBothOn) {
        set_display_by_class('caption','fss','');
        set_display_by_class('caption','rdf','');
    }
    else {
        set_display_by_class('caption','fss','none');
        set_display_by_class('caption','rdf','none');
    }
}

/*]]>*/</script>


<p>

</p>
<table class="toc" id="toc" summary="Contents"><tr><td><div id="toctitle"><h2>Table of Contents</h2></div>
<ul>
<li class="toclevel-1"><a href="#Introduction"><span class="tocnumber">1</span> <span class="toctext">Introduction</span></a></li>
<li class="toclevel-1"><a href="#Preliminary_Definitions"><span class="tocnumber">2</span> <span class="toctext">Preliminary Definitions</span></a>
<ul>
<li class="toclevel-2"><a href="#Structural_Specification"><span class="tocnumber">2.1</span> <span class="toctext">Structural Specification</span></a></li>
<li class="toclevel-2"><a href="#BNF_Notation"><span class="tocnumber">2.2</span> <span class="toctext">BNF Notation</span></a></li>
<li class="toclevel-2"><a href="#Integers.2C_Characters.2C_Strings.2C_Language_Tags.2C_and_Node_IDs"><span class="tocnumber">2.3</span> <span class="toctext">Integers, Characters, Strings, Language Tags, and Node IDs</span></a></li>
<li class="toclevel-2"><a href="#IRIs"><span class="tocnumber">2.4</span> <span class="toctext">IRIs</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Ontologies"><span class="tocnumber">3</span> <span class="toctext">Ontologies</span></a>
<ul>
<li class="toclevel-2"><a href="#Ontology_IRI_and_Version_IRI"><span class="tocnumber">3.1</span> <span class="toctext">Ontology IRI and Version IRI</span></a></li>
<li class="toclevel-2"><a href="#Ontology_Documents"><span class="tocnumber">3.2</span> <span class="toctext">Ontology Documents</span></a></li>
<li class="toclevel-2"><a href="#Versioning_of_OWL_2_Ontologies"><span class="tocnumber">3.3</span> <span class="toctext">Versioning of OWL 2 Ontologies</span></a></li>
<li class="toclevel-2"><a href="#Imports"><span class="tocnumber">3.4</span> <span class="toctext">Imports</span></a></li>
<li class="toclevel-2"><a href="#Ontology_Annotations"><span class="tocnumber">3.5</span> <span class="toctext">Ontology Annotations</span></a></li>
<li class="toclevel-2"><a href="#Canonical_Parsing_of_OWL_2_Ontologies"><span class="tocnumber">3.6</span> <span class="toctext">Canonical Parsing of OWL 2 Ontologies</span></a></li>
<li class="toclevel-2"><a href="#Functional-Style_Syntax"><span class="tocnumber">3.7</span> <span class="toctext">Functional-Style Syntax</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Datatype_Maps"><span class="tocnumber">4</span> <span class="toctext">Datatype Maps</span></a>
<ul>
<li class="toclevel-2"><a href="#Real_Numbers.2C_Decimal_Numbers.2C_and_Integers"><span class="tocnumber">4.1</span> <span class="toctext">Real Numbers, Decimal Numbers, and Integers</span></a></li>
<li class="toclevel-2"><a href="#Floating-Point_Numbers"><span class="tocnumber">4.2</span> <span class="toctext">Floating-Point Numbers</span></a></li>
<li class="toclevel-2"><a href="#Strings"><span class="tocnumber">4.3</span> <span class="toctext">Strings</span></a></li>
<li class="toclevel-2"><a href="#Boolean_Values"><span class="tocnumber">4.4</span> <span class="toctext">Boolean Values</span></a></li>
<li class="toclevel-2"><a href="#Binary_Data"><span class="tocnumber">4.5</span> <span class="toctext">Binary Data</span></a></li>
<li class="toclevel-2"><a href="#IRIs_2"><span class="tocnumber">4.6</span> <span class="toctext">IRIs</span></a></li>
<li class="toclevel-2"><a href="#Time_Instants"><span class="tocnumber">4.7</span> <span class="toctext">Time Instants</span></a></li>
<li class="toclevel-2"><a href="#XML_Literals"><span class="tocnumber">4.8</span> <span class="toctext">XML Literals</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Entities.2C_Literals.2C_and_Anonymous_Individuals"><span class="tocnumber">5</span> <span class="toctext">Entities, Literals, and Anonymous Individuals</span></a>
<ul>
<li class="toclevel-2"><a href="#Classes"><span class="tocnumber">5.1</span> <span class="toctext">Classes</span></a></li>
<li class="toclevel-2"><a href="#Datatypes"><span class="tocnumber">5.2</span> <span class="toctext">Datatypes</span></a></li>
<li class="toclevel-2"><a href="#Object_Properties"><span class="tocnumber">5.3</span> <span class="toctext">Object Properties</span></a></li>
<li class="toclevel-2"><a href="#Data_Properties"><span class="tocnumber">5.4</span> <span class="toctext">Data Properties</span></a></li>
<li class="toclevel-2"><a href="#Annotation_Properties"><span class="tocnumber">5.5</span> <span class="toctext">Annotation Properties</span></a></li>
<li class="toclevel-2"><a href="#Individuals"><span class="tocnumber">5.6</span> <span class="toctext">Individuals</span></a>
<ul>
<li class="toclevel-3"><a href="#Named_Individuals"><span class="tocnumber">5.6.1</span> <span class="toctext">Named Individuals</span></a></li>
<li class="toclevel-3"><a href="#Anonymous_Individuals"><span class="tocnumber">5.6.2</span> <span class="toctext">Anonymous Individuals</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Literals"><span class="tocnumber">5.7</span> <span class="toctext">Literals</span></a></li>
<li class="toclevel-2"><a href="#Entity_Declarations_and_Typing"><span class="tocnumber">5.8</span> <span class="toctext">Entity Declarations and Typing</span></a>
<ul>
<li class="toclevel-3"><a href="#Typing_Constraints_of_OWL_2_DL"><span class="tocnumber">5.8.1</span> <span class="toctext">Typing Constraints of OWL 2 DL</span></a></li>
<li class="toclevel-3"><a href="#Declaration_Consistency"><span class="tocnumber">5.8.2</span> <span class="toctext">Declaration Consistency</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Metamodeling"><span class="tocnumber">5.9</span> <span class="toctext">Metamodeling</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Property_Expressions"><span class="tocnumber">6</span> <span class="toctext">Property Expressions</span></a>
<ul>
<li class="toclevel-2"><a href="#Object_Property_Expressions"><span class="tocnumber">6.1</span> <span class="toctext">Object Property Expressions</span></a>
<ul>
<li class="toclevel-3"><a href="#Inverse_Object_Properties"><span class="tocnumber">6.1.1</span> <span class="toctext">Inverse Object Properties</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Data_Property_Expressions"><span class="tocnumber">6.2</span> <span class="toctext">Data Property Expressions</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Data_Ranges"><span class="tocnumber">7</span> <span class="toctext">Data Ranges</span></a>
<ul>
<li class="toclevel-2"><a href="#Intersection_of_Data_Ranges"><span class="tocnumber">7.1</span> <span class="toctext">Intersection of Data Ranges</span></a></li>
<li class="toclevel-2"><a href="#Union_of_Data_Ranges"><span class="tocnumber">7.2</span> <span class="toctext">Union of Data Ranges</span></a></li>
<li class="toclevel-2"><a href="#Complement_of_Data_Ranges"><span class="tocnumber">7.3</span> <span class="toctext">Complement of Data Ranges</span></a></li>
<li class="toclevel-2"><a href="#Enumeration_of_Literals"><span class="tocnumber">7.4</span> <span class="toctext">Enumeration of Literals</span></a></li>
<li class="toclevel-2"><a href="#Datatype_Restrictions"><span class="tocnumber">7.5</span> <span class="toctext">Datatype Restrictions</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Class_Expressions"><span class="tocnumber">8</span> <span class="toctext">Class Expressions</span></a>
<ul>
<li class="toclevel-2"><a href="#Propositional_Connectives_and_Enumeration_of_Individuals"><span class="tocnumber">8.1</span> <span class="toctext">Propositional Connectives and Enumeration of Individuals</span></a>
<ul>
<li class="toclevel-3"><a href="#Intersection_of_Class_Expressions"><span class="tocnumber">8.1.1</span> <span class="toctext">Intersection of Class Expressions</span></a></li>
<li class="toclevel-3"><a href="#Union_of_Class_Expressions"><span class="tocnumber">8.1.2</span> <span class="toctext">Union of Class Expressions</span></a></li>
<li class="toclevel-3"><a href="#Complement_of_Class_Expressions"><span class="tocnumber">8.1.3</span> <span class="toctext">Complement of Class Expressions</span></a></li>
<li class="toclevel-3"><a href="#Enumeration_of_Individuals"><span class="tocnumber">8.1.4</span> <span class="toctext">Enumeration of Individuals</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Object_Property_Restrictions"><span class="tocnumber">8.2</span> <span class="toctext">Object Property Restrictions</span></a>
<ul>
<li class="toclevel-3"><a href="#Existential_Quantification"><span class="tocnumber">8.2.1</span> <span class="toctext">Existential Quantification</span></a></li>
<li class="toclevel-3"><a href="#Universal_Quantification"><span class="tocnumber">8.2.2</span> <span class="toctext">Universal Quantification</span></a></li>
<li class="toclevel-3"><a href="#Individual_Value_Restriction"><span class="tocnumber">8.2.3</span> <span class="toctext">Individual Value Restriction</span></a></li>
<li class="toclevel-3"><a href="#Self-Restriction"><span class="tocnumber">8.2.4</span> <span class="toctext">Self-Restriction</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Object_Property_Cardinality_Restrictions"><span class="tocnumber">8.3</span> <span class="toctext">Object Property Cardinality Restrictions</span></a>
<ul>
<li class="toclevel-3"><a href="#Minimum_Cardinality"><span class="tocnumber">8.3.1</span> <span class="toctext">Minimum Cardinality</span></a></li>
<li class="toclevel-3"><a href="#Maximum_Cardinality"><span class="tocnumber">8.3.2</span> <span class="toctext">Maximum Cardinality</span></a></li>
<li class="toclevel-3"><a href="#Exact_Cardinality"><span class="tocnumber">8.3.3</span> <span class="toctext">Exact Cardinality</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Data_Property_Restrictions"><span class="tocnumber">8.4</span> <span class="toctext">Data Property Restrictions</span></a>
<ul>
<li class="toclevel-3"><a href="#Existential_Quantification_2"><span class="tocnumber">8.4.1</span> <span class="toctext">Existential Quantification</span></a></li>
<li class="toclevel-3"><a href="#Universal_Quantification_2"><span class="tocnumber">8.4.2</span> <span class="toctext">Universal Quantification</span></a></li>
<li class="toclevel-3"><a href="#Literal_Value_Restriction"><span class="tocnumber">8.4.3</span> <span class="toctext">Literal Value Restriction</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Data_Property_Cardinality_Restrictions"><span class="tocnumber">8.5</span> <span class="toctext">Data Property Cardinality Restrictions</span></a>
<ul>
<li class="toclevel-3"><a href="#Minimum_Cardinality_2"><span class="tocnumber">8.5.1</span> <span class="toctext">Minimum Cardinality</span></a></li>
<li class="toclevel-3"><a href="#Maximum_Cardinality_2"><span class="tocnumber">8.5.2</span> <span class="toctext">Maximum Cardinality</span></a></li>
<li class="toclevel-3"><a href="#Exact_Cardinality_2"><span class="tocnumber">8.5.3</span> <span class="toctext">Exact Cardinality</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Axioms"><span class="tocnumber">9</span> <span class="toctext">Axioms</span></a>
<ul>
<li class="toclevel-2"><a href="#Class_Expression_Axioms"><span class="tocnumber">9.1</span> <span class="toctext">Class Expression Axioms</span></a>
<ul>
<li class="toclevel-3"><a href="#Subclass_Axioms"><span class="tocnumber">9.1.1</span> <span class="toctext">Subclass Axioms</span></a></li>
<li class="toclevel-3"><a href="#Equivalent_Classes"><span class="tocnumber">9.1.2</span> <span class="toctext">Equivalent Classes</span></a></li>
<li class="toclevel-3"><a href="#Disjoint_Classes"><span class="tocnumber">9.1.3</span> <span class="toctext">Disjoint Classes</span></a></li>
<li class="toclevel-3"><a href="#Disjoint_Union_of_Class_Expressions"><span class="tocnumber">9.1.4</span> <span class="toctext">Disjoint Union of Class Expressions</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Object_Property_Axioms"><span class="tocnumber">9.2</span> <span class="toctext">Object Property Axioms</span></a>
<ul>
<li class="toclevel-3"><a href="#Object_Subproperties"><span class="tocnumber">9.2.1</span> <span class="toctext">Object Subproperties</span></a></li>
<li class="toclevel-3"><a href="#Equivalent_Object_Properties"><span class="tocnumber">9.2.2</span> <span class="toctext">Equivalent Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Disjoint_Object_Properties"><span class="tocnumber">9.2.3</span> <span class="toctext">Disjoint Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Inverse_Object_Properties_2"><span class="tocnumber">9.2.4</span> <span class="toctext">Inverse Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Object_Property_Domain"><span class="tocnumber">9.2.5</span> <span class="toctext">Object Property Domain</span></a></li>
<li class="toclevel-3"><a href="#Object_Property_Range"><span class="tocnumber">9.2.6</span> <span class="toctext">Object Property Range</span></a></li>
<li class="toclevel-3"><a href="#Functional_Object_Properties"><span class="tocnumber">9.2.7</span> <span class="toctext">Functional Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Inverse-Functional_Object_Properties"><span class="tocnumber">9.2.8</span> <span class="toctext">Inverse-Functional Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Reflexive_Object_Properties"><span class="tocnumber">9.2.9</span> <span class="toctext">Reflexive Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Irreflexive_Object_Properties"><span class="tocnumber">9.2.10</span> <span class="toctext">Irreflexive Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Symmetric_Object_Properties"><span class="tocnumber">9.2.11</span> <span class="toctext">Symmetric Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Asymmetric_Object_Properties"><span class="tocnumber">9.2.12</span> <span class="toctext">Asymmetric Object Properties</span></a></li>
<li class="toclevel-3"><a href="#Transitive_Object_Properties"><span class="tocnumber">9.2.13</span> <span class="toctext">Transitive Object Properties</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Data_Property_Axioms"><span class="tocnumber">9.3</span> <span class="toctext">Data Property Axioms</span></a>
<ul>
<li class="toclevel-3"><a href="#Data_Subproperties"><span class="tocnumber">9.3.1</span> <span class="toctext">Data Subproperties</span></a></li>
<li class="toclevel-3"><a href="#Equivalent_Data_Properties"><span class="tocnumber">9.3.2</span> <span class="toctext">Equivalent Data Properties</span></a></li>
<li class="toclevel-3"><a href="#Disjoint_Data_Properties"><span class="tocnumber">9.3.3</span> <span class="toctext">Disjoint Data Properties</span></a></li>
<li class="toclevel-3"><a href="#Data_Property_Domain"><span class="tocnumber">9.3.4</span> <span class="toctext">Data Property Domain</span></a></li>
<li class="toclevel-3"><a href="#Data_Property_Range"><span class="tocnumber">9.3.5</span> <span class="toctext">Data Property Range</span></a></li>
<li class="toclevel-3"><a href="#Functional_Data_Properties"><span class="tocnumber">9.3.6</span> <span class="toctext">Functional Data Properties</span></a></li>
</ul>
</li>
<li class="toclevel-2"><a href="#Datatype_Definitions"><span class="tocnumber">9.4</span> <span class="toctext">Datatype Definitions</span></a></li>
<li class="toclevel-2"><a href="#Keys"><span class="tocnumber">9.5</span> <span class="toctext">Keys</span></a></li>
<li class="toclevel-2"><a href="#Assertions"><span class="tocnumber">9.6</span> <span class="toctext">Assertions</span></a>
<ul>
<li class="toclevel-3"><a href="#Individual_Equality"><span class="tocnumber">9.6.1</span> <span class="toctext">Individual Equality</span></a></li>
<li class="toclevel-3"><a href="#Individual_Inequality"><span class="tocnumber">9.6.2</span> <span class="toctext">Individual Inequality</span></a></li>
<li class="toclevel-3"><a href="#Class_Assertions"><span class="tocnumber">9.6.3</span> <span class="toctext">Class Assertions</span></a></li>
<li class="toclevel-3"><a href="#Positive_Object_Property_Assertions"><span class="tocnumber">9.6.4</span> <span class="toctext">Positive Object Property Assertions</span></a></li>
<li class="toclevel-3"><a href="#Negative_Object_Property_Assertions"><span class="tocnumber">9.6.5</span> <span class="toctext">Negative Object Property Assertions</span></a></li>
<li class="toclevel-3"><a href="#Positive_Data_Property_Assertions"><span class="tocnumber">9.6.6</span> <span class="toctext">Positive Data Property Assertions</span></a></li>
<li class="toclevel-3"><a href="#Negative_Data_Property_Assertions"><span class="tocnumber">9.6.7</span> <span class="toctext">Negative Data Property Assertions</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Annotations"><span class="tocnumber">10</span> <span class="toctext">Annotations</span></a>
<ul>
<li class="toclevel-2"><a href="#Annotations_of_Ontologies.2C_Axioms.2C_and_other_Annotations"><span class="tocnumber">10.1</span> <span class="toctext">Annotations of Ontologies, Axioms, and other Annotations</span></a></li>
<li class="toclevel-2"><a href="#Annotation_Axioms"><span class="tocnumber">10.2</span> <span class="toctext">Annotation Axioms</span></a>
<ul>
<li class="toclevel-3"><a href="#Annotation_Assertion"><span class="tocnumber">10.2.1</span> <span class="toctext">Annotation Assertion</span></a></li>
<li class="toclevel-3"><a href="#Annotation_Subproperties"><span class="tocnumber">10.2.2</span> <span class="toctext">Annotation Subproperties</span></a></li>
<li class="toclevel-3"><a href="#Annotation_Property_Domain"><span class="tocnumber">10.2.3</span> <span class="toctext">Annotation Property Domain</span></a></li>
<li class="toclevel-3"><a href="#Annotation_Property_Range"><span class="tocnumber">10.2.4</span> <span class="toctext">Annotation Property Range</span></a></li>
</ul>
</li>
</ul>
</li>
<li class="toclevel-1"><a href="#Global_Restrictions_on_Axioms_in_OWL_2_DL"><span class="tocnumber">11</span> <span class="toctext">Global Restrictions on Axioms in OWL 2 DL</span></a>
<ul>
<li class="toclevel-2"><a href="#Property_Hierarchy_and_Simple_Object_Property_Expressions"><span class="tocnumber">11.1</span> <span class="toctext">Property Hierarchy and Simple Object Property Expressions</span></a></li>
<li class="toclevel-2"><a href="#The_Restrictions_on_the_Axiom_Closure"><span class="tocnumber">11.2</span> <span class="toctext">The Restrictions on the Axiom Closure</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Appendix:_Internet_Media_Type.2C_File_Extension.2C_and_Macintosh_File_Type"><span class="tocnumber">12</span> <span class="toctext">Appendix: Internet Media Type, File Extension, and Macintosh File Type</span></a></li>
<li class="toclevel-1"><a href="#Appendix:_Complete_Grammar_.28Normative.29"><span class="tocnumber">13</span> <span class="toctext">Appendix: Complete Grammar (Normative)</span></a>
<ul>
<li class="toclevel-2"><a href="#General_Definitions"><span class="tocnumber">13.1</span> <span class="toctext">General Definitions</span></a></li>
<li class="toclevel-2"><a href="#Definitions_of_OWL_2_Constructs"><span class="tocnumber">13.2</span> <span class="toctext">Definitions of OWL 2 Constructs</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Appendix:_Change_Log_.28Informative.29"><span class="tocnumber">14</span> <span class="toctext">Appendix: Change Log (Informative)</span></a>
<ul>
<li class="toclevel-2"><a href="#Changes_Since_Proposed_Recommendation"><span class="tocnumber">14.1</span> <span class="toctext">Changes Since Proposed Recommendation</span></a></li>
<li class="toclevel-2"><a href="#Changes_Since_Candidate_Recommendation"><span class="tocnumber">14.2</span> <span class="toctext">Changes Since Candidate Recommendation</span></a></li>
<li class="toclevel-2"><a href="#Changes_Since_Last_Call"><span class="tocnumber">14.3</span> <span class="toctext">Changes Since Last Call</span></a></li>
</ul>
</li>
<li class="toclevel-1"><a href="#Acknowledgments"><span class="tocnumber">15</span> <span class="toctext">Acknowledgments</span></a></li>
<li class="toclevel-1"><a href="#References"><span class="tocnumber">16</span> <span class="toctext">References</span></a>
<ul>
<li class="toclevel-2"><a href="#Normative_References"><span class="tocnumber">16.1</span> <span class="toctext">Normative References</span></a></li>
<li class="toclevel-2"><a href="#Nonnormative_References"><span class="tocnumber">16.2</span> <span class="toctext">Nonnormative References</span></a></li>
</ul>
</li>
</ul>
</td></tr></table><script type="text/javascript"> if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } </script>
<p>
</p>
<div class="buttonpanel">
<form action=""><p>
<input id="show-sd" onclick="set_display_by_class('div','image','none'); set_display_by_id('hide-sd',''); set_display_by_id('show-sd','none');" type="button" value="Hide Diagrams" />
<input id="hide-sd" onclick="set_display_by_class('div','image',''); set_display_by_id('hide-sd','none'); set_display_by_id('show-sd','');" style="display: none" type="button" value="Show Diagrams" />
<input id="hide-bnf" onclick="set_display_by_class('div','grammar','none'); set_display_by_id('hide-bnf','none');  set_display_by_id('show-bnf','');" type="button" value="Hide Grammar" />
<input id="show-bnf" onclick="set_display_by_class('div','grammar',''); set_display_by_id('hide-bnf','');  set_display_by_id('show-bnf','none');" style="display: none" type="button" value="Show Grammar" />
<input id="hide-examples" onclick="set_display_by_class('div','anexample','none'); set_display_by_id('hide-examples','none'); set_display_by_id('show-examples','');" type="button" value="Hide Examples" />
<input id="show-examples" onclick="set_display_by_class('div','anexample',''); set_display_by_id('hide-examples',''); set_display_by_id('show-examples','none');" style="display: none" type="button" value="Show Examples" />
<input id="hide-fss" onclick="show_syntaxes(false,bRDFVisible); set_display_by_id('hide-fss','none'); set_display_by_id('show-fss','');" type="button" value="Hide FSS in Examples" />
<input id="show-fss" onclick="show_syntaxes(true,bRDFVisible); set_display_by_id('hide-fss',''); set_display_by_id('show-fss','none');" style="display: none" type="button" value="Show FSS in Examples" />
<input id="hide-rdf" onclick="show_syntaxes(bFSSVisible,false); set_display_by_id('hide-rdf','none'); set_display_by_id('show-rdf','');" style="display: none" type="button" value="Hide RDF in Examples" />
<input id="show-rdf" onclick="show_syntaxes(bFSSVisible,true); set_display_by_id('hide-rdf',''); set_display_by_id('show-rdf','none');" type="button" value="Show RDF in Examples" />
</p>
</form>
</div>
<p>

</p>
<a name="Introduction"></a><h2> <span class="mw-headline">1  Introduction </span></h2>
<p>This document defines the OWL 2 language. The core part of this specification &mdash; called the <i>structural specification</i> &mdash; is independent of the concrete exchange syntaxes for OWL 2 ontologies. The structural specification describes the conceptual structure of OWL 2 ontologies and thus provides a normative abstract representation for all (normative and nonnormative) syntaxes of OWL 2. This allows for a clear separation of the essential features of the language from issues related to any particular syntax. Furthermore, such a structural specification of OWL 2 provides the foundation for the implementation of OWL 2 tools such as APIs and reasoners. Each OWL 2 ontology represented as an instance of this conceptual structure can be converted into an RDF graph [<cite><a href="#ref-owl-2-rdf-mapping" title="">OWL 2 RDF Mapping</a></cite>]; conversely, most OWL 2 ontologies represented as RDF graphs can be converted into the conceptual structure defined in this document [<cite><a href="#ref-owl-2-rdf-mapping" title="">OWL 2 RDF Mapping</a></cite>].
</p><p>This document also defines the <i>functional-style syntax</i>, which closely follows the structural specification and allows OWL 2 ontologies to be written in a compact form. This syntax is used in the definitions of the semantics of OWL 2 ontologies, the mappings from and into the RDF/XML exchange syntax, and the different profiles of OWL 2. Concrete syntaxes, such as the functional-style syntax, often provide features not found in the structural specification, such as a mechanism for abbreviating IRIs.
</p><p>Finally, this document defines OWL 2 DL &mdash; the subset of OWL 2 with favorable computational properties. Each RDF graph obtained by applying the RDF mapping to an OWL 2 DL ontology can be converted back into the conceptual structure defined in this document by means of the reverse RDF mapping [<cite><a href="#ref-owl-2-rdf-mapping" title="">OWL 2 RDF Mapping</a></cite>].
</p><p>An OWL 2 ontology is a formal description of a domain of interest. OWL 2 ontologies consist of the following three different syntactic categories:
</p>
<ul><li> <i>Entities</i>, such as classes, properties, and individuals, are identified by IRIs. They form the primitive <i>terms</i> of an ontology and constitute the basic elements of an ontology. For example, a class <i>a:Person</i> can be used to represent the set of all people. Similarly, the object property <i>a:parentOf</i> can be used to represent the parent-child relationship. Finally, the individual <i>a:Peter</i> can be used to represent a particular person called <span class="name">"Peter"</span>.
</li><li> <i>Expressions</i> represent complex notions in the domain being described. For example, a <i>class expression</i> describes a set of individuals in terms of the restrictions on the individuals' characteristics.
</li><li> <i>Axioms</i> are statements that are asserted to be true in the domain being described. For example, using a <i>subclass axiom</i>, one can state that the class <i>a:Student</i> is a subclass of the class <i>a:Person</i>.
</li></ul>
<p>These three syntactic categories are used to express the <i>logical</i> part of OWL 2 ontologies &mdash; that is, they are interpreted under a precisely defined semantics that allows useful inferences to be drawn. For example, if an individual <i>a:Peter</i> is an instance of the class <i>a:Student</i>, and <i>a:Student</i> is a subclass of <i>a:Person</i>, then from the OWL 2 semantics one can derive that <i>a:Peter</i> is also an instance of <i>a:Person</i>.
</p><p>In addition, entities, axioms, and ontologies can be <i>annotated</i> in OWL 2. For example, a class can be given a human-readable label that provides a more descriptive name for the class. Annotations have no effect on the logical aspects of an ontology &mdash; that is, for the purposes of the OWL 2 semantics, annotations are treated as not being present. Instead, the use of annotations is left to the applications that use OWL 2. For example, a graphical user interface might choose to visualize a class using one of its labels.
</p><p>Finally, OWL 2 provides basic support for ontology modularization. In particular, an OWL 2 ontology <i>O</i> can import another OWL 2 ontology <i>O'</i> and thus gain access to all entities, expressions, and axioms in <i>O'</i>.
</p><p>This document defines the structural specification of OWL 2, the functional syntax for OWL 2, the behavior of datatype maps, and OWL 2 DL. Only the parts of the document related to these three purposes are normative. The examples in this document are informative and any part of the document that is specifically identified as informative is not normative. Further, the informal descriptions of the semantics of OWL 2 constructs in this document are informative; the Direct Semantics [<cite><a href="#ref-owl-2-direct-semantics" title="">OWL 2 Direct Semantics</a></cite>] and the RDF-Based [<cite><a href="#ref-owl-2-rdf-semantics" title="">OWL 2 RDF-Based Semantics</a></cite>] are precisely specified in separate documents.
</p><p>The italicized keywords <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em>, <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em>, <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em>, <em class="RFC2119" title="SHOULD NOT in RFC 2119 context">SHOULD NOT</em>, and <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> are used to specify normative features of OWL 2 documents and tools, and are interpreted as specified in RFC 2119 [<cite><a href="#ref-rfc-2119" title="">RFC 2119</a></cite>].
</p>
<a name="Preliminary_Definitions"></a><h2> <span class="mw-headline">2  Preliminary Definitions </span></h2>
<p>This section presents certain preliminary definitions that are used in the rest of this document.
</p>
<a name="Structural_Specification"></a><h3> <span class="mw-headline">2.1  Structural Specification </span></h3>
<p>The structural specification of OWL 2 consists of all the figures in this document and the notion of structural equivalence given below. It is used throughout this document to precisely specify the structure of OWL 2 ontologies and the observable behavior of OWL 2 tools. An OWL 2 tool <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> base its APIs and/or internal storage model on the structural specification; however, it <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> also choose a completely different approach as long as its observable behavior conforms to the one specified in this document.
</p><p>The structural specification is defined using the Unified Modeling Language (UML) [<cite><a href="#ref-uml" title="">UML</a></cite>], and the notation used is compatible with the Meta-Object Facility (MOF) [<cite><a href="#ref-mof" title="">MOF</a></cite>]. This document uses only a very simple form of UML class diagrams that are expected to be easily understandable by readers familiar with the basic concepts of object-oriented systems. The following list summarizes the UML notation used in this document.
</p>
<ul><li> The names of the UML classes from the structural specification are written in bold font.
</li><li> The names of abstract UML classes (i.e., UML classes that are not intended to be instantiated) are written in bold and italic font.
</li><li> Instances of the UML classes of the structural specification are connected by associations, many of which are of the one-to-many type. Associations whose name is preceded by <span class="name">/</span> are <i>derived</i> &mdash; that is, their value is determined based on the value of other associations and attributes. Whether the objects participating in associations are ordered and whether repetitions are allowed is made clear by the following standard UML conventions:
<ul><li> By default, all associations are sets; that is, the objects in them are unordered and repetitions are disallowed.
</li><li> The <span class="name">{ ordered,nonunique }</span> attribute is placed next to the association ends that are ordered and in which repetitions are allowed. Such associations have the semantics of lists.
</li></ul>
</li></ul>
<p>The narrative in this document often refers to various parts of the structural specification. These references are mainly intended to be informal, but they can often be interpreted as statements about the instances of the UML classes from the structural specification. When precision is required, such statements are captured using the functional-style syntax, which is defined in <a href="#Functional-Style_Syntax" title="">Section 3.7</a> and other relevant parts of this document. In order to avoid confusion, the term "UML class" is used to refer to elements of the structural specification of OWL 2, whereas the term "class" is used to refer to OWL 2 classes (see <a href="#Classes" title="">Section 5.1</a>).
</p>
<div class="anexample">
<p>The sentence "The individual <span class="name">I</span> is an instance of the class <span class="name">C</span>" can be understood as a statement that <span class="name">I</span> is an instance of the UML class <span class="nonterminal">Individual</span>, <span class="name">C</span> is an instance of the UML class <span class="nonterminal">Class</span>, and there is an instance of the UML class <span class="nonterminal">ClassAssertion</span> that connects <span class="name">I</span> with <span class="name">C</span>. This statement can be captured precisely using the structural specification as <span class="name">ClassAssertion( C I )</span>.
</p>
</div>
<p>Objects <i>o<sub>1</sub></i> and <i>o<sub>2</sub></i> from the structural specification are <i>structurally equivalent</i> if the following conditions hold:
</p>
<ul><li> If <i>o<sub>1</sub></i> and <i>o<sub>2</sub></i> are atomic values, such as strings or integers, they are structurally equivalent if they are equal according to the notion of equality of the respective UML type.
</li><li> If <i>o<sub>1</sub></i> and <i>o<sub>2</sub></i> are unordered associations without repetitions, they are structurally equivalent if each element of <i>o<sub>1</sub></i> is structurally equivalent to some element of <i>o<sub>2</sub></i> and vice versa.
</li><li> If <i>o<sub>1</sub></i> and <i>o<sub>2</sub></i> are ordered associations with repetitions, they are structurally equivalent if they contain the same number of elements and each element of <i>o<sub>1</sub></i> is structurally equivalent to the element of <i>o<sub>2</sub></i> with the same index.
</li><li> If <i>o<sub>1</sub></i> and <i>o<sub>2</sub></i> are instances of UML classes from the structural specification, they are structurally equivalent if
<ul><li> both <i>o<sub>1</sub></i> and <i>o<sub>2</sub></i> are instances of the same UML class, and
</li><li> each association of <i>o<sub>1</sub></i> is structurally equivalent to the corresponding association of <i>o<sub>2</sub></i> and vice versa.
</li></ul>
</li></ul>
<p>The notion of structural equivalence is used throughout this specification to define various conditions on the structure of OWL 2 ontologies. Note that this is a syntactic, rather than a semantic notion &mdash; that is, it compares structures, rather than their meaning under a formal semantics.
</p>
<div class="anexample">
<p>The class expression
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectUnionOf( <i>a:Person</i> <i>a:Animal</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:unionOf</i> ( <i>a:Person</i> <i>a:Animal</i> ) .
</td></tr>
</table>
<p>is structurally equivalent to the class expression
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectUnionOf( <i>a:Animal</i> <i>a:Person</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:unionOf</i> ( <i>a:Animal</i> <i>a:Person</i> ) .
</td></tr>
</table>
<p>because the order of the elements in an unordered association is not important. In contrast, the class expression
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectUnionOf( <i>a:Person</i> ObjectComplementOf( <i>a:Person</i> ) )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:unionOf</i> ( <i>a:Person</i> _:y ) .<br /> _:y <i>rdf:type</i> <i>owl:Class</i> .<br /> _:y <i>owl:complementOf</i> <i>a:Person</i> .
</td></tr>
</table>
<p>is not structurally equivalent to <i>owl:Thing</i> even though the two expressions are semantically equivalent.
</p>
</div>
<p>Sets written in one of the exchange syntaxes (e.g., XML or RDF/XML) are not necessarily expected to be duplicate free. Duplicates <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be eliminated when ontology documents written in such syntaxes are converted into instances of the UML classes of the structural specification.
</p>
<div class="anexample">
<p>An ontology written in functional-style syntax can contain the following class expression:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectUnionOf( <i>a:Person</i> <i>a:Animal</i> <i>a:Animal</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:unionOf</i> ( <i>a:Person</i> <i>a:Animal</i> <i>a:Animal</i> ) .
</td></tr>
</table>
<p>During parsing, this expression should be "flattened" to the following expression:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectUnionOf( <i>a:Person</i> <i>a:Animal</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:unionOf</i> ( <i>a:Person</i> <i>a:Animal</i> ) .
</td></tr>
</table>
</div>
<a name="BNF_Notation"></a><h3> <span class="mw-headline">2.2  BNF Notation </span></h3>
<p>Grammars in this document are written using the BNF notation, summarized in Table 1.
</p>
<div class="center">
<table border="1">
<caption> <span class="caption">Table 1.</span> The BNF Notation
</caption><tr>
<th> Construct
</th><th> Syntax
</th><th> Example
</th></tr>
<tr>
<td> terminal symbols
</td><td> enclosed in single quotes
</td><td> <span class="name">'PropertyRange'</span>
</td></tr>
<tr>
<td> a set of terminal symbols described in English
</td><td> italic
</td><td> <span class="name"><i>a finite sequence of characters<br /> matching the PNAME_LN production of [SPARQL]</i></span>
</td></tr>
<tr>
<td> nonterminal symbols
</td><td> boldface
</td><td> <span class="nonterminal">ClassExpression</span>
</td></tr>
<tr>
<td> zero or more
</td><td> curly braces
</td><td> <span class="name">{ </span><span class="nonterminal">ClassExpression</span><span class="name"> }</span>
</td></tr>
<tr>
<td> zero or one
</td><td> square brackets
</td><td> <span class="name">[ </span><span class="nonterminal">ClassExpression</span><span class="name"> ]</span>
</td></tr>
<tr>
<td> alternative
</td><td> vertical bar
</td><td> <span class="nonterminal">Assertion</span><span class="name"> | </span><span class="nonterminal">Declaration</span>
</td></tr></table>
</div>
<p>The following characters are called <i>delimiters</i>:
</p>
<ul><li> <span class="name">=</span> (U+3D)
</li><li> <span class="name">(</span> (U+28)
</li><li> <span class="name">)</span> (U+29)
</li><li> <span class="name">&lt;</span> (U+3C)
</li><li> <span class="name">&gt;</span> (U+3E)
</li><li> <span class="name">@</span> (U+40)
</li><li> <span class="name">^</span> (U+5E)
</li></ul>
<p><i>Whitespace</i> is a maximal sequence of space (U+20), horizontal tab (U+9), line feed (U+A), and carriage return (U+D) characters not occurring within a pair of <span class="name">"</span> (U+22) characters. A <i>comment</i> is a maximal sequence of characters that starts with the <span class="name">#</span> (U+23) character not enclosed in a pair of <span class="name">&lt;</span> (U+3C) and <span class="name">&gt;</span> (U+3E) characters, and that contains neither a line feed (U+A) nor a carriage return (U+D) character. Whitespace and comments cannot occur within terminal symbols. Whitespace and comments can occur between any two terminal symbols, and all whitespace <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be ignored. Whitespace <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be introduced between a pair of terminal symbols if the first symbol does not end and the second symbol does not start with a delimiter.
</p>
<a name="Integers.2C_Characters.2C_Strings.2C_Language_Tags.2C_and_Node_IDs"></a><h3> <span class="mw-headline">2.3  Integers, Characters, Strings, Language Tags, and Node IDs </span></h3>
<p>Nonnegative integers are defined as usual.
</p>
<div class="grammar">
<p><span class="nonterminal">nonNegativeInteger</span>&nbsp;:= <i>a nonempty finite sequence of digits between 0 and 9</i>
</p>
</div>
<p>Characters and strings are defined in the same way as in [<cite><a href="#ref-rdf-plain-literal" title="">RDF:PLAINLITERAL</a></cite>]. A <i>character</i> is an atomic unit of communication. The structure of characters is not further specified in this document, other than to note that each character has a Universal Character Set (UCS) code point [<cite><a href="#ref-iso-iec-10646" title="">ISO/IEC 10646</a></cite>] (or, equivalently, a Unicode code point [<cite><a href="#ref-unicode" title="">UNICODE</a></cite>]). Each character <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> match the <a class="external text" href="http://www.w3.org/TR/xml11/#NT-Char" title="http://www.w3.org/TR/xml11/#NT-Char">Char</a> production from XML [<cite><a href="#ref-xml" title="">XML</a></cite>]. Code points are written as U+ followed by the hexadecimal value of the code point. A <i>string</i> is a finite sequence of characters, and the <i>length</i> of a string is the number of characters in it. Two strings are identical if and only if they contain exactly the same characters in exactly the same sequence. Strings are written by enclosing them in double quotes (U+22) and using a subset of the N-triples escaping mechanism [<cite><a href="#ref-rdf-testcases" title="">RDF Test Cases</a></cite>] to encode strings containing quotes. Note that the definition below allows a string to span several lines of a document.
</p>
<div class="grammar">
<p><span class="nonterminal">quotedString</span>&nbsp;:= <i>a finite sequence of characters in which " (U+22) and \ (U+5C) occur only in pairs of the form \" (U+5C, U+22) and \\ (U+5C, U+5C), enclosed in a pair of " (U+22) characters</i>
</p>
</div>
<p>Language tags are used to identify the language in which a string has been written. They are defined in the same way as in [<cite><a href="#ref-rdf-plain-literal" title="">RDF:PLAINLITERAL</a></cite>], which follows [<cite><a href="#ref-bcp-47" title="">BCP 47</a></cite>]. Language tags are written by prepending them with the <span class="name">@</span> (U+40) character.
</p>
<div class="grammar">
<p><span class="nonterminal">languageTag</span>&nbsp;:= <i>@ (U+40) followed a nonempty sequence of characters matching the langtag production from [<cite><a href="#ref-bcp-47" title="">BCP 47</a></cite>]</i>
</p>
</div>
<p>Node IDs are used to identify anonymous individuals (aka <i>blank nodes</i> in RDF [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>]).
</p>
<div class="grammar">
<p><span class="nonterminal">nodeID</span>&nbsp;:= <i>a finite sequence of characters matching the BLANK_NODE_LABEL production of [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]</i>
</p>
</div>
<a name="IRIs"></a><h3> <span class="mw-headline">2.4  IRIs </span></h3>
<p>Ontologies and their elements are identified using Internationalized Resource Identifiers (IRIs) [<cite><a href="#ref-rfc-3987" title="">RFC3987</a></cite>]; thus, OWL 2 extends OWL 1, which uses Uniform Resource Identifiers (URIs). Each IRI <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be absolute (i.e., not relative). In the structural specification, IRIs are represented by the <span class="nonterminal">IRI</span> UML class. Two IRIs are structurally equivalent if and only if their string representations are identical.
</p><p>IRIs can be written as full IRIs by enclosing them in a pair of &lt; (U+3C) and &gt; (U+3E) characters. These characters are not part of the IRI, but are used for quotation purposes to identify an IRI as a full IRI.
</p><p>Alternatively, IRIs can be abbreviated as in SPARQL [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]. To this end, one can <i>declare</i> a <i>prefix name</i> <i>pn:</i> &mdash; that is, a possibly empty string followed by the <span class="name">:</span> (U+3A) character &mdash; by associating it with a <i>prefix IRI</i> <i>PI</i>; then, an IRI <i>I</i> whose string representation consists of <i>PI</i> followed by the remaining characters <i>rc</i> can be abbreviated as <i>pn:rc</i>. By a slight abuse of terminology, a prefix name is often used to refer to the prefix IRI that is associated with the prefix name, and phrases such as "an IRI whose string representation starts with the prefix IRI associated with the prefix name <i>pn:</i>" are typically shortened to less verbose phrases such as "an IRI with prefix <i>pn:</i>".
</p><p>If a concrete syntax uses this IRI abbreviation mechanism, it <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> provide a suitable mechanism for declaring prefix names. Furthermore, abbreviated IRIs are not represented in the structural specification of OWL 2, and OWL 2 implementations <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> exhibit the same observable behavior as if all abbreviated IRIs were expanded into full IRIs during parsing. Concrete syntaxes such as the RDF/XML Syntax [<cite><a href="#ref-rdf-syntax" title="">RDF Syntax</a></cite>] allow IRIs to be abbreviated in relation to the IRI of the document they are contained in. If used, such mechanisms are independent from the above described abbreviation mechanism. The abbreviated IRIs have the syntactic form of qualified names from the XML Namespaces specification [<cite><a href="#ref-xml-namespaces" title="">XML Namespaces</a></cite>]; therefore, it is common to refer to <i>PI</i> as a <i>namespace</i> and <i>rc</i> as a <i>local name</i>. This abbreviation mechanism, however, is independent from XML namespaces and can be understood as a simple macro mechanism that expands prefix names with the associated IRIs.
</p>
<div class="grammar">
<p><span class="nonterminal">fullIRI</span>&nbsp;:= <i>an IRI as defined in [<cite><a href="#ref-rfc-3987" title="">RFC3987</a></cite>], enclosed in a pair of &lt; (U+3C) and &gt; (U+3E) characters</i><br />
<span class="nonterminal">prefixName</span>&nbsp;:= <i>a finite sequence of characters matching the as PNAME_NS production of [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]</i><br />
<span class="nonterminal">abbreviatedIRI</span>&nbsp;:= <i>a finite sequence of characters matching the PNAME_LN production of [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]<br /></i>
<span class="nonterminal">IRI</span>&nbsp;:= <span class="nonterminal">fullIRI</span> | <span class="nonterminal">abbreviatedIRI</span>
</p>
</div>
<p>Table 2 declares the prefix names that are commonly used throughout this specification. 
</p>
<div class="center">
<table border="1">
<caption> <span class="caption">Table 2.</span> Declarations of the Standard Prefix Names
</caption><tr>
<th> Prefix name
</th><th> Prefix IRI
</th></tr>
<tr>
<td> <i>rdf:</i>
</td><td> <i>&lt;http://www.w3.org/1999/02/22-rdf-syntax-ns#&gt;</i>
</td></tr>
<tr>
<td> <i>rdfs:</i>
</td><td> <i>&lt;http://www.w3.org/2000/01/rdf-schema#&gt;</i>
</td></tr>
<tr>
<td> <i>xsd:</i>
</td><td> <i>&lt;http://www.w3.org/2001/XMLSchema#&gt;</i>
</td></tr>
<tr>
<td> <i>owl:</i>
</td><td> <i>&lt;http://www.w3.org/2002/07/owl#&gt;</i>
</td></tr>
</table>
</div>
<p>IRIs with prefixes <i>rdf:</i>, <i>rdfs:</i>, <i>xsd:</i>, and <i>owl:</i> constitute the <i>reserved vocabulary</i> of OWL 2. As described in the following sections, the IRIs from the reserved vocabulary that are listed in Table 3 have special treatment in OWL 2.
</p>
<div class="center">
<table border="1">
<caption> <span class="caption">Table 3.</span> Reserved Vocabulary of OWL 2 with Special Treatment
</caption>
<tr>
<td> <i>owl:backwardCompatibleWith</i>
</td><td> <i>owl:bottomDataProperty</i>
</td><td> <i>owl:bottomObjectProperty</i>
</td><td> <i>owl:deprecated</i>
</td><td> <i>owl:incompatibleWith</i>
</td></tr>
<tr>
<td> <i>owl:Nothing</i>
</td><td> <i>owl:priorVersion</i>
</td><td> <i>owl:rational</i>
</td><td> <i>owl:real</i>
</td><td> <i>owl:versionInfo</i>
</td></tr>
<tr>
<td> <i>owl:Thing</i>
</td><td> <i>owl:topDataProperty</i>
</td><td> <i>owl:topObjectProperty</i>
</td><td> <i>rdf:langRange</i>
</td><td> <i>rdf:PlainLiteral</i>
</td></tr>
<tr>
<td> <i>rdf:XMLLiteral</i>
</td><td> <i>rdfs:comment</i>
</td><td> <i>rdfs:isDefinedBy</i>
</td><td> <i>rdfs:label</i>
</td><td> <i>rdfs:Literal</i>
</td></tr>
<tr>
<td> <i>rdfs:seeAlso</i>
</td><td> <i>xsd:anyURI</i>
</td><td> <i>xsd:base64Binary</i>
</td><td> <i>xsd:boolean</i>
</td><td> <i>xsd:byte</i>
</td></tr>
<tr>
<td> <i>xsd:dateTime</i>
</td><td> <i>xsd:dateTimeStamp</i>
</td><td> <i>xsd:decimal</i>
</td><td> <i>xsd:double</i>
</td><td> <i>xsd:float</i>
</td></tr>
<tr>
<td> <i>xsd:hexBinary</i>
</td><td> <i>xsd:int</i>
</td><td> <i>xsd:integer</i>
</td><td> <i>xsd:language</i>
</td><td> <i>xsd:length</i>
</td></tr>
<tr>
<td> <i>xsd:long</i>
</td><td> <i>xsd:maxExclusive</i>
</td><td> <i>xsd:maxInclusive</i>
</td><td> <i>xsd:maxLength</i>
</td><td> <i>xsd:minExclusive</i>
</td></tr>
<tr>
<td> <i>xsd:minInclusive</i>
</td><td> <i>xsd:minLength</i>
</td><td> <i>xsd:Name</i>
</td><td> <i>xsd:NCName</i>
</td><td> <i>xsd:negativeInteger</i>
</td></tr>
<tr>
<td> <i>xsd:NMTOKEN</i>
</td><td> <i>xsd:nonNegativeInteger</i>
</td><td> <i>xsd:nonPositiveInteger</i>
</td><td> <i>xsd:normalizedString</i>
</td><td> <i>xsd:pattern</i>
</td></tr>
<tr>
<td> <i>xsd:positiveInteger</i>
</td><td> <i>xsd:short</i>
</td><td> <i>xsd:string</i>
</td><td> <i>xsd:token</i>
</td><td> <i>xsd:unsignedByte</i>
</td></tr>
<tr>
<td> <i>xsd:unsignedInt</i>
</td><td> <i>xsd:unsignedLong</i>
</td><td> <i>xsd:unsignedShort</i>
</td><td>
</td><td>
</td></tr>
</table>
</div>
<a name="Ontologies"></a><h2> <span class="mw-headline">3  Ontologies </span></h2>
<p>An OWL 2 <span id="def_ontology"><i>ontology</i></span> is an instance <i>O</i> of the <span class="nonterminal">Ontology</span> UML class from the structural specification of OWL 2 shown in Figure 1 that satisfies certain conditions given below. The main component of an OWL 2 ontology is its set of axioms, the structure of which is described in more detail in <a href="#Axioms" title="">Section 9</a>. Because the association between an ontology and its axioms is a set, an ontology cannot contain two axioms that are structurally equivalent. Apart from axioms, ontologies can also contain ontology annotations (as described in more detail in <a href="#Ontology_Annotations" title="">Section 3.5</a>), and they can also import other ontologies (as described in <a href="#Imports" title="">Section 3.4</a>).
</p>
<div class="image">
<p><img alt="The Structure of OWL 2 Ontologies" border="0" height="274" src="Ontology.gif" width="617" /><br />
<span class="caption">Figure 1.</span> The Structure of OWL 2 Ontologies
</p>
</div>
<p>The following list summarizes all the conditions that <i>O</i> is required to satisfy to be an OWL 2 ontology.
</p>
<ul><li> <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restrictions on the presence of the ontology IRI and version IRI from <a href="#Ontology_IRI_and_Version_IRI" title="">Section 3.1</a>.
</li><li> Each <span class="nonterminal">DataIntersectionOf</span> and <span class="nonterminal">DataUnionOf</span> in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restrictions from <a href="#Intersection_of_Data_Ranges" title="">Section 7.1</a> and <a href="#Union_of_Data_Ranges" title="">Section 7.2</a>, respectively.
</li><li> Each <span class="nonterminal">DataSomeValuesFrom</span> and <span class="nonterminal">DataAllValuesFrom</span> class expression in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restrictions from <a href="#Existential_Quantification_2" title="">Section 8.4.1</a> and <a href="#Universal_Quantification_2" title="">Section 8.4.2</a>, respectively.
</li><li> Each <span class="nonterminal">DataPropertyRange</span> axiom in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restriction from <a href="#Data_Property_Range" title="">Section 9.3.5</a>.
</li><li> Each <span class="nonterminal">DatatypeDefinition</span> axiom in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restrictions from <a href="#Datatype_Definitions" title="">Section 9.4</a>.
</li><li> Each <span class="nonterminal">HasKey</span> axiom in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restriction from <a href="#Keys" title="">Section 9.5</a>.
</li><li> Each <i>O'</i> directly imported into <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy all of these restrictions as well.
</li></ul>
<p>The following list summarizes all the conditions that an OWL 2 ontology <i>O</i> is required to satisfy to be an OWL 2 DL ontology.
</p>
<ul><li> The ontology IRI and the version IRI (if present) of <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restrictions on usage of the reserved vocabulary from <a href="#Ontology_IRI_and_Version_IRI" title="">Section 3.1</a>.
</li><li> Each datatype and each literal in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restrictions from <a href="#Datatypes" title="">Section 5.2</a> and <a href="#Literals" title="">Section 5.7</a>, respectively.
</li><li> Each entity in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> have an IRI satisfying the restrictions on the usage of the reserved vocabulary from Sections <a href="#Classes" title="">5.1</a>&ndash;<a href="#Individuals" title="">5.6</a>.
</li><li> <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the typing constraints from <a href="#Typing_Constraints_of_OWL_2_DL" title="">Section 5.8.1</a>.
</li><li> Each <span class="nonterminal">DatatypeRestriction</span> in <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the restriction on the usage of constraining facets from <a href="#Datatype_Restrictions" title="">Section 7.5</a>, respectively.
</li><li> <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the global restriction from <a href="#Global_Restrictions_on_Axioms_in_OWL_2_DL" title="">Section 11</a>.
</li><li> Each <i>O'</i> directly imported into <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy all of these restrictions as well.
</li></ul>
<p>An instance <i>O</i> of the <span class="nonterminal">Ontology</span> UML class <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> have consistent declarations as specified in <a href="#Declaration_Consistency" title="">Section 5.8.2</a>; however, this is not strictly necessary to make <i>O</i> an OWL 2 ontology. 
</p>
<a name="Ontology_IRI_and_Version_IRI"></a><h3> <span class="mw-headline">3.1  Ontology IRI and Version IRI </span></h3>
<p>Each ontology <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> have an <span id="def_ontology_iri"><i>ontology IRI</i></span>, which is used to identify an ontology. If an ontology has an ontology IRI, the ontology <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> additionally have a <span id="def_version_iri"><i>version IRI</i></span>, which is used to identify the version of the ontology. The version IRI <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> be, but need not be, equal to the ontology IRI. An ontology without an ontology IRI <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> contain a version IRI.
</p><p>IRIs from the reserved vocabulary <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be used as an ontology IRI or a version IRI of an OWL 2 DL ontology.
</p><p>The following list provides conventions for choosing ontology IRIs and version IRIs in OWL 2 ontologies. This specification provides no mechanism for enforcing these constraints across the entire Web; however, OWL 2 tools <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> use them to detect problems in ontologies they process.
</p>
<ul><li> If an ontology has an ontology IRI but no version IRI, then a different ontology with the same ontology IRI but no version IRI <em class="RFC2119" title="SHOULD NOT in RFC 2119 context">SHOULD NOT</em> exist.
</li><li> If an ontology has both an ontology IRI and a version IRI, then a different ontology with the same ontology IRI and the same version IRI <em class="RFC2119" title="SHOULD NOT in RFC 2119 context">SHOULD NOT</em> exist.
</li><li> All other combinations of the ontology IRI and version IRI are not required to be unique. Thus, two different ontologies <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> have no ontology IRI and no version IRI; similarly, an ontology containing only an ontology IRI <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> coexist with another ontology with the same ontology IRI and some other version IRI.
</li></ul>
<p>The ontology IRI and the version IRI together identify a particular version from an <span id="def_ontology_series"><i>ontology series</i></span> &mdash; the set of all the versions of a particular ontology identified using a common ontology IRI. In each ontology series, exactly one ontology version is regarded as the <i>current</i> one. Structurally, a version of a particular ontology is an instance of the <span class="nonterminal">Ontology</span> UML class from the structural specification. Ontology series are not represented explicitly in the structural specification of OWL 2: they exist only as a side effect of the naming conventions described in this and the following sections.
</p>
<a name="Ontology_Documents"></a><h3> <span class="mw-headline">3.2  Ontology Documents </span></h3>
<p>An OWL 2 ontology is an abstract notion defined in terms of the structural specification. Each ontology is associated with an <span id="def_ontology_document"><i>ontology document</i></span>, which physically contains the ontology stored in a particular way. The name "ontology document" reflects the expectation that a large number of ontologies will be stored in physical text documents written in one of the syntaxes of OWL 2. OWL 2 tools, however, are free to devise other types of ontology documents &mdash; that is, to introduce other ways of physically storing ontologies.
</p><p>Ontology documents are not represented in the structural specification of OWL 2, and the specification of OWL 2 makes only the following two assumptions about their nature:
</p>
<ul><li> Each ontology document can be accessed via an IRI by means of an appropriate protocol.
</li><li> Each ontology document can be converted in some well-defined way into an ontology (i.e., into an instance of the <span class="nonterminal">Ontology</span> UML class from the structural specification).
</li></ul>
<div class="anexample">
<p>An OWL 2 tool might publish an ontology as a text document written in the functional-style syntax (see <a href="#Functional-Style_Syntax" title="">Section 3.7</a>) and accessible via the IRI <i>&lt;http://www.example.com/ontology&gt;</i>. An OWL 2 tool could also devise a scheme for storing OWL 2 ontologies in a relational database. In such a case, each subset of the database representing the information about one ontology corresponds to one ontology document. To provide a mechanism for accessing these ontology documents, the OWL 2 tool should identify different database subsets with distinct IRIs.
</p>
</div>
<p>The ontology document of an ontology <i>O</i> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be accessible via the IRIs determined by the following rules:
</p>
<ul><li> If <i>O</i> does not contain an ontology IRI (and, consequently, it does not contain a version IRI either), then the ontology document of <i>O</i> <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> be accessible via any IRI.
</li><li> If <i>O</i> contains an ontology IRI <i>OI</i> but no version IRI, then the ontology document of <i>O</i> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be accessible via the IRI <i>OI</i>.
</li><li> If <i>O</i> contains an ontology IRI <i>OI</i> and a version IRI <i>VI</i>, then the ontology document of <i>O</i> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be accessible via the IRI <i>VI</i>; furthermore, if <i>O</i> is the current version of the ontology series with the IRI <i>OI</i>, then the ontology document of <i>O</i> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> also be accessible via the IRI <i>OI</i>.
</li></ul>
<p>Thus, the document containing the current version of an ontology series with some IRI <i>OI</i> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be accessible via <i>OI</i>. To access a particular version of <i>OI</i>, one needs to know that version's version IRI <i>VI</i>; the ontology document of the version <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> then be accessible via <i>VI</i>.
</p>
<div class="anexample">
<p>An ontology document of an ontology that contains an ontology IRI <i>&lt;http://www.example.com/my&gt;</i> but no version IRI should be accessible via the IRI <i>&lt;http://www.example.com/my&gt;</i>. In contrast, an ontology document of an ontology that contains an ontology IRI <i>&lt;http://www.example.com/my&gt;</i> and a version IRI <i>&lt;http://www.example.com/my/2.0&gt;</i> should be accessible via the IRI <i>&lt;http://www.example.com/my/2.0&gt;</i>. In both cases, the ontology document should be accessible via the respective IRIs using the HTTP protocol.
</p>
</div>
<p>OWL 2 tools will often need to implement functionality such as caching or off-line processing, where ontology documents may be stored at addresses different from the ones dictated by their ontology IRIs and version IRIs. OWL 2 tools <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> implement a <i>redirection</i> mechanism: when a tool is used to access an ontology document at IRI <i>I</i>, the tool <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> redirect <i>I</i> to a different IRI <i>DI</i> and access the ontology document via <i>DI</i> instead. The result of accessing the ontology document via <i>DI</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be the same as if the ontology were accessed via <i>I</i>. Furthermore, once the ontology document is converted into an ontology, the ontology <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> satisfy the three conditions from the beginning of this section in the same way as if it the ontology document were accessed via <i>I</i>. No particular redirection mechanism is specified &mdash; this is assumed to be implementation dependent.
</p>
<div class="anexample">
<p>To enable off-line processing, an ontology document that &mdash; according to the above rules &mdash; should be accessible via <i>&lt;http://www.example.com/my&gt;</i> might be stored in a file accessible via <i>&lt;file:///usr/local/ontologies/example.owl&gt;</i>. To access this ontology document, an OWL 2 tool might redirect the IRI <i>&lt;http://www.example.com/my&gt;</i> and actually access the ontology document via <i>&lt;file:///usr/local/ontologies/example.owl&gt;</i>. The ontology obtained after accessing the ontology document should satisfy the usual accessibility constraints: if the ontology contains only the ontology IRI, then the ontology IRI should be equal to <i>&lt;http://www.example.com/my&gt;</i>, and if the ontology contains both the ontology IRI and the version IRI, then one of them should be equal to <i>&lt;http://www.example.com/my&gt;</i>.
</p>
</div>
<a name="Versioning_of_OWL_2_Ontologies"></a><h3> <span class="mw-headline">3.3  Versioning of OWL 2 Ontologies </span></h3>
<p>The conventions from <a href="#Ontology_Documents" title="">Section 3.2</a> provide a simple mechanism for versioning OWL 2 ontologies. An ontology series is identified using an ontology IRI, and each version in the series is assigned a different version IRI. The ontology document of the ontology representing the current version of the series <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be accessible via the ontology IRI and, if present, via its version IRI as well; the ontology documents of the previous versions <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be accessible solely via their respective version IRIs. When a new version <i>O</i> in the ontology series is created, the ontology document of <i>O</i> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> replace the one accessible via the ontology IRI (and it <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> also be accessible via its version IRI).
</p>
<div class="anexample">
<p>The ontology document containing the current version of an ontology series might be accessible via the IRI <i>&lt;http://www.example.com/my&gt;</i>, as well as via the version-specific IRI <i>&lt;http://www.example.com/my/2.0&gt;</i>. When a new version is created, the ontology document of the previous version should remain accessible via <i>&lt;http://www.example.com/my/2.0&gt;</i>; the ontology document of the new version, called, say, <i>&lt;http://www.example.com/my/3.0&gt;</i>, should be made accessible via both <i>&lt;http://www.example.com/my&gt;</i> and <i>&lt;http://www.example.com/my/3.0&gt;</i>.
</p>
</div>
<a name="Imports"></a><h3> <span class="mw-headline">3.4  Imports </span></h3>
<p>An OWL 2 ontology can import other ontologies in order to gain access to their entities, expressions, and axioms, thus providing the basic facility for ontology modularization.
</p>
<div class="anexample">
<p>Assume that one wants to describe research projects about diseases. Managing information about the projects and the diseases in the same ontology might be cumbersome. Therefore, one might create a separate ontology <i>O</i> about diseases and a separate ontology <i>O'</i> about projects. The ontology <i>O'</i> would import <i>O</i> in order to gain access to the classes representing diseases; this allows one to use the diseases from <i>O</i> when writing the axioms of <i>O'</i>.
</p>
</div>
<p>From a physical point of view, an ontology contains a set of IRIs, shown in Figure 1 as the <span class="nonterminal">directlyImportsDocuments</span> association; these IRIs identify the ontology documents of the directly imported ontologies as specified in <a href="#Ontology_Documents" title="">Section 3.2</a>. The logical <i>directly imports</i> relation between ontologies, shown in Figure 1 as the <span class="nonterminal">directlyImports</span> association, is obtained by accessing the directly imported ontology documents and converting them into OWL 2 ontologies. The logical <i>imports</i> relation between ontologies, shown in Figure 1 as the <span class="nonterminal">imports</span> association, is the transitive closure of directly imports. In Figure 1, associations <span class="nonterminal">directlyImports</span> and <span class="nonterminal">imports</span> are shown as derived associations, since their values are derived from the value of the <span class="nonterminal">directlyImportsDocuments</span> association. Ontology documents usually store the <span class="nonterminal">directlyImportsDocuments</span> association. In contrast, the <span class="nonterminal">directlyImports</span> and <span class="nonterminal">imports</span> associations are typically not stored in ontology documents, but are determined during parsing as specified in <a href="#Canonical_Parsing_of_OWL_2_Ontologies" title="">Section 3.6</a>.
</p>
<div class="anexample">
<p>The following ontology document contains an ontology that directly imports an ontology contained in the ontology document accessible via the IRI <i>&lt;http://www.example.com/my/2.0&gt;</i>.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> Ontology( <i>&lt;http://www.example.com/importing-ontology&gt;</i><br /> &nbsp;&nbsp;&nbsp; Import( <i>&lt;http://www.example.com/my/2.0&gt;</i> )<br /> <br /> ...<br /> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>&lt;http://www.example.com/importing-ontology&gt;</i> <i>rdf:type</i> <i>owl:Ontology</i> .<br /> <i>&lt;http://www.example.com/importing-ontology&gt;</i> <i>owl:imports</i> <i>&lt;http://www.example.com/my/2.0&gt;</i> .<br /> ...
</td></tr>
</table>
<p>The IRIs identifying the ontology documents of the directly imported ontologies can be redirected as described in <a href="#Ontology_Documents" title="">Section 3.2</a>. For example, in order to access the above mentioned ontology document from a local cache, the IRI <i>&lt;http://www.example.com/my/2.0&gt;</i> might be redirected to <i>&lt;file:///usr/local/ontologies/imported.v20.owl&gt;</i>. Note that this can be done without changing the ontology document of the importing ontology.
</p>
</div>
<p>The <span id="def_import_closure"><i>import closure</i></span> of an ontology <i>O</i> is a set containing <i>O</i> and all the ontologies that <i>O</i> imports. The import closure of <i>O</i> <em class="RFC2119" title="SHOULD NOT in RFC 2119 context">SHOULD NOT</em> contain ontologies <i>O<sub>1</sub></i> and <i>O<sub>2</sub></i> such that
</p>
<ul><li> <i>O<sub>1</sub></i> and <i>O<sub>2</sub></i> are different ontology versions from the same ontology series, or
</li><li> <i>O<sub>1</sub></i> contains an ontology annotation <i>owl:incompatibleWith</i> with the value equal to either the ontology IRI or the version IRI of <i>O<sub>2</sub></i>.
</li></ul>
<p>The <span id="def_axiom_closure"><i>axiom closure</i></span> of an ontology <i>O</i> is the smallest set that contains all the axioms from each ontology <i>O'</i> in the import closure of <i>O</i> with all anonymous individuals <i>standardized apart</i> &mdash; that is, the anonymous individuals from different ontologies in the import closure of <i>O</i> are treated as being different; see <a href="#Anonymous_Individuals" title="">Section 5.6.2</a> for further details.
</p>
<a name="Ontology_Annotations"></a><h3> <span class="mw-headline">3.5  Ontology Annotations </span></h3>
<p>An OWL 2 ontology contains a set of annotations. These can be used to associate information with an ontology &mdash; for example the ontology creator's name. As discussed in more detail in <a href="#Annotations" title="">Section 10</a>, each annotation consists of an annotation property and an annotation value, and the latter can be a literal, an IRI, or an anonymous individual.
</p>
<div class="grammar">
<p><span class="nonterminal">ontologyAnnotations</span>&nbsp;:= { <span class="nonterminal">Annotation</span> }
</p>
</div>
<p>OWL 2 provides several built-in annotation properties for ontology annotations. The usage of these annotation properties on entities other than ontologies is discouraged.
</p>
<ul><li> The <span id="a_priorVersion"><i>owl:priorVersion</i></span> annotation property specifies the IRI of a prior version of the containing ontology.
</li><li> The <span id="a_backwardCompatibleWith"><i>owl:backwardCompatibleWith</i></span> annotation property specifies the IRI of a prior version of the containing ontology that is compatible with the current version of the containing ontology.
</li><li> The <span id="a_incompatibleWith"><i>owl:incompatibleWith</i></span> annotation property specifies the IRI of a prior version of the containing ontology that is incompatible with the current version of the containing ontology.
</li></ul>
<a name="Canonical_Parsing_of_OWL_2_Ontologies"></a><h3> <span class="mw-headline">3.6  Canonical Parsing of OWL 2 Ontologies </span></h3>
<p>Many OWL 2 tools need to support <span id="def_ontology_parsing"><i>ontology parsing</i></span> &mdash; the process of converting an ontology document written in a particular syntax into an OWL 2 ontology. Depending on the syntax used, the ontology parser may need to know which IRIs are used in the ontology as entities of which type. This typing information is extracted from declarations &mdash; axioms that associate IRIs with entity types. Please refer to <a href="#Entity_Declarations_and_Typing" title="">Section 5.8</a> for more information about declarations.
</p>
<div class="anexample">
<p>An ontology parser for the ontology documents written in the RDF syntax might encounter the following triples:
</p>
<div class="rdf">
<p><i>a:Father</i> <i>rdfs:subClassOf</i> _:x .<br />
_:x <i>owl:someValuesFrom</i> <i>a:Child</i> .<br />
_:x <i>owl:onProperty</i> <i>a:parentOf</i>.<br />
</p>
</div>
<p>From this axiom alone, it is not clear whether <i>a:parentOf</i> is an object or a data property, and whether <i>a:Child</i> is a class or a datatype. In order to disambiguate the types of these IRIs, the parser needs to look at the declarations in the ontology document being parsed, as well as those in the directly or indirectly imported ontology documents.
</p>
</div>
<p>In OWL 2 there is no requirement for a declaration of an entity to physically precede the entity's usage in ontology documents; furthermore, declarations for entities can be placed in imported ontology documents and imports are allowed to be cyclic. In order to precisely define the result of ontology parsing, this specification defines the notion of <i>canonical parsing</i>. An OWL 2 parser <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> implement parsing in any way it chooses, as long as it produces a result that is structurally equivalent to the result of canonical parsing.
</p><p>An OWL 2 ontology corresponding to an ontology document <i>D<sub>GI</sub></i> accessible via a given IRI <i>GI</i> can be obtained using the following <span id="def_canonical_parsing"><i>canonical parsing</i></span> process. All steps of this process <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be successfully completed.
</p>
<table class="canonicalparsing">

<tr>
<td> <b>CP&nbsp;1</b>
</td><td class="one"> Make <i>AllDoc</i> and <i>Processed</i> equal to the empty set, and make <i>ToProcess</i> equal to the set containing only the IRI <i>GI</i>.
</td></tr>
<tr>
<td> <b>CP&nbsp;2</b>
</td><td class="one"> While <i>ToProcess</i> is not empty, remove an arbitrary IRI <i>I</i> from it and, if <i>I</i> is not contained in <i>Processed</i>, perform the following steps:
</td></tr>
<tr>
<td> <b>CP&nbsp;2.1</b>
</td><td class="two"> Retrieve the ontology document <i>D<sub>I</sub></i> from <i>I</i> as specified in <a href="#Ontology_Documents" title="">Section 3.2</a>.
</td></tr>
<tr>
<td> <b>CP&nbsp;2.2</b>
</td><td class="two"> Using the rules of the relevant syntax, analyze <i>D<sub>I</sub></i> and compute the set <i>Decl(D<sub>I</sub>)</i> of declarations explicitly present in <i>D<sub>I</sub></i> and the set <i>Imp(D<sub>I</sub>)</i> of IRIs of ontology documents directly imported in <i>D<sub>I</sub></i>.
</td></tr>
<tr>
<td> <b>CP&nbsp;2.3</b>
</td><td class="two"> Add <i>D<sub>I</sub></i> to <i>AllDoc</i>, add <i>I</i> to <i>Processed</i>, and add each IRI from <i>Imp(D<sub>I</sub>)</i> to <i>ToProcess</i>.
</td></tr>
<tr>
<td> <b>CP&nbsp;3</b>
</td><td class="one"> For each ontology document <i>D</i> in <i>AllDoc</i>, perform the following steps:
</td></tr>
<tr>
<td> <b>CP&nbsp;3.1</b>
</td><td class="two"> Compute the set <i>AllDecl(D)</i> as the union of the set <i>Decl(D)</i>, the sets <i>Decl(D')</i> for each ontology document <i>D'</i> that is (directly or indirectly) imported into <i>D</i>, and the set of all declarations listed in Table 5. For an OWL 2 DL ontology, the set <i>AllDecl(D)</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the typing constraints from <a href="#Typing_Constraints_of_OWL_2_DL" title="">Section 5.8.1</a>.
</td></tr>
<tr>
<td> <b>CP&nbsp;3.2</b>
</td><td class="two"> Create an instance <i>O<sub>D</sub></i> of the <span class="nonterminal">Ontology</span> UML class from the structural specification.
</td></tr>
<tr>
<td> <b>CP&nbsp;3.3</b>
</td><td class="two"> Using the rules of the relevant syntax, analyze <i>D</i> and populate <i>O<sub>D</sub></i> by instantiating appropriate classes from the structural specification. Use the declarations in <i>AllDecl(D)</i> to disambiguate IRIs if needed; it <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be possible to disambiguate all IRIs.
</td></tr>
<tr>
<td> <b>CP&nbsp;4</b>
</td><td class="one"> For each pair of ontology documents <i>DS</i> and <i>DT</i> in <i>AllDoc</i> such that the latter is directly imported into the former, add <i>O<sub>DT</sub></i> to the <span class="nonterminal">directlyImports</span> association of <i>O<sub>DS</sub></i>.
</td></tr>
<tr>
<td> <b>CP&nbsp;5</b>
</td><td class="one"> For each ontology document <i>D</i> in <i>AllDoc</i>, set the <span class="nonterminal">imports</span> association of <i>O<sub>D</sub></i> to the transitive closure of the <span class="nonterminal">directlyImports</span> association of <i>O<sub>D</sub></i>.
</td></tr>
<tr>
<td> <b>CP&nbsp;6</b>
</td><td class="one"> For each ontology document <i>D</i> in <i>AllDoc</i>, ensure that <i>O<sub>D</sub></i> is an OWL 2 ontology &mdash; that is, <i>O<sub>D</sub></i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy all the restrictions listed in <a href="#Ontologies" title="">Section 3</a>.
</td></tr>
</table>
<p>It is important to understand that canonical parsing merely defines the result of the parsing process, and that an implementation of OWL 2 <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> optimize this process in numerous ways. In order to enable efficient parsing, OWL 2 implementations are encouraged to write ontologies into documents by placing all IRI declarations before the axioms that use these IRIs; however, this is not required for conformance.
</p>
<a name="Functional-Style_Syntax"></a><h3> <span class="mw-headline">3.7  Functional-Style Syntax </span></h3>
<p>A <span id="def_functional-style_syntax_ontology_document"><i>functional-style syntax ontology document</i></span> is a sequence of Unicode characters [<cite><a href="#ref-unicode" title="">UNICODE</a></cite>] accessible via some IRI by means of the standard protocols such that its text matches the <span class="nonterminal">ontologyDocument</span> production of the grammar defined in this specification document, and it can be converted into an ontology by means of the canonical parsing process described in <a href="#Canonical_Parsing_of_OWL_2_Ontologies" title="">Section 3.6</a> and other parts of this specification document. A functional-style syntax ontology document <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> use the UTF-8 encoding [<cite><a href="#ref-rfc-3629" title="">RFC 3629</a></cite>].
</p>
<div class="grammar">
<p><span class="nonterminal">ontologyDocument</span>&nbsp;:=  { <span class="nonterminal">prefixDeclaration</span> } <span class="nonterminal">Ontology</span><br />
<span class="nonterminal">prefixDeclaration</span>&nbsp;:= 'Prefix' '(' <span class="nonterminal">prefixName</span> '=' <span class="nonterminal">fullIRI</span> ')'<br />
<span class="nonterminal">Ontology</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; 'Ontology' '(' [ <span class="nonterminal">ontologyIRI</span> [ <span class="nonterminal">versionIRI</span> ] ]<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="nonterminal">directlyImportsDocuments</span><br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="nonterminal">ontologyAnnotations</span><br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="nonterminal">axioms</span><br />
&nbsp;&nbsp;&nbsp; ')'<br />
<span class="nonterminal">ontologyIRI</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<span class="nonterminal">versionIRI</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<span class="nonterminal">directlyImportsDocuments</span>&nbsp;:= { 'Import' '(' <span class="nonterminal">IRI</span> ')' }<br />
<span class="nonterminal">axioms</span>&nbsp;:= { <span class="nonterminal">Axiom</span> }
</p>
</div>
<p>Each part of the ontology document matching the <span class="nonterminal" id="a_prefix">prefixDeclaration</span> production declares a prefix name and associates it with a prefix IRI. An ontology document <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> contain at most one such declaration per prefix name, and it <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> declare a prefix name listed in Table 2. Prefix declarations are used during parsing to expand abbreviated IRIs in the ontology document &mdash; that is, parts of the ontology document matching the <span class="nonterminal">abbreviatedIRI</span> production &mdash; into full IRIs. This is done as follows:
</p>
<ul><li> The abbreviated IRI is split into a prefix name <i>pn:</i> &mdash; the part up to and including the <span class="name">:</span> (U+3A) character &mdash; and the remaining part <i>rp</i> following the <span class="name">:</span> (U+3A) character.
</li><li> If <i>pn:</i> is not one of the standard prefix names listed in Table 2, then the prefix declarations of the ontology document being parsed <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> contain a declaration for <i>pn:</i> associating it with a prefix IRI <i>PI</i>.
</li><li> The resulting full IRI is obtained by concatenating the string representation of <i>PI</i> with <i>rp</i>. The resulting IRI <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be a valid IRI.
</li></ul>
<div class="anexample">
<p>The following is a functional-style syntax ontology document containing an ontology with the ontology IRI <i>&lt;http://www.example.com/ontology1&gt;</i>. The IRI <i>&lt;http://www.example.com/ontology1#&gt;</i> is associated with the prefix name <i>:</i> (that is, the prefix name consisting only of a colon character); this prefix is often called "empty" or "default". This ontology imports an ontology whose ontology document should be accessed via <i>&lt;http://www.example.com/ontology2&gt;</i>, and it contains an ontology annotation providing a label for the ontology and a single subclass axiom. The abbreviated IRI <i>:Child</i> is expanded into the full IRI <i>&lt;http://www.example.com/ontology1#Child&gt;</i> during parsing. The prefix name <i>owl:</i> occurs in Table 2 and therefore does not need to be explicitly declared in the ontology document.
</p>
<div class="fss">
<p>Prefix(:=<i>&lt;http://www.example.com/ontology1#&gt;</i>)<br />
Ontology( <i>&lt;http://www.example.com/ontology1&gt;</i><br />
&nbsp;&nbsp;&nbsp; Import( <i>&lt;http://www.example.com/ontology2&gt;</i> )<br />
&nbsp;&nbsp;&nbsp; Annotation( <i>rdfs:label</i> "An example" )<br />
<br />
&nbsp;&nbsp;&nbsp; SubClassOf( <i>:Child</i> <i>owl:Thing</i> )<br />
)
</p>
</div>
</div>
<a name="Datatype_Maps"></a><h2> <span class="mw-headline">4  Datatype Maps </span></h2>
<p>OWL 2 ontologies can refer to data values such as strings or integers. Each kind of such values is called a <span id="def_datatype"><i>datatype</i></span>. Datatypes can be used in OWL 2 ontologies as described in <a href="#Datatypes" title="">Section 5.2</a>. Each datatype is identified by an IRI and is defined by the following components:
</p>
<ul><li> The <span id="def_value_space"><i>value space</i></span> is the set of values of the datatype. Elements of the value space are called <i>data values</i>.
</li><li> The <span id="def_lexical_space"><i>lexical space</i></span> is a set of strings that can be used to refer to data values. Each member of the lexical space is called a <i>lexical form</i>, and it is mapped to a particular data value.
</li><li> The <span id="def_facet_space"><i>facet space</i></span> is a set of pairs of the form ( <i>F</i> , <i>v</i> ) where <i>F</i> is an IRI called a <i>constraining facet</i>, and <i>v</i> is an arbitrary data value called the <i>constraining value</i>. Each such pair is mapped to a subset of the value space of the datatype.
</li></ul>
<p>A set of datatypes supported by a reasoner is called a <span id="def_datatype_map"><i>datatype map</i></span>. This is not a syntactic construct &mdash; that is, it is not used directly to construct OWL 2 ontologies in a way that, say, classes and datatypes are. Because of that, a datatype map is not represented in the structural specification of OWL 2.
</p><p>The rest of this section defines a particular datatype map called the <span id="def_OWL_2_datatype_map"><i>OWL 2 datatype map</i></span>, which lists the datatypes that can be used in OWL 2 ontologies. Most datatypes are taken from the set of XML Schema Datatypes, version 1.1 [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>] (but see <a href="http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/#XML_Schema_Datatypes" title="Conformance">Section 2.3</a> in OWL 2 Conformance [<cite><a href="#ref-owl-2-conformance" title="">OWL 2 Conformance</a></cite>]), the RDF specification [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>], or the specification for plain literals [<cite><a href="#ref-rdf-plain-literal" title="">RDF:PLAINLITERAL</a></cite>]. The normative definitions of these datatypes are provided by the respective specifications, and this document merely provides guidance on how to interpret these definitions properly in the context of OWL 2. For all these datatypes, this section lists the <i>normative constraining facets</i> that OWL 2 implementations <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> support. This section also contains the complete normative definitions of the datatypes <i>owl:real</i> and <i>owl:rational</i>, as these datatypes have not been taken from other specifications.
</p>
<a name="Real_Numbers.2C_Decimal_Numbers.2C_and_Integers"></a><h3> <span class="mw-headline">4.1  Real Numbers, Decimal Numbers, and Integers </span></h3>
<p><span id="a_NumericDataTypes"> </span>
</p><p>The OWL 2 datatype map provides the following datatypes for the representation of real numbers, decimal numbers, and integers:
</p>
<ul><li> <i>owl:real</i>
</li><li> <i>owl:rational</i>
</li><li> <i>xsd:decimal</i>
</li><li> <i>xsd:integer</i>
</li><li> <i>xsd:nonNegativeInteger</i>
</li><li> <i>xsd:nonPositiveInteger</i>
</li><li> <i>xsd:positiveInteger</i>
</li><li> <i>xsd:negativeInteger</i>
</li><li> <i>xsd:long</i>
</li><li> <i>xsd:int</i>
</li><li> <i>xsd:short</i>
</li><li> <i>xsd:byte</i>
</li><li> <i>xsd:unsignedLong</i>
</li><li> <i>xsd:unsignedInt</i>
</li><li> <i>xsd:unsignedShort</i>
</li><li> <i>xsd:unsignedByte</i>
</li></ul>
<p>For each datatype from the above list that is identified by an IRI with the <i>xsd:</i> prefix, the definitions of the value space, the lexical space, and the facet space are provided by XML Schema [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>]; furthermore, the normative constraining facets for the datatype are <i>xsd:minInclusive</i>, <i>xsd:maxInclusive</i>, <i>xsd:minExclusive</i>, and <i>xsd:maxExclusive</i>. An OWL 2 implementation <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> support all lexical forms of these datatypes; however, it <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> support at least the lexical forms listed in Section 5.4 of XML Schema Datatypes [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>], which can be mapped to the primitive values commonly found in modern implementation platforms.
</p><p>The datatypes <span id="a_real"><i>owl:real</i></span> and <span id="a_rational"><i>owl:rational</i></span> are defined as follows.
</p><p><b>Value Spaces.</b>
</p>
<ul><li> The value space of <i>owl:real</i> is the set of all real numbers.
</li><li> The value space of <i>owl:rational</i> is the set of all rational numbers. It is a subset of the value space of <i>owl:real</i>, and it contains the value space of <i>xsd:decimal</i> (and thus of all <i>xsd:</i> numeric datatypes listed above as well).
</li></ul>
<p><b>Lexical Spaces.</b>
</p>
<ul><li> The <i>owl:real</i> datatype does not directly provide any lexical forms.
</li><li> The <i>owl:rational</i> datatype supports lexical forms defined by the following grammar (whitespace within the grammar <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be ignored and <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be included in the lexical forms of <i>owl:rational</i>, and single quotes are used to introduce terminal symbols):<div class="indent" style="padding-top: 10px; padding-bottom: 10px"><span class="name">numerator '/' denominator</span></div> Here, <span class="name">numerator</span> is an integer with the syntax as specified for the <i>xsd:integer</i> datatype, and <span class="name">denominator</span> is a positive, nonzero integer with the syntax as specified for the <i>xsd:integer</i> datatype, not containing the plus sign. Each such lexical form of <i>owl:rational</i> is mapped to the rational number obtained by dividing the value of <span class="name">numerator</span> by the value of <span class="name">denominator</span>. An OWL 2 implementation <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> support all such lexical forms; however, it <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> support at least the lexical forms where the numerator and the denominator are in the value space of <i>xsd:long</i>.
</li></ul>
<p><b>Facet Spaces.</b> The facet spaces of <i>owl:real</i> and <i>owl:rational</i> are defined in Table 4.
</p>
<div class="center" id="a_RealFacets">
<table border="1" style="text-align: left">
<caption> <span class="caption">Table 4.</span> The Facet Spaces of <i>owl:real</i> and <i>owl:rational</i>
</caption>
<tr>
<th> Each pair of the form...
</th><th> ...is mapped to...
</th></tr>
<tr>
<td> ( <i>xsd:minInclusive</i> , <i>v</i> )<br /> where <i>v</i> is from the value space of <i>owl:real</i>
</td><td> the set of all numbers <i>x</i> from the value space of <i>DT</i> such that <i>x</i> = <i>v</i> or <i>x</i> &gt; <i>v</i>
</td></tr>
<tr>
<td> ( <i>xsd:maxInclusive</i> , <i>v</i> )<br /> where <i>v</i> is from the value space of <i>owl:real</i>
</td><td> the set of all numbers <i>x</i> from the value space of <i>DT</i> such that <i>x</i> = <i>v</i> or <i>x</i> &lt; <i>v</i>
</td></tr>
<tr>
<td> ( <i>xsd:minExclusive</i> , <i>v</i> )<br /> where <i>v</i> is from the value space of <i>owl:real</i>
</td><td> the set of all numbers <i>x</i> from the value space of <i>DT</i> such that <i>x</i> &gt; <i>v</i>
</td></tr>
<tr>
<td> ( <i>xsd:maxExclusive</i> , <i>v</i> )<br /> where <i>v</i> is from the value space of <i>owl:real</i>
</td><td> the set of all numbers <i>x</i> from the value space of <i>DT</i> such that <i>x</i> &lt; <i>v</i>
</td></tr>
<tr>
<td colspan="2"> <b>Note.</b> <i>DT</i> is either <i>owl:real</i> or <i>owl:rational</i>.
</td></tr>
</table>
</div>
<a name="Floating-Point_Numbers"></a><h3> <span class="mw-headline">4.2  Floating-Point Numbers </span></h3>
<p>The OWL 2 datatype map supports the following datatypes for the representation of floating-point numbers:
</p>
<ul><li> <i>xsd:double</i>
</li><li> <i>xsd:float</i>
</li></ul>
<p>As specified in XML Schema [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>], the value spaces of <i>xsd:double</i>, <i>xsd:float</i>, and <i>xsd:decimal</i> are pairwise disjoint. In accordance with this principle, the value space of <i>owl:real</i> is defined as being disjoint with the value spaces of <i>xsd:double</i> and <i>xsd:float</i> as well. The normative constraining facets for these datatypes are <i>xsd:minInclusive</i>, <i>xsd:maxInclusive</i>, <i>xsd:minExclusive</i>, and <i>xsd:maxExclusive</i>.
</p>
<div class="anexample">
<p>Although floating-point values are numbers, they are not contained in the value space of <i>owl:real</i>. Thus, the value spaces of <i>xsd:double</i> and <i>xsd:float</i> can be understood as containing "fresh copies" of the appropriate subsets of the value space of <i>owl:real</i>. To understand how this impacts the consequences of OWL 2 ontologies, consider the following example.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyRange( <i>a:hasAge</i> <i>xsd:integer</i> )
  </td><td> The range of the <i>a:hasAge</i> property is <i>xsd:integer</i>.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17"^^<i>xsd:double</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasAge</i> <i>rdfs:range</i> <i>xsd:integer</i> .
  </td><td> The range of the <i>a:hasAge</i> property is <i>xsd:integer</i>.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17"^^<i>xsd:double</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<p>The first axiom states that all values of the <i>a:hasAge</i> property must be in the value space of <i>xsd:integer</i>, but the second axiom provides a value for <i>a:hasAge</i> that is equal to the floating-point number 17. Since floating-point numbers are not contained in the value space of <i>xsd:integer</i>, the mentioned ontology is inconsistent.
</p>
</div>
<div class="anexample">
<p>According to XML Schema, the value spaces of <i>xsd:double</i> and <i>xsd:float</i> contain positive and negative zeros. These two objects are equal, but not identical. To understand this distinction, consider the following example ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:numberOfChildren</i> <i>a:Meg</i> "+0"^^<i>xsd:float</i> )
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>+0</i>.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:numberOfChildren</i> <i>a:Meg</i> "-0"^^<i>xsd:float</i> )
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>-0</i>.
</td></tr>
<tr valign="top"><td> FunctionalDataProperty( <i>a:numberOfChildren</i> )
  </td><td> An individual can have at most one value for <i>a:numberOfChildren</i>.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Meg</i> <i>a:numberOfChildren</i> "+0"^^<i>xsd:float</i> .
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>+0</i>.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:numberOfChildren</i> "-0"^^<i>xsd:float</i> .
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>-0</i>.
</td></tr>
<tr valign="top"><td> <i>a:numberOfChildren</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> An individual can have at most one value for <i>a:numberOfChildren</i>.
</td></tr>
</table>
<p>The last axiom states that no individual should have more than one distinct value for <i>a:numberOfChildren</i>. Since positive and negative zero are not identical, the first two axioms violate the restriction of the last axiom, which makes the ontology inconsistent. In other words, equality of values from the value space of <i>xsd:double</i> and <i>xsd:float</i> has no effect on the semantics of cardinality restrictions of OWL 2; in fact, equality is used only in the definition of facets.
</p>
</div>
<div class="anexample">
<p>According to XML Schema, the semantics of facets is defined with respect to equality, and positive and negative zeros are equal. Therefore, the subset of the value space of <i>xsd:double</i> between <i>-1.0</i> and <i>1.0</i> contains both <i>+0</i> and <i>-0</i>.
</p>
</div>
<a name="Strings"></a><h3> <span class="mw-headline">4.3  Strings </span></h3>
<p>The OWL 2 datatype map provides the <i>rdf:PlainLiteral</i> datatype for the representation of strings in a particular language. The definitions of the value space, the lexical space, the facet space, and the necessary mappings are given in [<cite><a href="#ref-rdf-plain-literal" title="">RDF:PLAINLITERAL</a></cite>]. The normative constraining facets for <i>rdf:PlainLiteral</i> are <i>xsd:length</i>, <i>xsd:minLength</i>, <i>xsd:maxLength</i>, <i>xsd:pattern</i>, and <i>rdf:langRange</i>; furthermore, only <i>basic language ranges</i> [<cite><a href="#ref-bcp-47" title="">BCP 47</a></cite>] are supported in the <i>rdf:langRange</i> constraining facet.
</p><p>In addition, OWL 2 supports the following datatypes defined in XML Schema [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>]:
</p>
<ul><li> <i>xsd:string</i>
</li><li> <i>xsd:normalizedString</i>
</li><li> <i>xsd:token</i>
</li><li> <i>xsd:language</i>
</li><li> <i>xsd:Name</i>
</li><li> <i>xsd:NCName</i>
</li><li> <i>xsd:NMTOKEN</i>
</li></ul>
<p>As explained in [<cite><a href="#ref-rdf-plain-literal" title="">RDF:PLAINLITERAL</a></cite>], the value spaces of all of these datatypes are contained in the value space of <i>rdf:PlainLiteral</i>. Furthermore, for each datatype from the above list, the normative constraining facets are <i>xsd:length</i>, <i>xsd:minLength</i>, <i>xsd:maxLength</i>, and <i>xsd:pattern</i>.
</p>
<a name="Boolean_Values"></a><h3> <span class="mw-headline">4.4  Boolean Values </span></h3>
<p>The OWL 2 datatype map provides the <i>xsd:boolean</i> XML Schema datatype [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>] for the representation of Boolean values. No constraining facet is normative for this datatype.
</p>
<a name="Binary_Data"></a><h3> <span class="mw-headline">4.5  Binary Data </span></h3>
<p>The OWL 2 datatype map provides the following XML Schema datatypes [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>] for the representation of binary data:
</p>
<ul><li> <i>xsd:hexBinary</i>
</li><li> <i>xsd:base64Binary</i> 
</li></ul>
<p>As specified in XML Schema [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>], the value spaces of these two datatypes are disjoint. For each datatype from the above list, the normative constraining facets are <i>xsd:minLength</i>, <i>xsd:maxLength</i>, and <i>xsd:length</i>.
</p>
<div class="anexample">
<p>According to XML Schema, the value spaces of <i>xsd:hexBinary</i> and <i>xsd:base64Binary</i> are isomorphic copies of the set of all finite sequences of <i>octets</i> &mdash; integers between 0 and 255, inclusive. To understand the effect that the disjointness requirement has on the semantics of OWL 2, consider the following example ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyRange( <i>a:personID</i> <i>xsd:base64Binary</i> )
  </td><td> The range of the <i>a:personID</i> property is <i>xsd:base64Binary</i>.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:personID</i> <i>a:Meg</i> "0203"^^<i>xsd:hexBinary</i> )
  </td><td> The ID of Meg is the octet sequence consisting of the octets 2 and 3.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:personID</i> <i>rdfs:range</i> <i>xsd:base64Binary</i> .
  </td><td> The range of the <i>a:personID</i> property is <i>xsd:base64Binary</i>.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:personID</i> "0203"^^<i>xsd:hexBinary</i> .
  </td><td> The ID of Meg is the octet sequence consisting of the octets 2 and 3.
</td></tr>
</table>
<p>The first axiom states that all values of the <i>a:personID</i> property must be in the value space of <i>xsd:base64Binary</i>, but the second axiom provides a value for <i>a:personID</i> that is in the value space of <i>xsd:hexBinary</i>. Since the value spaces of <i>xsd:hexBinary</i> and <i>xsd:base64Binary</i> are disjoint, the above ontology is inconsistent.
</p>
</div>
<a name="IRIs_2"></a><h3> <span class="mw-headline">4.6  IRIs </span></h3>
<p>The OWL 2 datatype map provides the <i>xsd:anyURI</i> XML Schema datatype [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>] for the representation of IRIs. As specified in XML Schema [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>], the value spaces of <i>xsd:anyURI</i> and <i>xsd:string</i> are disjoint. The normative constraining facets are <i>xsd:minLength</i>, <i>xsd:maxLength</i>, <i>xsd:length</i>, and <i>xsd:pattern</i>.
</p>
<div class="anexample">
<p>According to XML Schema, the value space of <i>xsd:anyURI</i> is the set of all IRIs. Although each IRI has a string representation, IRIs are not strings. The value space of <i>xsd:anyURI</i> can therefore be seen as an "isomorphic copy" of a subset of the value space of <i>xsd:string</i>.
</p>
</div>
<p>The lexical forms of <i>xsd:anyURI</i> include relative IRIs. If an OWL 2 syntax employs rules for the resolution of relative IRIs (e.g., the OWL 2 XML Syntax [<cite><a href="#ref-owl-2-xml-serialization" title="">OWL 2 XML Serialization</a></cite>] uses <i>xml:base</i> for that purpose), such rules do not apply to <i>xsd:anyURI</i> lexical forms that represent relative IRIs; that is, the lexical forms representing relative IRIs <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be parsed as they are.
</p>
<a name="Time_Instants"></a><h3> <span class="mw-headline">4.7  Time Instants </span></h3>
<p>The OWL 2 datatype map provides the following XML Schema datatypes [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>] for the representation of time instants with and without time zone offsets:
</p>
<ul><li> <i>xsd:dateTime</i>
</li><li> <i>xsd:dateTimeStamp</i>
</li></ul>
<p>For each datatype from the above list, the normative constraining facets are <i>xsd:minInclusive</i>, <i>xsd:maxInclusive</i>, <i>xsd:minExclusive</i>, and <i>xsd:maxExclusive</i>. An OWL 2 implementation <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> support all lexical forms of these datatypes; however, it <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> support at least the lexical forms listed in Section 5.4 of XML Schema Datatypes [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>].
</p>
<div class="anexample">
<p>According to XML Schema, two <i>xsd:dateTime</i> values representing the same time instant but with different time zone offsets are equal, but not identical. The consequences of this definition are demonstrated by the following example ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> FunctionalDataProperty( <i>a:birthDate</i> )
  </td><td> Each object can have at most one birth date.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:birthDate</i> <i>a:Peter</i><br /> &nbsp;&nbsp;&nbsp; "1956-06-25T04:00:00-05:00"^^<i>xsd:dateTime</i> )
  </td><td> Peter was born on June 25th, 1956, at 4am EST.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:birthDate</i> <i>a:Peter</i><br /> &nbsp;&nbsp;&nbsp; "1956-06-25T10:00:00+01:00"^^<i>xsd:dateTime</i> )
  </td><td> Peter was born on June 25th, 1956, at 10am CET.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:birthDate</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one birth date.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:birthDate</i> "1956-06-25T04:00:00-05:00"^^<i>xsd:dateTime</i> .
  </td><td> Peter was born on June 25th, 1956, at 4am EST.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:birthDate</i> "1956-06-25T10:00:00+01:00"^^<i>xsd:dateTime</i> .
  </td><td> Peter was born on June 25th, 1956, at 10am CET.
</td></tr>
</table>
<p>June 25th, 1956, 4am EST and June 25th, 1956, 10am CET denote the same time instants, but have different time zone offsets. Consequently, the two <i>xsd:dateTime</i> literals are mapped to two equal, but nonidentical data values. Consequently, <i>a:Peter</i> is connected by the property <i>a:birthDate</i> to two distinct data values, which violates the functionality requirement on <i>a:birthDate</i> and makes the ontology inconsistent.
</p>
</div>
<div class="anexample">
<p>The semantics of constraining facets on <i>xsd:dateTime</i> is defined with respect to equality and ordering on time instants. For example, the following datatype restriction contains all time instants that are larger than or equal to the time instant corresponding to the lexical form <span class="name">"1956-01-01T04:00:00-05:00"</span>.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DatatypeRestriction( <i>xsd:dateTime</i> <i>xsd:minInclusive</i> "1956-01-01T04:00:00-05:00"^^<i>xsd:dateTime</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:onDatatype</i> <i>xsd:dateTime</i> .<br /> _:x <i>owl:withRestrictions</i> ( _:y ) .<br /> _:y <i>xsd:minInclusive</i> "1956-01-01T04:00:00-05:00"^^<i>xsd:dateTime</i> .
</td></tr>
</table>
<p>According to XML Schema datatypes [<cite><a href="#ref-xml-schema-datatypes" title="">XML Schema Datatypes</a></cite>], time instants are compared with respect to their <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value, which roughly corresponds to the number of seconds elapsed from the origin of the proleptic Gregorian calendar. Thus, the above data range contains the time instants corresponding to the lexical forms <span class="name">"1956-06-25T04:00:00-05:00"</span> and <span class="name">"1956-06-25T10:00:00+01:00"</span> despite the fact that the time zone offset of the latter does not match the one used in the datatype restriction.
</p><p>A time instant might not contain a time zone offset, in which case comparisons are slightly more involved. Let <i>T<sub>1</sub></i> and <i>T<sub>2</sub></i> be time instants with and without time zone offsets, respectively. Then, <i>T<sub>1</sub></i> is not equal to <i>T<sub>2</sub></i>, and comparisons are defined as follows:
</p>
<ul><li> <i>T<sub>1</sub></i> is smaller than <i>T<sub>2</sub></i> if the <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value of <i>T<sub>1</sub></i> is smaller than the <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value of <i>T<sub>2</sub><sup>low</sup></i>, where <i>T<sub>2</sub><sup>low</sup></i> is the time instant equal to <i>T<sub>2</sub></i> but with the time zone offset equal to <span class="name">"+14:00"</span>.
</li><li> <i>T<sub>1</sub></i> is greater than <i>T<sub>2</sub></i> if the <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value of <i>T<sub>1</sub></i> is greater than the <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value of <i>T<sub>2</sub><sup>high</sup></i>, where <i>T<sub>2</sub><sup>high</sup></i> is the time instant equal to <i>T<sub>2</sub></i> but with the time zone offset equal to <span class="name">"-14:00"</span>.
</li></ul>
<p>Thus, for <i>T<sub>1</sub></i> to be smaller than <i>T<sub>2</sub></i>, the <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value of <i>T<sub>1</sub></i> should be smaller than the <i><a class="external text" href="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline" title="http://www.w3.org/TR/xmlschema11-2/#vp-dt-timeOnTimeline">timeOnTimeline</a></i> value of <i>T<sub>2</sub></i> even if we substitute the largest positive time zone offset in <i>T<sub>2</sub></i>; the definition of "greater than" is analogous. Note that, for certain <i>T<sub>1</sub></i> and <i>T<sub>2</sub></i>, it is possible that neither condition holds, in which case <i>T<sub>1</sub></i> and <i>T<sub>2</sub></i> are incomparable.
</p><p>According to this definition, the datatype restriction mentioned earlier in this example contains the time instant corresponding to the lexical form <span class="name">"1956-01-01T10:00:00Z"</span>, but not the one corresponding to <span class="name">"1956-01-01T10:00:00"</span>; the latter is the case because the time instant corresponding to <span class="name">"1956-01-01T10:00:00+14:00"</span> is not greater than or equal to the one corresponding to <span class="name">"1956-01-01T04:00:00-05:00"</span>.
</p>
</div>
<a name="XML_Literals"></a><h3> <span class="mw-headline">4.8  XML Literals </span></h3>
<p>The OWL 2 datatype map provides the <i>rdf:XMLLiteral</i> datatype for the representation of XML content in OWL 2 ontologies. The datatype is defined in Section 5.1 of the RDF specification [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>]. It has no normative constraining facets.
</p>
<a name="Entities.2C_Literals.2C_and_Anonymous_Individuals"></a><h2> <span class="mw-headline">5  Entities, Literals, and Anonymous Individuals </span></h2>
<p>Entities are the fundamental building blocks of OWL 2 ontologies, and they define the vocabulary &mdash; the named terms &mdash; of an ontology. In logic, the set of entities is usually said to constitute the <i>signature</i> of an ontology. Apart from entities, OWL 2 ontologies typically also contain literals, such as strings or integers.
</p><p>The structure of entities and literals in OWL 2 is shown in Figure 2. Classes, datatypes, object properties, data properties, annotation properties, and named individuals are entities, and they are all uniquely identified by an IRI. Classes represent sets of individuals; datatypes are sets of literals such as strings or integers; object and data properties can be used to represent relationships in the domain; annotation properties can be used to associate nonlogical information with ontologies, axioms, and entities; and named individuals can be used to represent actual objects from the domain. Apart from named individuals, OWL 2 also provides for anonymous individuals &mdash; that is, individuals that are analogous to blank nodes in RDF [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>] and that are accessible only from within the ontology they are used in. Finally, OWL 2 provides for literals, which consist of a string called a <i>lexical form</i> and a datatype specifying how to interpret this string.
</p>
<div class="image">
<p><img alt="The Hierarchy of Entities in OWL 2" border="0" height="335" src="C_entities.gif" width="790" /><br />
<span class="caption">Figure 2.</span> Entities, Literals, and Anonymous Individuals in OWL 2
</p>
</div>
<a name="Classes"></a><h3> <span class="mw-headline">5.1  Classes </span></h3>
<p><span id="def_class"><i>Classes</i></span> can be understood as sets of individuals.
</p>
<div class="grammar">
<p><span class="nonterminal">Class</span>&nbsp;:= <span class="nonterminal">IRI</span>
</p>
</div>
<p>The classes with the IRIs <i>owl:Thing</i> and <i>owl:Nothing</i> are available in OWL 2 as built-in classes with a predefined semantics:
</p>
<ul><li> The class with IRI <span id="a_Thing"><i>owl:Thing</i></span> represents the set of all individuals. (In the DL literature this is often called the top concept.)
</li><li> The class with IRI <span id="a_Nothing"><i>owl:Nothing</i></span> represents the empty set. (In the DL literature this is often called the bottom concept.)
</li></ul>
<p>IRIs from the reserved vocabulary other than <i>owl:Thing</i> and <i>owl:Nothing</i> <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be used to identify classes in an OWL 2 DL ontology.
</p>
<div class="anexample">
<p>Classes <i>a:Child</i> and <i>a:Person</i> can be used to represent the set of all children and persons, respectively, in the application domain, and they can be used in an axiom such as the following one:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubClassOf( <i>a:Child</i> <i>a:Person</i> )
  </td><td> Each child is a person.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Child</i> <i>rdfs:subClassOf</i> <i>a:Person</i> .
  </td><td> Each child is a person.
</td></tr>
</table>
</div>
<a name="Datatypes"></a><h3> <span class="mw-headline">5.2  Datatypes </span></h3>
<p><i>Datatypes</i> are entities that refer to sets of data values. Thus, datatypes are analogous to classes, the main difference being that the former contain data values such as strings and numbers, rather than individuals. Datatypes are a kind of data range, which allows them to be used in restrictions. As explained in <a href="#Data_Ranges" title="">Section 7</a>, each data range is associated with an arity; for datatypes, the arity is always one. The built-in datatype <i>rdfs:Literal</i> denotes any set of data values that contains the union of the value spaces of all datatypes.
</p><p>An IRI used to identify a datatype in an OWL 2 DL ontology <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em>
</p>
<ul><li> be <i>rdfs:Literal</i>, or
</li><li> identify a datatype in the OWL 2 datatype map (see <a href="#Datatype_Maps" title="">Section 4</a>), or
</li><li> not be in the reserved vocabulary of OWL 2 (see <a href="#IRIs" title="">Section 2.4</a>).
</li></ul>
<p>The conditions from the previous paragraph and the restrictions on datatypes in <a href="#The_Restrictions_on_the_Axiom_Closure" title="">Section 11.2</a> require each datatype in an OWL 2 DL ontology to be <i>rdfs:Literal</i>, one of the datatypes from <a href="#Datatype_Maps" title="">Section 4</a>, or a datatype defined by means of a datatype definition (see <a href="#Datatype_Definitions" title="">Section 9.4</a>).
</p>
<div class="grammar">
<p><span class="nonterminal">Datatype</span>&nbsp;:= <span class="nonterminal">IRI</span>
</p>
</div>
<div class="anexample">
<p>The datatype <i>xsd:integer</i> denotes the set of all integers. It can be used in axioms such as the following one:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyRange( <i>a:hasAge</i> <i>xsd:integer</i> )
  </td><td> The range of the <i>a:hasAge</i> data property is <i>xsd:integer</i>.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasAge</i> <i>rdfs:range</i> <i>xsd:integer</i> .
  </td><td> The range of the <i>a:hasAge</i> data property is <i>xsd:integer</i>.
</td></tr>
</table>
</div>
<a name="Object_Properties"></a><h3> <span class="mw-headline">5.3  Object Properties </span></h3>
<p><span id="def_object_property"><i>Object properties</i></span> connect pairs of individuals.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectProperty</span>&nbsp;:= <span class="nonterminal">IRI</span>
</p>
</div>
<p>The object properties with the IRIs <i>owl:topObjectProperty</i> and <i>owl:bottomObjectProperty</i> are available in OWL 2 as built-in object properties with a predefined semantics:
</p>
<ul><li> The object property with IRI <span id="a_topObjectProperty"><i>owl:topObjectProperty</i></span> connects all possible pairs of individuals.
</li><li> The object property with IRI <span id="a_bottomObjectProperty"><i>owl:bottomObjectProperty</i></span> does not connect any pair of individuals.
</li></ul>
<p>IRIs from the reserved vocabulary other than <i>owl:topObjectProperty</i> and <i>owl:bottomObjectProperty</i> <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be used to identify object properties in an OWL 2 DL ontology.
</p>
<div class="anexample">
<p>The object property <i>a:parentOf</i> can be used to represent the parenthood relationship between individuals. It can be used in axioms such as the following one:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:parentOf</i> <i>a:Peter</i> <i>a:Chris</i> )
  </td><td> Peter is a parent of Chris.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:parentOf</i> <i>a:Chris</i> .
  </td><td> Peter is a parent of Chris.
</td></tr>
</table>
</div>
<a name="Data_Properties"></a><h3> <span class="mw-headline">5.4  Data Properties </span></h3>
<p><span id="def_data_property"><i>Data properties</i></span> connect individuals with literals. In some knowledge representation systems, functional data properties are called <i>attributes</i>.
</p>
<div class="grammar">
<p><span class="nonterminal">DataProperty</span>&nbsp;:= <span class="nonterminal">IRI</span>
</p>
</div>
<p>The data properties with the IRIs <i>owl:topDataProperty</i> and <i>owl:bottomDataProperty</i> are available in OWL 2 as built-in data properties with a predefined semantics:
</p>
<ul><li> The data property with IRI <span id="a_topDataProperty"><i>owl:topDataProperty</i></span> connects all possible individuals with all literals.
</li><li> The data property with IRI <span id="a_bottomDataProperty"><i>owl:bottomDataProperty</i></span> does not connect any individual with a literal.
</li></ul>
<p>IRIs from the reserved vocabulary other than <i>owl:topDataProperty</i> and <i>owl:bottomDataProperty</i> <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be used to identify data properties in an OWL 2 DL ontology.
</p>
<div class="anexample">
<p>The data property <i>a:hasName</i> can be used to associate a name with each person. It can be used in axioms such as the following one:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Peter Griffin" )
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Peter Griffin" .
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
</table>
</div>
<a name="Annotation_Properties"></a><h3> <span class="mw-headline">5.5  Annotation Properties </span></h3>
<p><span id="def_annotation_property"><i>Annotation properties</i></span> can be used to provide an annotation for an ontology, axiom, or an IRI. The structure of annotations is further described in <a href="#Annotations" title="">Section 10</a>.
</p>
<div class="grammar">
<p><span class="nonterminal">AnnotationProperty</span>&nbsp;:= <span class="nonterminal">IRI</span>
</p>
</div>
<p>The data properties with the IRIs listed below are available in OWL 2 as built-in data properties with a predefined semantics:
</p>
<ul><li> The <span id="a_label"><i>rdfs:label</i></span> annotation property can be used to provide an IRI with a human-readable label.
</li><li> The <span id="a_comment"><i>rdfs:comment</i></span> annotation property can be used to provide an IRI with a human-readable comment.
</li><li> The <span id="a_seeAlso"><i>rdfs:seeAlso</i></span> annotation property can be used to provide an IRI with another IRI such that the latter provides additional information about the former.
</li><li> The <span id="a_isDefinedBy"><i>rdfs:isDefinedBy</i></span> annotation property can be used to provide an IRI with another IRI such that the latter provides information about the definition of the former; the way in which this information is provided is not described by this specification.
</li><li> An annotation with the <span id="a_deprecated"><i>owl:deprecated</i></span> annotation property and the value equal to <span class="name">"true"^^<i>xsd:boolean</i></span> can be used to specify that an IRI is deprecated.
</li><li> The <span id="a_versionInfo"><i>owl:versionInfo</i></span> annotation property can be used to provide an IRI with a string that describes the IRI's version.
</li><li> The <i>owl:priorVersion</i> annotation property is described in more detail in <a href="#Ontology_Annotations" title="">Section 3.5</a>.
</li><li> The <i>owl:backwardCompatibleWith</i> annotation property is described in more detail in <a href="#Ontology_Annotations" title="">Section 3.5</a>.
</li><li> The <i>owl:incompatibleWith</i> annotation property is described in more detail in <a href="#Ontology_Annotations" title="">Section 3.5</a>.
</li></ul>
<p>IRIs from the reserved vocabulary other than the ones listed above <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be used to identify annotation properties in an OWL 2 DL ontology.
</p>
<div class="anexample">
<p>The comment provided by the following annotation assertion axiom might, for example, be used by an OWL 2 tool to display additional information about the IRI <i>a:Peter</i>.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> AnnotationAssertion( <i>rdfs:comment</i> <i>a:Peter</i> "The father of the Griffin family from Quahog." )
  </td><td> This axiom provides a comment for the IRI <i>a:Peter</i>.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>rdfs:comment</i> "The father of the Griffin family from Quahog." .
  </td><td> This axiom provides a comment for the IRI <i>a:Peter</i>.
</td></tr>
</table>
</div>
<a name="Individuals"></a><h3> <span class="mw-headline">5.6  Individuals </span></h3>
<p><span id="def_individual"><i>Individuals</i></span> in the OWL 2 syntax represent actual objects from the domain. There are two types of individuals in the syntax of OWL 2. <i>Named individuals</i> are given an explicit name that can be used in any ontology to refer to the same object. <i>Anonymous individuals</i> do not have a global name and are thus local to the ontology they are contained in.
</p>
<div class="grammar">
<p><span class="nonterminal">Individual</span>&nbsp;:= <span class="nonterminal">NamedIndividual</span> | <span class="nonterminal">AnonymousIndividual</span>
</p>
</div>
<a name="Named_Individuals"></a><h4> <span class="mw-headline">5.6.1  Named Individuals </span></h4>
<p><span id="def_named_individual"><i>Named individuals</i></span> are identified using an IRI. Since they are given an IRI, named individuals are entities.
</p><p>IRIs from the reserved vocabulary <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> be used to identify named individuals in an OWL 2 DL ontology.
</p>
<div class="grammar">
<p><span class="nonterminal">NamedIndividual</span>&nbsp;:= <span class="nonterminal">IRI</span>
</p>
</div>
<div class="anexample">
<p>The individual <i>a:Peter</i> can be used to represent a particular person. It can be used in axioms such as the following one:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Person</i> <i>a:Peter</i> )
  </td><td> Peter is a person.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:Person</i> .
  </td><td> Peter is a person.
</td></tr>
</table>
</div>
<a name="Anonymous_Individuals"></a><h4> <span class="mw-headline">5.6.2  Anonymous Individuals </span></h4>
<p>If an individual is not expected to be used outside a particular ontology, one can use an <span id="def_anonymous_individual"><i>anonymous individual</i></span>, which is identified by a local node ID rather than a global IRI. Anonymous individuals are analogous to blank nodes in RDF [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>].
</p>
<div class="grammar">
<p><span class="nonterminal">AnonymousIndividual</span>&nbsp;:= <span class="nonterminal">nodeID</span>
</p>
</div>
<div class="anexample">
<p>Anonymous individuals can be used, for example, to represent objects whose identity is of no relevance, such as the address of a person.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:livesAt</i> <i>a:Peter</i> _:a1 )
  </td><td> Peter lives at some (unknown) address.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:city</i> _:a1 <i>a:Quahog</i> )
  </td><td> This unknown address is in the city of Quahog and...
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:state</i> _:a1 <i>a:RI</i> )
  </td><td> ...in the state of Rhode Island.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:livesAt</i> _:a1 .
  </td><td> Peter lives at some (unknown) address.
</td></tr>
<tr valign="top"><td> _:a1 <i>a:city</i> <i>a:Quahog</i> .
  </td><td> This unknown address is in the city of Quahog and...
</td></tr>
<tr valign="top"><td> _:a1 <i>a:state</i> <i>a:RI</i> .
  </td><td> ...in the state of Rhode Island.
</td></tr>
</table>
</div>
<p>Special treatment is required in case anonymous individuals with the same node ID occur in two different ontologies. In particular, these two individuals are structurally equivalent (because they have the same node ID); however, they are not treated as identical in the semantics of OWL 2 (because anonymous individuals are local to an ontology they are used in). The latter is achieved by <i>standardizing anonymous individuals apart</i> when constructing the axiom closure of an ontology <i>O</i>: if anonymous individuals with the same node ID occur in two different ontologies in the import closure of <i>O</i>, then one of these individuals <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be replaced in the axiom closure of <i>O</i> with a fresh anonymous individual (i.e., an anonymous individual whose node ID is unique in the import closure of <i>O</i>).
</p>
<div class="anexample">
<p>Assume that ontologies <i>O<sub>1</sub></i> and <i>O<sub>2</sub></i> both use <i>_:a5</i>, and that <i>O<sub>1</sub></i> imports <i>O<sub>2</sub></i>. Although they both use the same local node ID, the individual <i>_:a5</i> in <i>O<sub>1</sub></i> may be different from the individual <i>_:a5</i> in <i>O<sub>2</sub></i>.
</p><p>At the level of the structural specification, individual <i>_:a5</i> in <i>O<sub>1</sub></i> is structurally equivalent to individual <i>_:a5</i> in <i>O<sub>2</sub></i>. This might be important, for example, for tools that use structural equivalence to define the semantics of axiom retraction.
</p><p>In order to ensure that these individuals are treated differently by the semantics they are standardized apart when computing the axiom closure of <i>O<sub>1</sub></i> &mdash; either <i>_:a5</i> in <i>O<sub>1</sub></i> is replaced with a fresh anonymous individual, or this is done for <i>_:a5</i> in <i>O<sub>2</sub></i>.
</p>
</div>
<a name="Literals"></a><h3> <span class="mw-headline">5.7  Literals </span></h3>
<p><span id="def_literal"><i>Literals</i></span> represent data values such as particular strings or integers. They are analogous to typed RDF literals [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>] and can also be understood as individuals denoting data values. Each literal consists of a lexical form, which is a string, and a datatype; the datatypes supported in OWL 2 are described in more detail in <a href="#Datatype_Maps" title="">Section 4</a>. A literal consisting of a lexical form <span class="name">"abc"</span> and a datatype identified by the IRI <span class="name"><i>datatypeIRI</i></span> is written as <span class="name">"abc"^^<i>datatypeIRI</i></span>. Furthermore, literals whose datatype is <i>rdf:PlainLiteral</i> can be abbreviated in functional-style syntax ontology documents as plain RDF literals [<cite><a href="#ref-rdf-concepts" title="">RDF Concepts</a></cite>]. These abbreviations are purely syntactic shortcuts and are thus not reflected in the structural specification of OWL 2. The observable behavior of OWL 2 implementation <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be as if these shortcuts were expanded during parsing.
</p>
<ul><li> Literals of the form <span class="name">"abc@"^^<i>rdf:PlainLiteral</i></span> <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be abbreviated in functional-style syntax ontology documents to <span class="name">"abc"</span> whenever possible.
</li><li> Literals of the form <span class="name">"abc@langTag"^^<i>rdf:PlainLiteral</i></span> where <span class="name">"langTag"</span> is not empty <em class="RFC2119" title="SHOULD in RFC 2119 context">SHOULD</em> be abbreviated in functional-style syntax documents to <span class="name">"abc"@langTag</span> whenever possible.
</li></ul>
<p>The lexical form of each literal occurring in an OWL 2 DL ontology <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> belong to the lexical space of the literal's datatype.
</p>
<div class="grammar">
<p><span class="nonterminal">Literal</span>&nbsp;:= <span class="nonterminal">typedLiteral</span> | <span class="nonterminal">stringLiteralNoLanguage</span> | <span class="nonterminal">stringLiteralWithLanguage</span><br />
<span class="nonterminal">typedLiteral</span>&nbsp;:= <span class="nonterminal">lexicalForm</span> '^^' <span class="nonterminal">Datatype</span><br />
<span class="nonterminal">lexicalForm</span>&nbsp;:= <span class="nonterminal">quotedString</span><br />
<span class="nonterminal">stringLiteralNoLanguage</span>&nbsp;:= <span class="nonterminal">quotedString</span><br />
<span class="nonterminal">stringLiteralWithLanguage</span>&nbsp;:= <span class="nonterminal">quotedString</span> <span class="nonterminal">languageTag</span>
</p>
</div>
<div class="anexample">
<p><span class="name">"1"^^<i>xsd:integer</i></span> is a literal that represents the integer 1.
</p>
</div>
<div class="anexample">
<p><span class="name">"Family Guy"</span> is an abbreviation for <span class="name">"Family Guy@"^^<i>rdf:PlainLiteral</i></span> &mdash; a literal with the lexical form <span class="name">"Family Guy@"</span> and the datatype <i>rdf:PlainLiteral</i> &mdash; which denotes a string <span class="name">"Family Guy"</span> without a language tag.
</p><p>Furthermore, <span class="name">"Padre de familia"@es</span> is an abbreviation for the literal <span class="name">"Padre de familia@es"^^<i>rdf:PlainLiteral</i></span>, which denotes a pair consisting of the string <span class="name">"Padre de familia"</span> and the language tag <span class="name">es</span>.
</p>
</div>
<p>Two literals are structurally equivalent if and only if both the lexical form and the datatype are structurally equivalent; that is, literals denoting the same data value are structurally different if either their lexical form or the datatype is different.
</p>
<div class="anexample">
<p>Even though literals <span class="name">"1"^^<i>xsd:integer</i></span> and <span class="name">"+1"^^<i>xsd:integer</i></span> are interpreted as the integer 1, these two literals are not structurally equivalent because their lexical forms are not identical. Similarly, <span class="name">"1"^^<i>xsd:integer</i></span> and <span class="name">"1"^^xsd:positiveInteger</span> are not structurally equivalent because their datatypes are not identical.
</p>
</div>
<a name="Entity_Declarations_and_Typing"></a><h3> <span class="mw-headline">5.8  Entity Declarations and Typing </span></h3>
<p>Each IRI <i>I</i> used in an OWL 2 ontology <i>O</i> can be, and sometimes even needs to be, declared in <i>O</i>; roughly speaking, this means that the axiom closure of <i>O</i> must contain an appropriate declaration for <i>I</i>. A declaration for <i>I</i> in <i>O</i> serves two purposes:
</p>
<ul><li> A declaration says that <i>I</i> exists &mdash; that is, it says that <i>I</i> is part of the vocabulary of <i>O</i>.
</li><li> A declaration associates with <i>I</i> an entity type &mdash; that is, it says whether <i>I</i> is used in <i>O</i> as a class, datatype, object property, data property, annotation property, an individual, or a combination thereof.
</li></ul>
<div class="anexample">
<p>An ontology might contain a class declaration for the IRI <i>a:Person</i>. Such a declaration introduces the class <i>a:Person</i> into the ontology, and it states that the IRI <i>a:Person</i> is used to name a class in the ontology. An ontology editor might use declarations to implement functions such as "Add New Class".
</p>
</div>
<p>In OWL 2, declarations are a type of axiom; thus, to declare an entity in an ontology, one can simply include the appropriate axiom in the ontology. These axioms are nonlogical in the sense that they do not affect the consequences of an OWL 2 ontology. The structure of entity declarations is shown in Figure 3.
</p>
<div class="image">
<p><img alt="Entity Declarations in OWL 2" border="0" height="190" src="A_declaration.gif" width="246" /><br />
<span class="caption">Figure 3.</span> Entity Declarations in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">Declaration</span>&nbsp;:= 'Declaration' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Entity</span> ')'<br />
<span class="nonterminal">Entity</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; 'Class' '(' <span class="nonterminal">Class</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'Datatype' '(' <span class="nonterminal">Datatype</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'ObjectProperty' '(' <span class="nonterminal">ObjectProperty</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'DataProperty' '(' <span class="nonterminal">DataProperty</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'AnnotationProperty' '(' <span class="nonterminal">AnnotationProperty</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'NamedIndividual' '(' <span class="nonterminal">NamedIndividual</span> ')'
</p>
</div>
<div class="anexample">
<p>The following axioms state that the IRI <i>a:Person</i> is used as a class and that the IRI <i>a:Peter</i> is used as an individual.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2">Declaration( Class( <i>a:Person</i> ) )
</td></tr>
<tr valign="top"><td colspan="2">Declaration( NamedIndividual( <i>a:Peter</i> ) )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Person</i> <i>rdf:type</i> <i>owl:Class</i> .
</td></tr>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>rdf:type</i> <i>owl:NamedIndividual</i> .
</td></tr>
</table>
</div>
<p>Declarations for the built-in entities of OWL 2, listed in Table 5, are implicitly present in every OWL 2 ontology.
</p>
<div class="center">
<table border="1" class="allname" style="text-align: left">
<caption> <span class="caption">Table 5.</span> Declarations of Built-In Entities
</caption>
<tr>
<td colspan="2"> Declaration( Class( <i>owl:Thing</i> ) )
</td></tr>
<tr>
<td colspan="2"> Declaration( Class( <i>owl:Nothing</i> ) )
</td></tr>
<tr>
<td colspan="2"> Declaration( ObjectProperty( <i>owl:topObjectProperty</i> ) )
</td></tr>
<tr>
<td colspan="2"> Declaration( ObjectProperty( <i>owl:bottomObjectProperty</i> ) )
</td></tr>
<tr>
<td colspan="2"> Declaration( DataProperty( <i>owl:topDataProperty</i> ) )
</td></tr>
<tr>
<td colspan="2"> Declaration( DataProperty( <i>owl:bottomDataProperty</i> ) )
</td></tr>
<tr>
<td colspan="2"> Declaration( Datatype( <i>rdfs:Literal</i> ) )
</td></tr>
<tr>
<td> Declaration( Datatype( <i>I</i> ) )
</td><td> for each IRI <i>I</i> of a datatype in the OWL 2 datatype map (see <a href="#Datatype_Maps" title="">Section 4</a>)
</td></tr>
<tr>
<td> Declaration( AnnotationProperty( <i>I</i> ) )
</td><td> for each IRI <i>I</i> of a built-in annotation property listed in <a href="#Annotation_Properties" title="">Section 5.5</a>
</td></tr>
</table>
</div>
<a name="Typing_Constraints_of_OWL_2_DL"></a><h4> <span class="mw-headline">5.8.1  Typing Constraints of OWL 2 DL </span></h4>
<p>Let <i>Ax</i> be a set of axioms. An IRI <i>I</i> is <i>declared</i> to be of type <i>T</i> in <i>Ax</i> if a declaration axiom of type <i>T</i> for <i>I</i> is contained in <i>Ax</i> or in the set of built-in declarations listed in Table 5. The set <i>Ax</i> satisfies the <i>typing constraints</i> of OWL 2 DL if all of the following conditions are satisfied:
</p>
<ul><li> Property typing constraints:
<ul><li> If an object property with an IRI <i>I</i> occurs in some axiom in <i>Ax</i>, then <i>I</i> is declared in <i>Ax</i> as an object property.
</li><li> If a data property with an IRI <i>I</i> occurs in some axiom in <i>Ax</i>, then <i>I</i> is declared in <i>Ax</i> as a data property.
</li><li> If an annotation property with an IRI <i>I</i> occurs in some axiom in <i>Ax</i>, then <i>I</i> is declared in <i>Ax</i> as an annotation property.
</li><li> No IRI <i>I</i> is declared in <i>Ax</i> as being of more than one type of property; that is, no <i>I</i> is declared in <i>Ax</i> to be both object and data, object and annotation, or data and annotation property.
</li></ul>
</li><li> Class/datatype typing constraints:
<ul><li> If a class with an IRI <i>I</i> occurs in some axiom in <i>Ax</i>, then <i>I</i> is declared in <i>Ax</i> as a class.
</li><li> If a datatype with an IRI <i>I</i> occurs in some axiom in <i>Ax</i>, then <i>I</i> is declared in <i>Ax</i> as a datatype.
</li><li> No IRI <i>I</i> is declared in <i>ax</i> to be both a class and a datatype.
</li></ul>
</li></ul>
<p>The axiom closure <i>Ax</i> of each OWL 2 DL ontology <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the typing constraints of OWL 2 DL.
</p><p>The typing constraints thus ensure that the sets of IRIs used as object, data, and annotation properties in <i>O</i> are disjoint and that, similarly, the sets of IRIs used as classes and datatypes in <i>O</i> are disjoint as well. These constraints are used for disambiguating the types of IRIs when reading ontologies from external transfer syntaxes. All other declarations are optional.
</p>
<div class="anexample">
<p>An IRI <i>I</i> can be used as an individual in <i>O</i> even if <i>I</i> is not declared as an individual in <i>O</i>.
</p>
</div>
<p>Declarations are often omitted in the examples in this document in cases where the types of entities are clear.
</p>
<a name="Declaration_Consistency"></a><h4> <span class="mw-headline">5.8.2  Declaration Consistency </span></h4>
<p>Although declarations are not always required, they can be used to catch obvious errors in ontologies.
</p>
<div class="anexample">
<p>The following ontology erroneously refers to the individual <i>a:Petre</i> instead of the individual <i>a:Peter</i>.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> Ontology( <i>&lt;http://www.my.example.com/example&gt;</i><br /> &nbsp;&nbsp;&nbsp; Declaration( Class( <i>a:Person</i> ) )<br /> &nbsp;&nbsp;&nbsp; ClassAssertion( <i>a:Person</i> <i>a:Petre</i> )<br /> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>&lt;http://www.my.example.com/example&gt;</i> <i>rdf:type</i> <i>owl:Ontology</i> .<br /> <i>a:Person</i> <i>rdf:type</i> <i>owl:Class</i> .<br /> <i>a:Petre</i> <i>rdf:type</i> <i>a:Person</i> .
</td></tr>
</table>
<p>There is no way of telling whether <i>a:Petre</i> was used by mistake. If, in contrast, all individuals in an ontology were by convention required to be declared, this error could be caught by a simple tool.
</p>
</div>
<p>An ontology <i>O</i> is said to have <i>consistent declarations</i> if each IRI <i>I</i> occurring in the axiom closure of <i>O</i> in position of an entity with a type <i>T</i> is declared in <i>O</i> as having type <i>T</i>. OWL 2 ontologies are not required to have consistent declarations: an ontology <em class="RFC2119" title="MAY in RFC 2119 context">MAY</em> be used even if its declarations are not consistent.
</p>
<div class="anexample">
<p>The ontology from the previous example fails this check: <i>a:Petre</i> is used as an individual but the ontology does not declare <i>a:Petre</i> to be an individual. In contrast, the following ontology satisfies this condition.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> Ontology( <i>&lt;http://www.my.example.com/example&gt;</i><br /> &nbsp;&nbsp;&nbsp; Declaration( Class( <i>a:Person</i> ) )<br /> &nbsp;&nbsp;&nbsp; Declaration( NamedIndividual( <i>a:Peter</i> ) )<br /> &nbsp;&nbsp;&nbsp; ClassAssertion( <i>a:Person</i> <i>a:Peter</i> )<br /> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>&lt;http://www.my.example.com/example&gt;</i> <i>rdf:type</i> <i>owl:Ontology</i> .<br /> <i>a:Person</i> <i>rdf:type</i> <i>owl:Class</i> .<br /> <i>a:Peter</i> <i>rdf:type</i> <i>owl:NamedIndividual</i> .<br /> <i>a:Peter</i> <i>rdf:type</i> <i>a:Person</i> .
</td></tr>
</table>
</div>
<a name="Metamodeling"></a><h3> <span class="mw-headline">5.9  Metamodeling </span></h3>
<p>An IRI <i>I</i> can be used in an OWL 2 ontology to refer to more than one type of entity. Such usage of <i>I</i> is often called <i>metamodeling</i>, because it can be used to state facts about classes and properties themselves. In such cases, the entities that share the same IRI <i>I</i> should be understood as different "views" of the same underlying notion identified by the IRI <i>I</i>.
</p>
<div class="anexample">
<p>Consider the following ontology.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Species</i> <i>a:Dog</i> )
  </td><td> Dog is a species.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Dog</i> <i>rdf:type</i> <i>a:Species</i> .
  </td><td> Dog is a species.
</td></tr>
</table>
<p>In the first axiom, the IRI <i>a:Dog</i> is used as a class, while in the second axiom, it is used as an individual; thus, the class <i>a:Species</i> acts as a metaclass for the class <i>a:Dog</i>. The individual <i>a:Dog</i> and the class <i>a:Dog</i> should be understood as two "views" of one and the same IRI &mdash; <i>a:Dog</i>. Under the OWL 2 Direct Semantics [<cite><a href="#ref-owl-2-direct-semantics" title="">OWL 2 Direct Semantics</a></cite>], these two views are interpreted independently: the class view of <i>a:Dog</i> is interpreted as a unary predicate, while the individual view of <i>a:Dog</i> is interpreted as a constant.
</p>
</div>
<p>Both metamodeling and annotations provide means to associate additional information with classes and properties. The following rule-of-the-thumb can be used to determine when to use which construct:
</p>
<ul><li> Metamodeling should be used when the information attached to entities should be considered a part of the domain.
</li><li> Annotations should be used when the information attached to entities should not be considered a part of the domain and when it should not contribute to the logical consequences of an ontology.
</li></ul>
<div class="anexample">
<p>Consider the following ontology.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:PetAnimals</i> <i>a:Dog</i> )
  </td><td> Dogs are pet animals.
</td></tr>
<tr valign="top"><td> AnnotationAssertion( <i>a:addedBy</i> <i>a:Dog</i> "Seth MacFarlane" )
  </td><td> The IRI <i>a:Dog</i> has been added to the ontology by Seth MacFarlane.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Dog</i> <i>rdf:type</i> <i>a:PetAnimals</i> .
  </td><td> Dogs are pet animals.
</td></tr>
<tr valign="top"><td>  <i>a:Dog</i> <i>a:addedBy</i> "Seth MacFarlane" .
  </td><td> The IRI <i>a:Dog</i> has been added to the ontology by Seth MacFarlane.
</td></tr>
</table>
<p>The facts that Brian is a dog and that dogs are pet animals are statements about the domain. Therefore, these facts are represented in the above ontology via metamodeling. In contrast, the information about who added the IRI <i>a:Dog</i> to the ontology does not describe the actual domain, but might be interesting from a management point of view. Therefore, this information is represented using an annotation.
</p>
</div>
<a name="Property_Expressions"></a><h2> <span class="mw-headline">6  Property Expressions </span></h2>
<p>Properties can be used in OWL 2 to form property expressions.
</p>
<a name="Object_Property_Expressions"></a><h3> <span class="mw-headline">6.1  Object Property Expressions </span></h3>
<p>Object properties can by used in OWL 2 to form object property expressions. They are represented in the structural specification of OWL 2 by <span class="nonterminal">ObjectPropertyExpression</span>, and their structure is shown in Figure 4.
</p>
<div class="image">
<p><img alt="Object Property Expressions in OWL 2" border="0" height="206" src="C_objectproperty.gif" width="373" /><br />
<span class="caption">Figure 4.</span> Object Property Expressions in OWL 2
</p>
</div>
<p>As one can see from the figure, OWL 2 supports only two kinds of object property expressions. Object properties are the simplest form of object property expressions, and inverse object properties allow for bidirectional navigation in class expressions and axioms.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectPropertyExpression</span>&nbsp;:= <span class="nonterminal">ObjectProperty</span> | <span class="nonterminal">InverseObjectProperty</span>
</p>
</div>
<a name="Inverse_Object_Properties"></a><h4> <span class="mw-headline">6.1.1  Inverse Object Properties </span></h4>
<p>An inverse object property expression <span class="name">ObjectInverseOf( P )</span> connects an individual <span class="name">I<sub>1</sub></span> with <span class="name">I<sub>2</sub></span> if and only if the object property <span class="name">P</span> connects <span class="name">I<sub>2</sub></span> with <span class="name">I<sub>1</sub></span>.
</p>
<div class="grammar">
<p><span class="nonterminal">InverseObjectProperty</span>&nbsp;:= 'ObjectInverseOf' '(' <span class="nonterminal">ObjectProperty</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following assertion.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
</table>
<p>This ontology entails that <i>a:Stewie</i> is connected by the following object property expression to <i>a:Peter</i>:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectInverseOf( <i>a:fatherOf</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x owl:inverseOf <i>a:fatherOf</i> .
</td></tr>
</table>
</div>
<a name="Data_Property_Expressions"></a><h3> <span class="mw-headline">6.2  Data Property Expressions </span></h3>
<p>For symmetry with object property expressions, the structural specification of OWL 2 also introduces data property expressions, as shown in Figure 5. The only allowed data property expression is a data property; thus, <span class="nonterminal">DataPropertyExpression</span> in the structural specification of OWL 2 can be seen as a place-holder for possible future extensions.
</p>
<div class="image">
<p><img alt="Data Property Expressions in OWL 2" border="0" height="210" src="C_dataproperty.gif" width="273" /><br />
<span class="caption">Figure 5.</span> Data Property Expressions in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DataPropertyExpression</span>&nbsp;:= <span class="nonterminal">DataProperty</span>
</p>
</div>
<a name="Data_Ranges"></a><h2> <span class="mw-headline">7  Data Ranges </span></h2>
<p>Datatypes, such as <i>xsd:string</i> or <i>xsd:integer</i>, and literals such as "1"^^<i>xsd:integer</i>, can be used to express data ranges &mdash; sets of tuples of literals, where tuples consisting of only one literal are identified with the literal itself. Each data range is associated with a positive arity, which determines the size of the tuples in the data range. All datatypes have arity one. This specification currently does not define data ranges of arity more than one; however, by allowing for <i>n</i>-ary data ranges, the syntax of OWL 2 provides a "hook" allowing implementations to introduce extensions such as comparisons and arithmetic.
</p><p>Data ranges can be used in restrictions on data properties, as discussed in Sections <a href="#Data_Property_Restrictions" title="">8.4</a> and <a href="#Data_Property_Cardinality_Restrictions" title="">8.5</a>. The structure of data ranges in OWL 2 is shown in Figure 6. The simplest data ranges are datatypes. The <span class="nonterminal">DataIntersectionOf</span>, <span class="nonterminal">DataUnionOf</span>, and <span class="nonterminal">DataComplementOf</span> data ranges provide for the standard set-theoretic operations on data ranges; in logical languages these are usually called conjunction, disjunction, and negation, respectively. The <span class="nonterminal">DataOneOf</span> data range consists of exactly the specified set of literals. Finally, the <span class="nonterminal">DatatypeRestriction</span> data range restricts the value space of a datatype by a constraining facet.
</p>
<div class="image">
<p><img alt="Data Ranges in OWL 2" border="0" height="357" src="C_datarange.gif" width="801" /><br />
<span class="caption">Figure 6.</span> Data Ranges in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DataRange</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">Datatype</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataIntersectionOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataUnionOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataComplementOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataOneOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DatatypeRestriction</span>
</p>
</div>
<a name="Intersection_of_Data_Ranges"></a><h3> <span class="mw-headline">7.1  Intersection of Data Ranges </span></h3>
<p>An intersection data range <span class="name">DataIntersectionOf( DR<sub>1</sub> ... DR<sub>n</sub> )</span> contains all tuples of literals that are contained in each data range <span class="name">DR<sub>i</sub></span> for 1 &le; i &le; n. All data ranges <span class="name">DR<sub>i</sub></span> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be of the same arity, and the resulting data range is of that arity as well.
</p>
<div class="grammar">
<p><span class="nonterminal">DataIntersectionOf</span>&nbsp;:= 'DataIntersectionOf' '(' <span class="nonterminal">DataRange</span> <span class="nonterminal">DataRange</span> { <span class="nonterminal">DataRange</span> } ')'
</p>
</div>
<div class="anexample">
<p>The following data range contains exactly the integer 0:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataIntersectionOf( <i>xsd:nonNegativeInteger</i> <i>xsd:nonPositiveInteger</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:intersectionOf</i> ( <i>xsd:nonNegativeInteger</i> <i>xsd:nonPositiveInteger</i> ) .
</td></tr>
</table>
</div>
<a name="Union_of_Data_Ranges"></a><h3> <span class="mw-headline">7.2  Union of Data Ranges </span></h3>
<p>A union data range <span class="name">DataUnionOf( DR<sub>1</sub> ... DR<sub>n</sub> )</span> contains all tuples of literals that are contained in the at least one data range <span class="name">DR<sub>i</sub></span> for 1 &le; i &le; n. All data ranges <span class="name">DR<sub>i</sub></span> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be of the same arity, and the resulting data range is of that arity as well.
</p>
<div class="grammar">
<p><span class="nonterminal">DataUnionOf</span>&nbsp;:= 'DataUnionOf' '(' <span class="nonterminal">DataRange</span> <span class="nonterminal">DataRange</span> { <span class="nonterminal">DataRange</span> } ')'
</p>
</div>
<div class="anexample">
<p>The following data range contains all strings and all integers:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataUnionOf( <i>xsd:string</i> <i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2">  _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:unionOf</i> ( <i>xsd:string</i> <i>xsd:integer</i> ) .
</td></tr>
</table>
</div>
<a name="Complement_of_Data_Ranges"></a><h3> <span class="mw-headline">7.3  Complement of Data Ranges </span></h3>
<p>A complement data range <span class="name">DataComplementOf( DR )</span> contains all tuples of literals that are not contained in the data range <span class="name">DR</span>. The resulting data range has the arity equal to the arity of <span class="name">DR</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">DataComplementOf</span>&nbsp;:= 'DataComplementOf' '(' <span class="nonterminal">DataRange</span> ')'
</p>
</div>
<div class="anexample">
<p>The following complement data range contains literals that are not positive integers:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataComplementOf( <i>xsd:positiveInteger</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:complementOf</i> <i>xsd:positiveInteger</i> .
</td></tr>
</table>
<p>In particular, this data range contains the integer zero and all negative integers; however, it also contains all strings (since strings are not positive integers).
</p>
</div>
<a name="Enumeration_of_Literals"></a><h3> <span class="mw-headline">7.4  Enumeration of Literals </span></h3>
<p>An enumeration of literals <span class="name">DataOneOf( lt<sub>1</sub> ... lt<sub>n</sub> )</span> contains exactly the explicitly specified literals <span class="name">lt<sub>i</sub></span> with 1 &le; i &le; n. The resulting data range has arity one.
</p>
<div class="grammar">
<p><span class="nonterminal">DataOneOf</span>&nbsp;:= 'DataOneOf' '(' <span class="nonterminal">Literal</span> { <span class="nonterminal">Literal</span> } ')'
</p>
</div>
<div class="anexample">
<p>The following data range contains exactly two literals: the string <span class="name">"Peter"</span> and the integer one.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataOneOf( "Peter" "1"^^<i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:oneOf</i> ( "Peter" "1"^^<i>xsd:integer</i> ) .
</td></tr>
</table>
</div>
<a name="Datatype_Restrictions"></a><h3> <span class="mw-headline">7.5  Datatype Restrictions </span></h3>
<p>A datatype restriction <span class="name">DatatypeRestriction( DT F<sub>1</sub> lt<sub>1</sub> ... F<sub>n</sub> lt<sub>n</sub> )</span> consists of a unary datatype <span class="name">DT</span> and <span class="name">n</span> pairs <span class="name">( F<sub>i</sub> , lt<sub>i</sub> )</span>. The resulting data range is unary and is obtained by restricting the value space of <span class="name">DT</span> according to the semantics of all <span class="name">( F<sub>i</sub> , v<sub>i</sub> )</span> (multiple pairs are interpreted conjunctively), where <span class="name">v<sub>i</sub></span> are the data values of the literals <span class="name">lt<sub>i</sub></span>.
</p><p>In an OWL 2 DL ontology, each pair <span class="name">( F<sub>i</sub> , v<sub>i</sub> )</span> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be contained in the facet space of <span class="name">DT</span> (see <a href="#Datatype_Maps" title="">Section 4</a>).
</p>
<div class="grammar">
<p><span class="nonterminal">DatatypeRestriction</span>&nbsp;:= 'DatatypeRestriction' '(' <span class="nonterminal">Datatype</span> <span class="nonterminal">constrainingFacet</span> <span class="nonterminal">restrictionValue</span> { <span class="nonterminal">constrainingFacet</span> <span class="nonterminal">restrictionValue</span> } ')'<br />
<span class="nonterminal">constrainingFacet</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<span class="nonterminal">restrictionValue</span>&nbsp;:= <span class="nonterminal">Literal</span>
</p>
</div>
<div class="anexample">
<p>The following data range contains exactly the integers 5, 6, 7, 8, and 9:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DatatypeRestriction( <i>xsd:integer</i> <i>xsd:minInclusive</i> "5"^^<i>xsd:integer</i> <i>xsd:maxExclusive</i> "10"^^<i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:onDatatype</i> <i>xsd:integer</i> .<br /> _:x <i>owl:withRestrictions</i> ( _:y _:z ) .<br /> _:y <i>xsd:minInclusive</i> "5"^^<i>xsd:integer</i> .<br /> _:z <i>xsd:maxExclusive</i> "10"^^<i>xsd:integer</i> .
</td></tr>
</table>
</div>
<a name="Class_Expressions"></a><h2> <span class="mw-headline">8  Class Expressions </span></h2>
<p>In OWL 2, classes and property expressions are used to construct <span id="def_class_expression"><i>class expressions</i></span>, sometimes also called <i>descriptions</i>, and, in the description logic literature, <i>complex concepts</i>. Class expressions represent sets of individuals by formally specifying conditions on the individuals' properties; individuals satisfying these conditions are said to be <i>instances</i> of the respective class expressions.  In the structural specification of OWL 2, class expressions are represented by <span class="nonterminal">ClassExpression</span>.
</p>
<div class="anexample">
<p>A class expression can be used to represent the set of "people that have at least one child". If an ontology additionally contains statements that "Peter is a person" and that "Peter has child Chris", then Peter can be classified as an instance of the mentioned class expression.
</p>
</div>
<p>OWL 2 provides a rich set of primitives that can be used to construct class expressions. In particular, it provides the well known Boolean connectives <i>and</i>, <i>or</i>, and <i>not</i>; a restricted form of universal and existential quantification; number restrictions; enumeration of individuals; and a special <i>self</i>-restriction.
</p><p>As shown in Figure 2, classes are the simplest form of class expressions. The other, complex, class expressions, are described in the following sections.
</p>
<div class="grammar">
<p><span class="nonterminal">ClassExpression</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">Class</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectIntersectionOf</span> | <span class="nonterminal">ObjectUnionOf</span> | <span class="nonterminal">ObjectComplementOf</span> | <span class="nonterminal">ObjectOneOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectSomeValuesFrom</span> | <span class="nonterminal">ObjectAllValuesFrom</span> | <span class="nonterminal">ObjectHasValue</span> | <span class="nonterminal">ObjectHasSelf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectMinCardinality</span> | <span class="nonterminal">ObjectMaxCardinality</span> | <span class="nonterminal">ObjectExactCardinality</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataSomeValuesFrom</span> | <span class="nonterminal">DataAllValuesFrom</span> | <span class="nonterminal">DataHasValue</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataMinCardinality</span> | <span class="nonterminal">DataMaxCardinality</span> | <span class="nonterminal">DataExactCardinality</span>
</p>
</div>
<a name="Propositional_Connectives_and_Enumeration_of_Individuals"></a><h3> <span class="mw-headline">8.1  Propositional Connectives and Enumeration of Individuals </span></h3>
<p>OWL 2 provides for enumeration of individuals and all standard Boolean connectives, as shown in Figure 7. The <span class="nonterminal">ObjectIntersectionOf</span>, <span class="nonterminal">ObjectUnionOf</span>, and <span class="nonterminal">ObjectComplementOf</span> class expressions provide for the standard set-theoretic operations on class expressions; in logical languages these are usually called conjunction, disjunction, and negation, respectively. The <span class="nonterminal">ObjectOneOf</span> class expression contains exactly the specified individuals.
</p>
<div class="image">
<p><img alt="Propositional Connectives and Enumeration of Individuals in OWL 2" border="0" height="401" src="C_propositional.gif" width="598" /><br />
<span class="caption">Figure 7.</span> Propositional Connectives and Enumeration of Individuals in OWL 2
</p>
</div>
<a name="Intersection_of_Class_Expressions"></a><h4> <span class="mw-headline">8.1.1  Intersection of Class Expressions </span></h4>
<p>An intersection class expression <span class="name">ObjectIntersectionOf( CE<sub>1</sub> ... CE<sub>n</sub> )</span> contains all individuals that are instances of all class expressions <span class="name">CE<sub>i</sub></span> for 1 &le; i &le; n.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectIntersectionOf</span>&nbsp;:= 'ObjectIntersectionOf' '(' <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:CanTalk</i> <i>a:Brian</i> )
  </td><td> Brian can talk.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:CanTalk</i> .
  </td><td> Brian can talk.
</td></tr>
</table>
<p>The following class expression describes all dogs that can talk; furthermore, <i>a:Brian</i> is classified as its instance.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectIntersectionOf( <i>a:Dog</i> <i>a:CanTalk</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:intersectionOf</i> ( <i>a:Dog</i> <i>a:CanTalk</i> ) .
</td></tr>
</table>
</div>
<a name="Union_of_Class_Expressions"></a><h4> <span class="mw-headline">8.1.2  Union of Class Expressions </span></h4>
<p>A union class expression <span class="name">ObjectUnionOf( CE<sub>1</sub> ... CE<sub>n</sub> )</span> contains all individuals that are instances of at least one class expression <span class="name">CE<sub>i</sub></span> for 1 &le; i &le; n.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectUnionOf</span>&nbsp;:= 'ObjectUnionOf' '(' <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Man</i> <i>a:Peter</i> )
  </td><td> Peter is a man.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Woman</i> <i>a:Lois</i> )
  </td><td> Lois is a woman.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:Man</i> .
  </td><td> Peter is a man.
</td></tr>
<tr valign="top"><td> <i>a:Lois</i> <i>rdf:type</i> <i>a:Woman</i> .
  </td><td> Lois is a woman.
</td></tr>
</table>
<p>The following class expression describes all individuals that are instances of either <i>a:Man</i> or <i>a:Woman</i>; furthermore, both <i>a:Peter</i> and <i>a:Lois</i> are classified as its instances:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectUnionOf( <i>a:Man</i> <i>a:Woman</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:unionOf</i> ( <i>a:Man</i> <i>a:Woman</i> ) .
</td></tr>
</table>
</div>
<a name="Complement_of_Class_Expressions"></a><h4> <span class="mw-headline">8.1.3  Complement of Class Expressions </span></h4>
<p>A complement class expression <span class="name">ObjectComplementOf( CE )</span> contains all individuals that are not instances of the class expression <span class="name">CE</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectComplementOf</span>&nbsp;:= 'ObjectComplementOf' '(' <span class="nonterminal">ClassExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DisjointClasses( <i>a:Man</i> <i>a:Woman</i> )
  </td><td> Nothing can be both a man and a woman.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Woman</i> <i>a:Lois</i> )
  </td><td> Lois is a woman.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Man</i> <i>owl:disjointWith</i> <i>a:Woman</i> .
  </td><td> Nothing can be both a man and a woman.
</td></tr>
<tr valign="top"><td> <i>a:Lois</i> <i>rdf:type</i> <i>a:Woman</i> .
  </td><td> Lois is a woman.
</td></tr>
</table>
<p>The following class expression describes all things that are not instances of <i>a:Man</i>:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectComplementOf( <i>a:Man</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:complementOf</i> <i>a:Man</i> .
</td></tr>
</table>
<p>Since <i>a:Lois</i> is known to be a woman and nothing can be both a man and a woman, then <i>a:Lois</i> is necessarily not a <i>a:Man</i>; therefore, <i>a:Lois</i> is classified as an instance of this complement class expression.
</p>
</div>
<div class="anexample">
<p>OWL 2 has <i>open-world</i> semantics, so negation in OWL 2 is the same as in classical (first-order) logic. To understand open-world semantics, consider the ontology consisting of the following assertion.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
</table>
<p>One might expect <i>a:Brian</i> to be classified as an instance of the following class expression:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectComplementOf( <i>a:Bird</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:complementOf</i> <i>a:Bird</i> .
</td></tr>
</table>
<p>Intuitively, the ontology does not explicitly state that <i>a:Brian</i> is an instance of <i>a:Bird</i>, so this statement seems to be false. In OWL 2, however, this is not the case: it is true that the ontology does not state that <i>a:Brian</i> is an instance of <i>a:Bird</i>; however, the ontology does not state the opposite either. In other words, this ontology simply does not contain enough information to answer the question whether <i>a:Brian</i> is an instance of <i>a:Bird</i> or not: it is perfectly possible that the information to that effect is actually true but it has not been included in the ontology.
</p><p>The ontology from the previous example (in which <i>a:Lois</i> has been classified as <i>a:Man</i>), however, contains sufficient information to draw the expected conclusion. In particular, we know for sure that <i>a:Lois</i> is an instance of <i>a:Woman</i> and that <i>a:Man</i> and <i>a:Woman</i> do not share instances. Therefore, any additional information that does not lead to inconsistency cannot lead to a conclusion that <i>a:Lois</i> is an instance of <i>a:Man</i>; furthermore, if one were to explicitly state that <i>a:Lois</i> is an instance of <i>a:Man</i>, the ontology would be inconsistent and, by definition, it  then entails all possible conclusions.
</p>
</div>
<a name="Enumeration_of_Individuals"></a><h4> <span class="mw-headline">8.1.4  Enumeration of Individuals </span></h4>
<p>An enumeration of individuals <span class="name">ObjectOneOf( a<sub>1</sub> ... a<sub>n</sub> )</span> contains exactly the individuals <span class="name">a<sub>i</sub></span> with 1 &le; i &le; n.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectOneOf</span>&nbsp;:= 'ObjectOneOf' '(' <span class="nonterminal">Individual</span> { <span class="nonterminal">Individual</span> }')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> EquivalentClasses( <i>a:GriffinFamilyMember</i><br /> &nbsp;&nbsp;&nbsp; ObjectOneOf( <i>a:Peter</i> <i>a:Lois</i> <i>a:Stewie</i> <i>a:Meg</i> <i>a:Chris</i> <i>a:Brian</i> )<br /> )
  </td><td> The Griffin family consists exactly of Peter, Lois, Stewie, Meg, Chris, and Brian.
</td></tr>
<tr valign="top"><td> DifferentIndividuals( <i>a:Quagmire</i> <i>a:Peter</i> <i>a:Lois</i> <i>a:Stewie</i> <i>a:Meg</i> <i>a:Chris</i> <i>a:Brian</i> )
  </td><td> Quagmire, Peter, Lois, Stewie, Meg, Chris, and Brian are all different from each other.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:GriffinFamilyMember</i> <i>owl:equivalentClass</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:oneOf</i> ( <i>a:Peter</i> <i>a:Lois</i> <i>a:Stewie</i> <i>a:Meg</i> <i>a:Chris</i> <i>a:Brian</i> ) .
  </td><td> The Griffin family consists exactly of Peter, Lois, Stewie, Meg, and Brian.
</td></tr>
<tr valign="top"><td> _:y <i>rdf:type</i> <i>owl:AllDifferent</i> .<br /> _:y <i>owl:members</i> ( <i>a:Quagmire</i> <i>a:Peter</i> <i>a:Lois</i> <i>a:Stewie</i> <i>a:Meg</i> <i>a:Chris</i> <i>a:Brian</i> ) .
  </td><td> Quagmire, Peter, Lois, Stewie, Meg, Chris, and Brian are all different from each other.
</td></tr>
</table>
<p>The class <i>a:GriffinFamilyMember</i> now contains exactly the six explicitly listed individuals. Since we also know that <i>a:Quagmire</i> is different from these six individuals, this individual is classified as an instance of the following class expression:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectComplementOf( <i>a:GriffinFamilyMember</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:z <i>rdf:type</i> <i>owl:Class</i> .<br /> _:z <i>owl:complementOf</i> <i>a:GriffinFamilyMember</i> .
</td></tr>
</table>
<p>The last axiom in the ontology is necessary to derive the mentioned conclusion; without it, the open-world semantics of OWL 2 would allow for situations where <i>a:Quagmire</i> is the same as <i>a:Peter</i>, <i>a:Lois</i>, <i>a:Stewie</i>, <i>a:Meg</i>, <i>a:Chris</i>, or <i>a:Brian</i>.
</p>
</div>
<div class="anexample">
<p>To understand how the open-world semantics affects enumerations of individuals, consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Peter</i> )
  </td><td> Peter is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Lois</i> )
  </td><td> Lois is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Stewie</i> )
  </td><td> Stewie is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Meg</i> )
  </td><td> Meg is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Chris</i> )
  </td><td> Chris is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Brian</i> )
  </td><td> Brian is a member of the Griffin Family.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Peter is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> <i>a:Lois</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Lois is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Stewie is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Meg is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> <i>a:Chris</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Chris is a member of the Griffin Family.
</td></tr>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Brian is a member of the Griffin Family.
</td></tr>
</table>
<p>The class <i>a:GriffinFamilyMember</i> now also contains the mentioned six individuals, just as in the previous example. The main difference to the previous example, however, is that the extension of <i>a:GriffinFamilyMember</i> is not closed: the semantics of OWL 2 assumes that information about a potential instance of <i>a:GriffinFamilyMember</i> may be missing. Therefore, <i>a:Quagmire</i> is now not classified as an instance of the following class expression, and this does not change even if we add the axiom stating that all of these six individuals are different from each other:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectComplementOf( <i>a:GriffinFamilyMember</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:complementOf</i> <i>a:GriffinFamilyMember</i> .
</td></tr>
</table>
</div>
<a name="Object_Property_Restrictions"></a><h3> <span class="mw-headline">8.2  Object Property Restrictions </span></h3>
<p>Class expressions in OWL 2 can be formed by placing restrictions on object property expressions, as shown in Figure 8. The <span class="nonterminal">ObjectSomeValuesFrom</span> class expression allows for existential quantification over an object property expression, and it contains those individuals that are connected through an object property expression to at least one instance of a given class expression. The <span class="nonterminal">ObjectAllValuesFrom</span> class expression allows for universal quantification over an object property expression, and it contains those individuals that are connected through an object property expression only to instances of a given class expression. The <span class="nonterminal">ObjectHasValue</span> class expression contains those individuals that are connected by an object property expression to a particular individual. Finally, the <span class="nonterminal">ObjectHasSelf</span> class expression contains those individuals that are connected by an object property expression to themselves.
</p>
<div class="image">
<p><img alt="Restricting Object Property Expressions in OWL 2" border="0" height="406" src="C_objectmodal.gif" width="645" /><br />
<span class="caption">Figure 8.</span> Restricting Object Property Expressions in OWL 2
</p>
</div>
<a name="Existential_Quantification"></a><h4> <span class="mw-headline">8.2.1  Existential Quantification </span></h4>
<p>An existential class expression <span class="name">ObjectSomeValuesFrom( OPE CE )</span> consists of an object property expression <span class="name">OPE</span> and a class expression <span class="name">CE</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> to an individual that is an instance of <span class="name">CE</span>. Provided that <span class="name">OPE</span> is <i>simple</i> according to the definition in <a href="#Global_Restrictions_on_Axioms_in_OWL_2_DL" title="">Section 11</a>, such a class expression can be seen as a syntactic shortcut for the class expression <span class="name">ObjectMinCardinality( 1 OPE CE )</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectSomeValuesFrom</span>&nbsp;:= 'ObjectSomeValuesFrom' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Man</i> <i>a:Stewie</i> )
  </td><td> Stewie is a man.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Man</i> .
  </td><td> Stewie is a man.
</td></tr>
</table>
<p>The following existential expression contains those individuals that are connected by the <i>a:fatherOf</i> property to individuals that are instances of <i>a:Man</i>; furthermore, <i>a:Peter</i> is classified as its instance:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectSomeValuesFrom( <i>a:fatherOf</i> <i>a:Man</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br />  _:x <i>owl:onProperty</i> <i>a:fatherOf</i> .<br /> _:x <i>owl:someValuesFrom</i> <i>a:Man</i> .
</td></tr>
</table>
</div>
<a name="Universal_Quantification"></a><h4> <span class="mw-headline">8.2.2  Universal Quantification </span></h4>
<p>A universal class expression <span class="name">ObjectAllValuesFrom( OPE CE )</span> consists of an object property expression <span class="name">OPE</span> and a class expression <span class="name">CE</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> only to individuals that are instances of <span class="name">CE</span>. Provided that <span class="name">OPE</span> is <i>simple</i> according to the definition in <a href="#Global_Restrictions_on_Axioms_in_OWL_2_DL" title="">Section 11</a>, such a class expression can be seen as a syntactic shortcut for the class expression <span class="name">ObjectMaxCardinality( 0 OPE ObjectComplementOf( CE ) )</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectAllValuesFrom</span>&nbsp;:= 'ObjectAllValuesFrom' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasPet</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a pet of Peter.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> ClassAssertion( ObjectMaxCardinality( 1 <i>a:hasPet</i> ) <i>a:Peter</i> )
  </td><td> Peter has at most one pet.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasPet</i> <i>a:Brian</i> .
  </td><td> Brian is a pet of Peter.
</td></tr>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:maxCardinality</i> "1"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasPet</i> .
  </td><td> Peter has at most one pet.
</td></tr>
</table>
<p>The following universal expression contains those individuals that are connected through the <i>a:hasPet</i> property only with individuals that are instances of <i>a:Dog</i> &mdash; that is, it contains individuals that have only dogs as pets:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectAllValuesFrom( <i>a:hasPet</i> <i>a:Dog</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:y <i>rdf:type</i> <i>owl:Restriction</i> .<br />  _:y <i>owl:onProperty</i> <i>a:hasPet</i> .<br /> _:y <i>owl:allValuesFrom</i> <i>a:Dog</i> .
</td></tr>
</table>
<p>The ontology axioms clearly state that <i>a:Peter</i> is connected by <i>a:hasPet</i> only to instances of <i>a:Dog</i>: it is impossible to connect <i>a:Peter</i> by <i>a:hasPet</i> to an individual different from <i>a:Brian</i> without making the ontology inconsistent. Therefore, <i>a:Peter</i> is classified as an instance of the mentioned class expression.
</p><p>The last axiom &mdash; that is, the one stating that <i>a:Peter</i> has at most one pet &mdash; is critical for the inference from the previous paragraph due to the open-world semantics of OWL 2. Without this axiom, the ontology might not have listed all the individuals to which <i>a:Peter</i> is connected by <i>a:hasPet</i>. In such a case <i>a:Peter</i> would not be classified as an instance of the mentioned class expression.
</p>
</div>
<a name="Individual_Value_Restriction"></a><h4> <span class="mw-headline">8.2.3  Individual Value Restriction </span></h4>
<p>A has-value class expression <span class="name">ObjectHasValue( OPE a )</span> consists of an object property expression <span class="name">OPE</span> and an individual <span class="name">a</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> to <span class="name">a</span>. Each such class expression can be seen as a syntactic shortcut for the class expression <span class="name">ObjectSomeValuesFrom( OPE ObjectOneOf( a ) )</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectHasValue</span>&nbsp;:= 'ObjectHasValue' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">Individual</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
</table>
<p>The following has-value class expression contains those individuals that are connected through the <i>a:fatherOf</i> property with the individual <i>a:Stewie</i>; furthermore, <i>a:Peter</i> is classified as its instance:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectHasValue( <i>a:fatherOf</i> <i>a:Stewie</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:fatherOf</i> .<br /> _:x <i>owl:hasValue</i> <i>a:Stewie</i> .
</td></tr>
</table>
</div>
<a name="Self-Restriction"></a><h4> <span class="mw-headline">8.2.4  Self-Restriction </span></h4>
<p>A self-restriction <span class="name">ObjectHasSelf( OPE )</span> consists of an object property expression <span class="name">OPE</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> to themselves.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectHasSelf</span>&nbsp;:= 'ObjectHasSelf' '(' <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:likes</i> <i>a:Peter</i> <i>a:Peter</i> )
  </td><td> Peter likes Peter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:likes</i> <i>a:Peter</i> .
  </td><td> Peter likes Peter.
</td></tr>
</table>
<p>The following self-restriction contains those individuals that like themselves; furthermore, <i>a:Peter</i> is classified as its instance:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectHasSelf( <i>a:likes</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:likes</i> .<br /> _:x <i>owl:hasSelf</i> "true"^^<i>xsd:boolean</i> .
</td></tr>
</table>
</div>
<a name="Object_Property_Cardinality_Restrictions"></a><h3> <span class="mw-headline">8.3  Object Property Cardinality Restrictions </span></h3>
<p>Class expressions in OWL 2 can be formed by placing restrictions on the cardinality of object property expressions, as shown in Figure 9. All cardinality restrictions can be qualified or unqualified: in the former case, the cardinality restriction only applies to individuals that are connected by the object property expression and are instances of the qualifying class expression; in the latter case the restriction applies to all individuals that are connected by the object property expression (this is equivalent to the qualified case with the qualifying class expression equal to <i>owl:Thing</i>). The class expressions <span class="nonterminal">ObjectMinCardinality</span>, <span class="nonterminal">ObjectMaxCardinality</span>, and <span class="nonterminal">ObjectExactCardinality</span> contain those individuals that are connected by an object property expression to at least, at most, and exactly a given number of instances of a specified class expression, respectively.
</p>
<div class="image">
<p><img alt="Restricting the Cardinality of Object Property Expressions in OWL 2" border="0" height="353" src="C_objectcardinality.gif" width="579" /><br />
<span class="caption">Figure 9.</span> Restricting the Cardinality of Object Property Expressions in OWL 2
</p>
</div>
<a name="Minimum_Cardinality"></a><h4> <span class="mw-headline">8.3.1  Minimum Cardinality </span></h4>
<p>A minimum cardinality expression <span class="name">ObjectMinCardinality( n OPE CE )</span> consists of a nonnegative integer <span class="name">n</span>, an object property expression <span class="name">OPE</span>, and a class expression <span class="name">CE</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> to at least <span class="name">n</span> different individuals that are instances of <span class="name">CE</span>. If <span class="name">CE</span> is missing, it is taken to be <i>owl:Thing</i>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectMinCardinality</span>&nbsp;:= 'ObjectMinCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">ObjectPropertyExpression</span> [ <span class="nonterminal">ClassExpression</span> ] ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Man</i> <i>a:Stewie</i> )
  </td><td> Stewie is a man.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Chris</i> )
  </td><td> Peter is Chris's father.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Man</i> <i>a:Chris</i> )
  </td><td> Chris is a man.
</td></tr>
<tr valign="top"><td> DifferentIndividuals( <i>a:Chris</i> <i>a:Stewie</i> )
  </td><td> Chris and Stewie are different from each other.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Man</i> .
  </td><td> Stewie is a man.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Chris</i> .
  </td><td> Peter is Chris's father.
</td></tr>
<tr valign="top"><td> <i>a:Chris</i> <i>rdf:type</i> <i>a:Man</i> .
  </td><td> Chris is a man.
</td></tr>
<tr valign="top"><td> <i>a:Chris</i> <i>owl:differentFrom</i> <i>a:Stewie</i> .
  </td><td> Chris and Stewie are different from each other.
</td></tr>
</table>
<p>The following minimum cardinality expression contains those individuals that are connected by <i>a:fatherOf</i> to at least two different instances of <i>a:Man</i>:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectMinCardinality( 2 <i>a:fatherOf</i> <i>a:Man</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2">  _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:minQualifiedCardinality</i> "2"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:fatherOf</i> .<br /> _:x <i>owl:onClass</i> <i>a:Man</i> .
</td></tr>
</table>
<p>Since <i>a:Stewie</i> and <i>a:Chris</i> are both instances of <i>a:Man</i> and are different from each other, <i>a:Peter</i> is classified as an instance of this class expression.
</p><p>Due to the open-world semantics, the last axiom &mdash; the one stating that <i>a:Chris</i> and <i>a:Stewie</i> are different from each other &mdash; is necessary for this inference: without this axiom, it is possible that <i>a:Chris</i> and <i>a:Stewie</i> are actually the same individual.
</p>
</div>
<a name="Maximum_Cardinality"></a><h4> <span class="mw-headline">8.3.2  Maximum Cardinality </span></h4>
<p>A maximum cardinality expression <span class="name">ObjectMaxCardinality( n OPE CE )</span> consists of a nonnegative integer <span class="name">n</span>, an object property expression <span class="name">OPE</span>, and a class expression <span class="name">CE</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> to at most <span class="name">n</span> different individuals that are instances of <span class="name">CE</span>. If <span class="name">CE</span> is missing, it is taken to be <i>owl:Thing</i>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectMaxCardinality</span>&nbsp;:= 'ObjectMaxCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">ObjectPropertyExpression</span> [ <span class="nonterminal">ClassExpression</span> ] ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasPet</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a pet of Peter.
</td></tr>
<tr valign="top"><td> ClassAssertion( ObjectMaxCardinality( 1 <i>a:hasPet</i> ) <i>a:Peter</i> )
  </td><td> Peter has at most one pet.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasPet</i> <i>a:Brian</i> .
  </td><td> Brian is a pet of Peter.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:maxCardinality</i> "1"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasPet</i> .
  </td><td> Peter has at most one pet.
</td></tr>
</table>
<p>The following maximum cardinality expression contains those individuals that are connected by <i>a:hasPet</i> to at most two individuals:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectMaxCardinality( 2 <i>a:hasPet</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:y <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:y <i>owl:maxCardinality</i> "2"^^<i>xsd:nonNegativeInteger</i> .<br /> _:y <i>owl:onProperty</i> <i>a:hasPet</i> .
</td></tr>
</table>
<p>Since <i>a:Peter</i> is known to be connected by <i>a:hasPet</i> to at most one individual, it is certainly also connected by <i>a:hasPet</i> to at most two individuals so, consequently, <i>a:Peter</i> is classified as an instance of this class expression.
</p><p>The example ontology explicitly names only <i>a:Brian</i> as being connected by <i>a:hasPet</i> from <i>a:Peter</i>, so one might expect <i>a:Peter</i> to be classified as an instance of the mentioned class expression even without the second axiom. This, however, is not the case due to the open-world semantics. Without the last axiom, it is possible that <i>a:Peter</i> is connected by <i>a:hasPet</i> to other individuals. The second axiom closes the set of individuals that <i>a:Peter</i> is connected to by <i>a:hasPet</i>.
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasDaughter</i> <i>a:Peter</i> <i>a:Meg</i> )
  </td><td> Meg is a daughter of Peter.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasDaughter</i> <i>a:Peter</i> <i>a:Megan</i> )
  </td><td> Megan is a daughter of Peter.
</td></tr>
<tr valign="top"><td> ClassAssertion( ObjectMaxCardinality( 1 <i>a:hasDaughter</i> ) <i>a:Peter</i> )
  </td><td> Peter has at most one daughter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasDaughter</i> <i>a:Meg</i> .
  </td><td> Meg is a daughter of Peter.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasDaughter</i> <i>a:Megan</i> .
  </td><td> Megan is a daughter of Peter.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:maxCardinality</i> "1"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasDaughter</i> .
  </td><td> Peter has at most one daughter.
</td></tr>
</table>
<p>One might expect this ontology to be inconsistent: on the one hand, it says that <i>a:Meg</i> and <i>a:Megan</i> are connected to <i>a:Peter</i> by <i>a:hasDaughter</i>, but, on the other hand, it says that <i>a:Peter</i> is connected by <i>a:hasDaughter</i> to at most one individual. This ontology, however, is not inconsistent because the semantics of OWL 2 does not make the <i>unique name assumption</i> &mdash; that is, it does not assume distinct individuals to be necessarily different. For example, the ontology does not explicitly say that <i>a:Meg</i> and <i>a:Megan</i> are different individuals; therefore, since <i>a:Peter</i> can be connected by <i>a:hasDaughter</i> to at most one distinct individual, <i>a:Meg</i> and <i>a:Megan</i> must be the same. This example ontology thus entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SameIndividual( <i>a:Meg</i> <i>a:Megan</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Meg</i> <i>owl:sameAs</i> <i>a:Megan</i> .
</td></tr>
</table>
<p>One can axiomatize the unique name assumption in OWL 2 by explicitly stating that all individuals are different from each other. This can be done by adding the following axiom, which makes the example ontology inconsistent.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DifferentIndividuals( <i>a:Peter</i> <i>a:Meg</i> <i>a:Megan</i> )
  </td><td> Peter, Meg, and Megan are all different from each other.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> _:y <i>rdf:type</i> <i>owl:AllDifferent</i> .<br /> _:y <i>owl:members</i> ( <i>a:Peter</i> <i>a:Meg</i> <i>a:Megan</i> ) .
  </td><td> Peter, Meg, and Megan are all different from each other.
</td></tr>
</table>
</div>
<a name="Exact_Cardinality"></a><h4> <span class="mw-headline">8.3.3  Exact Cardinality </span></h4>
<p>An exact cardinality expression <span class="name">ObjectExactCardinality( n OPE CE )</span> consists of a nonnegative integer <span class="name">n</span>, an object property expression <span class="name">OPE</span>, and a class expression <span class="name">CE</span>, and it contains all those individuals that are connected by <span class="name">OPE</span> to exactly <span class="name">n</span> different individuals that are instances of <span class="name">CE</span>. If <span class="name">CE</span> is missing, it is taken to be <i>owl:Thing</i>. Such an expression is actually equivalent to the expression
</p>
<div class="indent">
<p><span class="name">ObjectIntersectionOf( ObjectMinCardinality( n OPE CE ) ObjectMaxCardinality( n OPE CE ) )</span>.
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">ObjectExactCardinality</span>&nbsp;:= 'ObjectExactCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">ObjectPropertyExpression</span> [ <span class="nonterminal">ClassExpression</span> ] ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasPet</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a pet of Peter.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> ClassAssertion(<br /> &nbsp;&nbsp;&nbsp; ObjectAllValuesFrom( <i>a:hasPet</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectUnionOf(<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectOneOf( <i>a:Brian</i> )<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectComplementOf( <i> a:Dog</i> )<br /> &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; <i>a:Peter</i><br /> )
  </td><td> Each pet of Peter is either Brian or it is not a dog.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasPet</i> <i>a:Brian</i> .
  </td><td> Brian is a pet of Peter.
</td></tr>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasPet</i> .<br /> _:x <i>owl:allValuesFrom</i> _:y .<br /> _:y <i>rdf:type</i> <i>owl:Class</i> .<br /> _:y <i>owl:unionOf</i> ( _:z1 _:z2 ) .<br /> _:z1 <i>rdf:type</i> <i>owl:Class</i> .<br /> _:z1 <i>owl:oneOf</i> ( <i>a:Brian</i> ) .<br /> _:z2 <i>rdf:type</i> <i>owl:Class</i> .<br /> _:z2 <i>owl:complementOf</i> <i>a:Dog</i> .
  </td><td> Each pet of Peter is either Brian or it is not a dog.
</td></tr>
</table>
<p>The following exact cardinality expression contains those individuals that are connected by <i>a:hasPet</i> to exactly one instance of <i>a:Dog</i>; furthermore, <i>a:Peter</i> is classified as its instance:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectExactCardinality( 1 <i>a:hasPet</i> <i>a:Dog</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:w <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:w <i>owl:qualifiedCardinality</i> "1"^^<i>xsd:nonNegativeInteger</i> .<br /> _:w <i>owl:onProperty</i> <i>a:hasPet</i> .<br /> _:w <i>owl:onClass</i> <i>a:Dog</i> .
</td></tr>
</table>
<p>This is because the first two axioms say that <i>a:Peter</i> is connected to <i>a:Brian</i> by <i>a:hasPet</i> and that <i>a:Brian</i> is an instance of <i>a:Dog</i>, and the last axiom says that any individual different from <i>a:Brian</i> that is connected to <i>a:Peter</i> by <i>a:hasPet</i> is not an instance of <i>a:Dog</i>; hence, <i>a:Peter</i> is connected to exactly one instance of <i>a:Dog</i> by <i>a:hasPet</i>.
</p>
</div>
<a name="Data_Property_Restrictions"></a><h3> <span class="mw-headline">8.4  Data Property Restrictions </span></h3>
<p>Class expressions in OWL 2 can be formed by placing restrictions on data property expressions, as shown in Figure 10. These are similar to the restrictions on object property expressions, the main difference being that the expressions for existential and universal quantification allow for <i>n</i>-ary data ranges. All data ranges explicitly supported by this specification are unary; however, the provision of <i>n</i>-ary data ranges in existential and universal quantification allows OWL 2 tools to support extensions such as value comparisons and, consequently, class expressions such as "individuals whose width is greater than their height". Thus, the <span class="nonterminal">DataSomeValuesFrom</span> class expression allows for a restricted existential quantification over a list of data property expressions, and it contains those individuals that are connected through the data property expressions to at least one literal in the given data range. The <span class="nonterminal">DataAllValuesFrom</span> class expression allows for a restricted universal quantification over a list of data property expressions, and it contains those individuals that are connected through the data property expressions only to literals in the given data range. Finally, the <span class="nonterminal">DataHasValue</span> class expression contains those individuals that are connected by a data property expression to a particular literal.
</p>
<div class="image">
<p><img alt="Restricting Data Property Expressions in OWL 2" border="0" height="414" src="C_datamodal.gif" width="684" /><br />
<span class="caption">Figure 10.</span> Restricting Data Property Expressions in OWL 2
</p>
</div>
<a name="Existential_Quantification_2"></a><h4> <span class="mw-headline">8.4.1  Existential Quantification </span></h4>
<p>An existential class expression <span class="name">DataSomeValuesFrom( DPE<sub>1</sub> ... DPE<sub>n</sub> DR )</span> consists of <span class="name">n</span> data property expressions <span class="name">DPE<sub>i</sub></span>, 1 &le; i &le; n, and a data range <span class="name">DR</span> whose arity <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be n. Such a class expression contains all those individuals that are connected by <span class="name">DPE<sub>i</sub></span> to literals <span class="name">lt<sub>i</sub></span>, 1 &le; i &le; n, such that the tuple <span class="name">( lt<sub>1</sub> , ..., lt<sub>n</sub> )</span> is in <span class="name">DR</span>. A class expression of the form <span class="name">DataSomeValuesFrom( DPE DR )</span> can be seen as a syntactic shortcut for the class expression <span class="name">DataMinCardinality( 1 DPE DR )</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">DataSomeValuesFrom</span>&nbsp;:= 'DataSomeValuesFrom' '(' <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } <span class="nonterminal">DataRange</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17"^^<i>xsd:integer</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17"^^<i>xsd:integer</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<p>The following existential class expression contains all individuals that are connected by <i>a:hasAge</i> to an integer strictly less than 20 so; furthermore, <i>a:Meg</i> is classified as its instance:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataSomeValuesFrom( <i>a:hasAge</i> DatatypeRestriction( <i>xsd:integer</i> <i>xsd:maxExclusive</i> "20"^^<i>xsd:integer</i> ) )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasAge</i> .<br /> _:x <i>owl:someValuesFrom</i> _:y .<br /> _:y rdf:type rdfs:Datatype .<br /> _:y <i>owl:onDatatype</i> <i>xsd:integer</i> .<br /> _:y <i>owl:withRestrictions</i> ( _:z ) .<br /> _:z xsd:maxExclusive "20"^^xsd:integer .
</td></tr>
</table>
</div>
<a name="Universal_Quantification_2"></a><h4> <span class="mw-headline">8.4.2  Universal Quantification </span></h4>
<p>A universal class expression <span class="name">DataAllValuesFrom( DPE<sub>1</sub> ... DPE<sub>n</sub> DR )</span> consists of <span class="name">n</span> data property expressions <span class="name">DPE<sub>i</sub></span>, 1 &le; i &le; n, and a data range <span class="name">DR</span> whose arity <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be n. Such a class expression contains all those individuals that are connected by <span class="name">DPE<sub>i</sub></span> only to literals <span class="name">lt<sub>i</sub></span>, 1 &le; i &le; n, such that each tuple <span class="name">( lt<sub>1</sub> , ..., lt<sub>n</sub> )</span> is in <span class="name">DR</span>. A class expression of the form <span class="name">DataAllValuesFrom( DPE DR )</span> can be seen as a syntactic shortcut for the class expression <span class="name">DataMaxCardinality( 0 DPE DataComplementOf( DR ) )</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">DataAllValuesFrom</span>&nbsp;:= 'DataAllValuesFrom' '(' <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } <span class="nonterminal">DataRange</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasZIP</i> _:a1 "02903"^^<i>xsd:integer</i> )
  </td><td> The ZIP code of _:a1 is the integer 02903.
</td></tr>
<tr valign="top"><td> FunctionalDataProperty( <i>a:hasZIP</i> )
  </td><td> Each object can have at most one ZIP code.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> _:a1 <i>a:hasZIP</i> "02903"^^<i>xsd:integer</i>
  </td><td> The ZIP code of _:a1 is the integer 02903.
</td></tr>
<tr valign="top"><td> <i>a:hasZIP</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one ZIP code.
</td></tr>
</table>
<p>In United Kingdom and Canada, ZIP codes are strings (i.e., they can contain characters and not just numbers). Hence, one might use the following universal expression to identify those individuals that have only integer ZIP codes (and therefore have non-UK and non-Canadian addresses):
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataAllValuesFrom( <i>a:hasZIP</i> <i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasZIP</i> .<br /> _:x <i>owl:allValuesFrom</i> <i>xsd:integer</i> .
</td></tr>
</table>
<p>The anonymous individual _:a1 is by the first axiom connected by <i>a:hasZIP</i> to an integer, and the second axiom ensures that _:a1 is not connected by <i>a:hasZIP</i> to other literals; therefore, _:a1 is classified as an instance of the mentioned class expression.
</p><p>The last axiom &mdash; the one stating that <i>a:hasZIP</i> is functional &mdash; is critical for the inference from the previous paragraph due to the open-world semantics of OWL 2. Without this axiom, the ontology is not guaranteed to list all literals that _:a1 is connected to by <i>a:hasZIP</i>; hence, without this axiom _:a1 would not be classified as an instance of the mentioned class expression.
</p>
</div>
<a name="Literal_Value_Restriction"></a><h4> <span class="mw-headline">8.4.3  Literal Value Restriction </span></h4>
<p>A has-value class expression <span class="name">DataHasValue( DPE lt )</span> consists of a data property expression <span class="name">DPE</span> and a literal <span class="name">lt</span>, and it contains all those individuals that are connected by <span class="name">DPE</span> to <span class="name">lt</span>. Each such class expression can be seen as a syntactic shortcut for the class expression <span class="name">DataSomeValuesFrom( DPE DataOneOf( lt ) )</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">DataHasValue</span>&nbsp;:= 'DataHasValue' '(' <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">Literal</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17"^^<i>xsd:integer</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17"^^<i>xsd:integer</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<p>The following has-value expression contains all individuals that are connected by <i>a:hasAge</i> to the integer 17; furthermore, <i>a:Meg</i> is classified as its instance:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataHasValue( <i>a:hasAge</i> "17"^^<i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasAge</i> .<br /> _:x <i>owl:hasValue</i> "17"^^<i>xsd:integer</i> .
</td></tr>
</table>
</div>
<a name="Data_Property_Cardinality_Restrictions"></a><h3> <span class="mw-headline">8.5  Data Property Cardinality Restrictions </span></h3>
<p>Class expressions in OWL 2 can be formed by placing restrictions on the cardinality of data property expressions, as shown in Figure 11. These are similar to the restrictions on the cardinality of object property expressions. All cardinality restrictions can be qualified or unqualified: in the former case, the cardinality restriction only applies to literals that are connected by the data property expression and are in the qualifying data range; in the latter case it applies to all literals that are connected by the data property expression (this is equivalent to the qualified case with the qualifying data range equal to <i>rdfs:Literal</i>). The class expressions <span class="nonterminal">DataMinCardinality</span>, <span class="nonterminal">DataMaxCardinality</span>, and <span class="nonterminal">DataExactCardinality</span> contain those individuals that are connected by a data property expression to at least, at most, and exactly a given number of literals in the specified data range, respectively.
</p>
<div class="image">
<p><img alt="Restricting the Cardinality of Data Property Expressions in OWL 2" border="0" height="507" src="C_datacardinality.gif" width="619" /><br />
<span class="caption">Figure 11.</span> Restricting the Cardinality of Data Property Expressions in OWL 2
</p>
</div>
<a name="Minimum_Cardinality_2"></a><h4> <span class="mw-headline">8.5.1  Minimum Cardinality </span></h4>
<p>A minimum cardinality expression <span class="name">DataMinCardinality( n DPE DR )</span> consists of a nonnegative integer <span class="name">n</span>, a data property expression <span class="name">DPE</span>, and a unary data range <span class="name">DR</span>, and it contains all those individuals that are connected by <span class="name">DPE</span> to at least <span class="name">n</span> different literals in <span class="name">DR</span>. If <span class="name">DR</span> is not present, it is taken to be <i>rdfs:Literal</i>. 
</p>
<div class="grammar">
<p><span class="nonterminal">DataMinCardinality</span>&nbsp;:= 'DataMinCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">DataPropertyExpression</span> [ <span class="nonterminal">DataRange</span> ] ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Meg</i> "Meg Griffin" )
  </td><td>Meg's name is <span class="name">"Meg Griffin"</span>.</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Meg</i> "Megan Griffin" )
  </td><td>Meg's name is <span class="name">"Megan Griffin"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasName</i> "Meg Griffin" .
  </td><td>Meg's name is <span class="name">"Meg Griffin"</span>.</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasName</i> "Megan Griffin" .
  </td><td>Meg's name is <span class="name">"Megan Griffin"</span>.</td></tr>
</table>
<p>The following minimum cardinality expression contains those individuals that are connected by <i>a:hasName</i> to at least two different literals:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataMinCardinality( 2 <i>a:hasName</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:minCardinality</i> "2"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasName</i> .
</td></tr>
</table>
<p>Different string literals are distinct, so <span class="name">"Meg Griffin"</span> and <span class="name">"Megan Griffin"</span> are different; thus, the individual <i>a:Meg</i> is classified as an instance of the mentioned class expression.
</p>
</div>
<p>Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions in OWL 2 is defined with respect to the latter. For an example demonstrating the effects such such a definition, please refer to <a href="#Functional_Data_Properties" title="">Section 9.3.6</a>.
</p>
<a name="Maximum_Cardinality_2"></a><h4> <span class="mw-headline">8.5.2  Maximum Cardinality </span></h4>
<p>A maximum cardinality expression <span class="name">DataMaxCardinality( n DPE DR )</span> consists of a nonnegative integer <span class="name">n</span>, a data property expression <span class="name">DPE</span>, and a unary data range <span class="name">DR</span>, and it contains all those individuals that are connected by <span class="name">DPE</span> to at most <span class="name">n</span> different literals in <span class="name">DR</span>. If <span class="name">DR</span> is not present, it is taken to be <i>rdfs:Literal</i>. 
</p>
<div class="grammar">
<p><span class="nonterminal">DataMaxCardinality</span>&nbsp;:= 'DataMaxCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">DataPropertyExpression</span> [ <span class="nonterminal">DataRange</span> ] ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> FunctionalDataProperty( <i>a:hasName</i> )
  </td><td> Each object can have at most one name.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasName</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one name.
</td></tr>
</table>
<p>The following maximum cardinality expression contains those individuals that are connected by <i>a:hasName</i> to at most two different literals:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataMaxCardinality( 2 <i>a:hasName</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:maxCardinality</i> "2"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasName</i> .
</td></tr>
</table>
<p>Since the ontology axiom restricts <i>a:hasName</i> to be functional, all individuals in the ontology are instances of this class expression.
</p>
</div>
<p>Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions in OWL 2 is defined with respect to the latter. For an example demonstrating the effects such such a definition, please refer to <a href="#Functional_Data_Properties" title="">Section 9.3.6</a>.
</p>
<a name="Exact_Cardinality_2"></a><h4> <span class="mw-headline">8.5.3  Exact Cardinality </span></h4>
<p>An exact cardinality expression <span class="name">DataExactCardinality( n DPE DR )</span> consists of a nonnegative integer <span class="name">n</span>, a data property expression <span class="name">DPE</span>, and a unary data range <span class="name">DR</span>, and it contains all those individuals that are connected by <span class="name">DPE</span> to exactly <span class="name">n</span> different literals in <span class="name">DR</span>. If <span class="name">DR</span> is not present, it is taken to be <i>rdfs:Literal</i>. 
</p>
<div class="grammar">
<p><span class="nonterminal">DataExactCardinality</span>&nbsp;:= 'DataExactCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">DataPropertyExpression</span> [ <span class="nonterminal">DataRange</span> ] ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Brian</i> "Brian Griffin" )
  </td><td>Brian's name is <span class="name">"Brian Griffin"</span>.</td></tr>
<tr valign="top"><td> FunctionalDataProperty( <i>a:hasName</i> )
  </td><td> Each object can have at most one name.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Brian</i> <i>a:hasName</i> "Brian Griffin" .
  </td><td>Brian's name is <span class="name">"Brian Griffin"</span>.</td></tr>
<tr valign="top"><td> <i>a:hasName</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one name.
</td></tr>
</table>
<p>The following exact cardinality expression contains those individuals that are connected by <i>a:hasName</i> to exactly one literal:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataExactCardinality( 1 <i>a:hasName</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:cardinality</i> "1"^^<i>xsd:nonNegativeInteger</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasName</i> .
</td></tr>
</table>
<p>Since the ontology axiom restricts <i>a:hasName</i> to be functional and <i>a:Brian</i> is connected by <i>a:hasName</i> to <span class="name">"Brian Griffin"</span>, it is classified as an instance of this class expression.
</p>
</div>
<p>Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions in OWL 2 is defined with respect to the latter. For an example demonstrating the effects such such a definition, please refer to <a href="#Functional_Data_Properties" title="">Section 9.3.6</a>.
</p>
<a name="Axioms"></a><h2> <span class="mw-headline">9  Axioms </span></h2>
<p>The main component of an OWL 2 ontology is a set of <span id="def_axiom"><i>axioms</i></span> &mdash; statements that say what is true in the domain. OWL 2 provides an extensive set of axioms, all of which extend the <span class="nonterminal">Axiom</span> class in the structural specification. As shown in Figure 12, axioms in OWL 2 can be declarations, axioms about classes, axioms about object or data properties, datatype definitions, keys, assertions (sometimes also called <i>facts</i>), and axioms about annotations.
</p>
<div class="image">
<p><img alt="The Axioms of OWL 2" border="0" height="277" src="Axioms.gif" width="595" /><br />
<span class="caption">Figure 12.</span> The Axioms of OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">Axiom</span>&nbsp;:= <span class="nonterminal">Declaration</span> | <span class="nonterminal">ClassAxiom</span> | <span class="nonterminal">ObjectPropertyAxiom</span> | <span class="nonterminal">DataPropertyAxiom</span> | <span class="nonterminal">DatatypeDefinition</span> | <span class="nonterminal">HasKey</span> | <span class="nonterminal">Assertion</span> | <span class="nonterminal">AnnotationAxiom</span><br />
<br />
<span class="nonterminal">axiomAnnotations</span>&nbsp;:= { <span class="nonterminal">Annotation</span> }
</p>
</div>
<p>As shown in Figure 1, OWL 2 axioms can contain axiom annotations, the structure of which is defined in <a href="#Annotations" title="">Section 10</a>. Axiom annotations have no effect on the semantics of axioms &mdash; that is, they do not affect the logical consequences of OWL 2 ontologies. In contrast, axiom annotations do affect structural equivalence: axioms will not be structurally equivalent if their axiom annotations are not structurally equivalent.
</p>
<div class="anexample">
<p>The following axiom contains a comment that explains the purpose of the axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SubClassOf( Annotation( <i>rdfs:comment</i> "Male people are people." ) <i>a:Man</i> <i>a:Person</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Man</i> <i>rdfs:subClassOf</i> <i>a:Person</i><br /> _:x <i>rdf:type</i> <i>owl:Annotation</i> .<br /> _:x <i>owl:subject</i> <i>a:Man</i> .<br /> _:x <i>owl:predicate</i> <i>rdfs:subClassOf</i> .<br /> _:x <i>owl:object</i> <i>a:Person</i> .<br /> _:x <i>rdfs:comment</i> "Male people are people." .
</td></tr>
</table>
<p>Since annotations affect structural equivalence between axioms, the previous axiom is not structurally equivalent with the following axiom, even though these two axioms are semantically equivalent.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SubClassOf( <i>a:Man</i> <i>a:Person</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Man</i> <i>rdfs:subClassOf</i> <i>a:Person</i> .
</td></tr>
</table>
</div>
<a name="Class_Expression_Axioms"></a><h3> <span class="mw-headline">9.1  Class Expression Axioms </span></h3>
<p>OWL 2 provides axioms that allow relationships to be established between class expressions, as shown in Figure 13. The <span class="nonterminal">SubClassOf</span> axiom allows one to state that each instance of one class expression is also an instance of another class expression, and thus to construct a hierarchy of classes. The <span class="nonterminal">EquivalentClasses</span> axiom allows one to state that several class expressions are equivalent to each other. The <span class="nonterminal">DisjointClasses</span> axiom allows one to state that several class expressions are pairwise disjoint &mdash; that is, that they have no instances in common. Finally, the <span class="nonterminal">DisjointUnion</span> class expression allows one to define a class as a disjoint union of several class expressions and thus to express covering constraints.
</p>
<div class="image">
<p><img alt="The Class Axioms of OWL 2" border="0" height="550" src="A_classes.gif" width="549" /><br />
<span class="caption">Figure 13.</span> The Class Axioms of OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">ClassAxiom</span>&nbsp;:= <span class="nonterminal">SubClassOf</span> | <span class="nonterminal">EquivalentClasses</span> | <span class="nonterminal">DisjointClasses</span> | <span class="nonterminal">DisjointUnion</span>
</p>
</div>
<a name="Subclass_Axioms"></a><h4> <span class="mw-headline">9.1.1  Subclass Axioms </span></h4>
<p>A subclass axiom <span class="name">SubClassOf( CE<sub>1</sub> CE<sub>2</sub> )</span> states that the class expression <span class="name">CE<sub>1</sub></span> is a subclass of the class expression <span class="name">CE<sub>2</sub></span>. Roughly speaking, this states that <span class="name">CE<sub>1</sub></span> is more specific than <span class="name">CE<sub>2</sub></span>. Subclass axioms are a fundamental type of axioms in OWL 2 and can be used to construct a class hierarchy. Other kinds of class expression axiom can be seen as syntactic shortcuts for one or more subclass axioms.
</p>
<div class="grammar">
<p><span class="nonterminal">SubClassOf</span>&nbsp;:= 'SubClassOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subClassExpression</span> <span class="nonterminal">superClassExpression</span> ')'<br />
<span class="nonterminal">subClassExpression</span>&nbsp;:= <span class="nonterminal">ClassExpression</span><br />
<span class="nonterminal">superClassExpression</span>&nbsp;:= <span class="nonterminal">ClassExpression</span>
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubClassOf( <i>a:Baby</i> <i>a:Child</i> )
  </td><td> Each baby is a child.
</td></tr>
<tr valign="top"><td> SubClassOf( <i>a:Child</i> <i>a:Person</i> )
  </td><td> Each child is a person.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Baby</i> <i>a:Stewie</i> )
  </td><td> Stewie is a baby.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Baby</i> <i>rdfs:subClassOf</i> <i>a:Child</i> .
  </td><td> Each baby is a child.
</td></tr>
<tr valign="top"><td> <i>a:Child</i> <i>rdfs:subClassOf</i> <i>a:Person</i> .
  </td><td> Each child is a person.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Baby</i> .
  </td><td> Stewie is a baby.
</td></tr>
</table>
<p>Since <i>a:Stewie</i> is an instance of <i>a:Baby</i>, by the first subclass axiom <i>a:Stewie</i> is classified as an instance of <i>a:Child</i> as well. Similarly, by the second subclass axiom <i>a:Stewie</i> is classified as an instance of <i>a:Person</i>. This style of reasoning can be applied to any instance of <i>a:Baby</i> and not just <i>a:Stewie</i>; therefore, one can conclude that <i>a:Baby</i> is a subclass of <i>a:Person</i>. In other words, this ontology entails the following axiom:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SubClassOf( <i>a:Baby</i> <i>a:Person</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Baby</i> <i>rdfs:subClassOf</i> <i>a:Person</i> .
</td></tr>
</table>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubClassOf( <i>a:PersonWithChild</i><br /> &nbsp;&nbsp;&nbsp; ObjectSomeValuesFrom( <i>a:hasChild</i> ObjectUnionOf( <i>a:Boy</i> <i>a:Girl</i> ) )<br /> )
  </td><td> A person that has a child has either at least one boy or a girl.
</td></tr>
<tr valign="top"><td> SubClassOf( <i>a:Boy</i> <i>a:Child</i> )
  </td><td> Each boy is a child.
</td></tr>
<tr valign="top"><td> SubClassOf( <i>a:Girl</i> <i>a:Child</i> )
  </td><td> Each girl is a child.
</td></tr>
<tr valign="top"><td> SubClassOf( ObjectSomeValuesFrom( <i>a:hasChild</i> <i>a:Child</i>  ) <i>a:Parent</i> )
  </td><td> If some object has a child, then this object is a parent.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:PersonWithChild</i> <i>rdfs:subClassOf</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br />  _:x <i>owl:onProperty</i> <i>a:hasChild</i> .<br /> _:x <i>owl:someValuesFrom</i> _:y .<br /> _:y <i>rdf:type</i> <i>owl:Class</i> .<br /> _:y <i>owl:unionOf</i> ( <i>a:Boy</i> <i>a:Girl</i> ) .
  </td><td> A person that has a child has either at least one boy or a girl.
</td></tr>
<tr valign="top"><td> <i>a:Boy</i> <i>rdfs:subClassOf</i> <i>a:Child</i> .
  </td><td> Each boy is a child.
</td></tr>
<tr valign="top"><td> <i>a:Girl</i> <i>rdfs:subClassOf</i> <i>a:Child</i> .
  </td><td> Each girl is a child.
</td></tr>
<tr valign="top"><td> _:z <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:z <i>owl:onProperty</i> <i>a:hasChild</i> .<br /> _:z <i>owl:someValuesFrom</i> <i>a:Child</i> .<br /> _:z <i>rdfs:subClassOf</i> <i>a:Parent</i> .
  </td><td> If some object has a child, then this object is a parent.
</td></tr>
</table>
<p>The first axiom states that each instance of <i>a:PersonWithChild</i> is connected to an individual that is an instance of either <i>a:Boy</i> or <i>a:Girl</i>. (Because of the open-world semantics of OWL 2, this does not mean that there must be only one such individual or that all such individuals must be instances of either <i>a:Boy</i> or of <i>a:Girl</i>.) Furthermore, each instance of <i>a:Boy</i> or <i>a:Girl</i> is an instance of <i>a:Child</i>. Finally, the last axiom says that all individuals that are connected by <i>a:hasChild</i> to an instance of <i>a:Child</i> are instances of <i>a:Parent</i>. Since this reasoning holds for each instance of <i>a:PersonWithChild</i>, each such instance is also an instance of <i>a:Parent</i>. In other words, this ontology entails the following axiom:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SubClassOf( <i>a:PersonWithChild</i> <i>a:Parent</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:PersonWithChild</i> <i>rdfs:subClassOf</i> <i>a:Parent</i> .
</td></tr>
</table>
</div>
<a name="Equivalent_Classes"></a><h4> <span class="mw-headline">9.1.2  Equivalent Classes </span></h4>
<p>An equivalent classes axiom <span class="name">EquivalentClasses( CE<sub>1</sub> ... CE<sub>n</sub> )</span> states that all of the class expressions <span class="name">CE<sub>i</sub></span>, 1 &le; i &le; n, are semantically equivalent to each other. This axiom allows one to use each <span class="name">CE<sub>i</sub></span> as a synonym for each <span class="name">CE<sub>j</sub></span> &mdash; that is, in any expression in the ontology containing such an axiom, <span class="name">CE<sub>i</sub></span> can be replaced with <span class="name">CE<sub>j</sub></span> without affecting the meaning of the ontology. An axiom <span class="name">EquivalentClasses( CE<sub>1</sub> CE<sub>2</sub> )</span> is equivalent to the following two axioms:
</p>
<div class="indent">
<p><span class="name">SubClassOf( CE<sub>1</sub> CE<sub>2</sub> )</span><br />
<span class="name">SubClassOf( CE<sub>2</sub> CE<sub>1</sub> )</span>
</p>
</div>
<p>Axioms of the form <span class="name">EquivalentClasses( C CE )</span>, where <span class="name">C</span> is a class and <span class="name">CE</span> is a class expression, are often called <i>definitions</i>, because they define the class <span class="name">C</span> in terms of the class expression <span class="name">CE</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">EquivalentClasses</span>&nbsp;:= 'EquivalentClasses' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> EquivalentClasses( <i>a:Boy</i> ObjectIntersectionOf( <i>a:Child</i> <i>a:Man</i> ) )
  </td><td> A boy is a male child.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Child</i> <i>a:Chris</i> )
  </td><td> Chris is a child.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Man</i> <i>a:Chris</i> )
  </td><td> Chris is a man.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Boy</i> <i>a:Stewie</i> )
  </td><td> Stewie is a boy.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Boy</i> <i>owl:equivalentClass</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:intersectionOf</i> ( <i>a:Child</i> <i>a:Man</i> ) .
  </td><td> A boy is a male child.
</td></tr>
<tr valign="top"><td> <i>a:Chris</i> <i>rdf:type</i> <i>a:Child</i> .
  </td><td> Chris is a child.
</td></tr>
<tr valign="top"><td> <i>a:Chris</i> <i>rdf:type</i> <i>a:Man</i> .
  </td><td> Chris is a man.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Boy</i> .
  </td><td> Stewie is a boy.
</td></tr>
</table>
<p>The first axiom defines the class <i>a:Boy</i> as an intersection of the classes <i>a:Child</i> and <i>a:Man</i>; thus, the instances of <i>a:Boy</i> are exactly those instances that are both an instance of <i>a:Child</i> and an instance of <i>a:Man</i>. Such a definition consists of two directions. The first direction implies that each instance of <i>a:Child</i> and <i>a:Man</i> is an instance of <i>a:Boy</i>; since <i>a:Chris</i> satisfies these two conditions, it is classified as an instance of <i>a:Boy</i>. The second direction implies that each <i>a:Boy</i> is an instance of <i>a:Child</i> and of <i>a:Man</i>; thus, <i>a:Stewie</i> is classified as an instance of <i>a:Man</i> and of <i>a:Boy</i>.
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> EquivalentClasses( <i>a:MongrelOwner</i> ObjectSomeValuesFrom( <i>a:hasPet</i> <i>a:Mongrel</i> ) )
  </td><td> A mongrel owner has a pet that is a mongrel.
</td></tr>
<tr valign="top"><td> EquivalentClasses( <i>a:DogOwner</i> ObjectSomeValuesFrom( <i>a:hasPet</i> <i>a:Dog</i> ) )
  </td><td> A dog owner has a pet that is a dog.
</td></tr>
<tr valign="top"><td> SubClassOf( <i>a:Mongrel</i> <i>a:Dog</i> )
  </td><td> Each mongrel is a dog.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:MongrelOwner</i> <i>a:Peter</i> )
  </td><td> Peter is a mongrel owner.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:MongrelOwner</i> <i>owl:equivalentClass</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasPet</i> .<br /> _:x <i>owl:someValuesFrom</i> <i>a:Mongrel</i> .
  </td><td> A mongrel owner has a pet that is a mongrel.
</td></tr>
<tr valign="top"><td> <i>a:DogOwner</i> <i>owl:equivalentClass</i> _:y .<br /> _:y <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:y <i>owl:onProperty</i> <i>a:hasPet</i> .<br /> _:y <i>owl:someValuesFrom</i> <i>a:Dog</i> .
  </td><td> A dog owner has a pet that is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Mongrel</i> <i>rdfs:subClassOf</i> <i>a:Dog</i> .
  </td><td> Each mongrel is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:MongrelOwner</i> .
  </td><td> Peter is a mongrel owner.
</td></tr>
</table>
<p>By the first axiom, each instance <span class="name">x</span> of <i>a:MongrelOwner</i> must be connected via  <i>a:hasPet</i> to an instance of <i>a:Mongrel</i>; by the third axiom, this individual is an instance of <i>a:Dog</i>; thus, by the second axiom, <span class="name">x</span> is an instance of <i>a:DogOwner</i>. In other words, this ontology entails the following axiom:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SubClassOf( <i>a:MongrelOwner</i> <i>a:DogOwner</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:MongrelOwner</i> <i>rdfs:subClassOf</i> <i>a:DogOwner</i> .
</td></tr>
</table>
<p>By the fourth axiom, <i>a:Peter</i> is then classified as an instance of <i>a:DogOwner</i>.
</p>
</div>
<a name="Disjoint_Classes"></a><h4> <span class="mw-headline">9.1.3  Disjoint Classes </span></h4>
<p>A disjoint classes axiom <span class="name">DisjointClasses( CE<sub>1</sub> ... CE<sub>n</sub> )</span> states that all of the class expressions <span class="name">CE<sub>i</sub></span>, 1 &le; i &le; n, are pairwise disjoint; that is, no individual can be at the same time an instance of both <span class="name">CE<sub>i</sub></span> and <span class="name">CE<sub>j</sub></span> for i &ne; j. An axiom <span class="name">DisjointClasses( CE<sub>1</sub> CE<sub>2</sub> )</span> is equivalent to the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( CE<sub>1</sub> ObjectComplementOf( CE<sub>2</sub> ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DisjointClasses</span>&nbsp;:= 'DisjointClasses' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DisjointClasses( <i>a:Boy</i> <i>a:Girl</i> )
  </td><td> Nothing can be both a boy and a girl.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Boy</i> <i>a:Stewie</i> )
  </td><td> Stewie is a boy.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Boy</i> <i>owl:disjointWith</i> <i>a:Girl</i> .
  </td><td> Nothing can be both a boy and a girl.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Boy</i> .
  </td><td> Stewie is a boy.
</td></tr>
</table>
<p>The axioms in this ontology imply that <i>a:Stewie</i> can be classified as an instance of the following class expression:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectComplementOf( <i>a:Girl</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:complementOf</i> <i>a:Girl</i> .
</td></tr>
</table>
<p>Furthermore, if the ontology were extended with the following assertion, the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Girl</i> <i>a:Stewie</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Girl</i> .
</td></tr>
</table>
</div>
<a name="Disjoint_Union_of_Class_Expressions"></a><h4> <span class="mw-headline">9.1.4  Disjoint Union of Class Expressions </span></h4>
<p>A disjoint union axiom <span class="name">DisjointUnion( C CE<sub>1</sub> ... CE<sub>n</sub> )</span> states that a class <span class="name">C</span> is a disjoint union of the class expressions <span class="name">CE<sub>i</sub></span>, 1 &le; i &le; n, all of which are pairwise disjoint. Such axioms are sometimes referred to as <i>covering</i> axioms, as they state that the extensions of all <span class="name">CE<sub>i</sub></span> exactly cover the extension of <span class="name">C</span>. Thus, each instance of <span class="name">C</span> is an instance of exactly one <span class="name">CE<sub>i</sub></span>, and each instance of <span class="name">CE<sub>i</sub></span> is an instance of <span class="name">C</span>. Each such axiom can be seen as a syntactic shortcut for the following two axioms:
</p>
<div class="indent">
<p><span class="name">EquivalentClasses( C ObjectUnionOf( CE<sub>1</sub> ... CE<sub>n</sub> ) )</span><br /> <span class="name">DisjointClasses( CE<sub>1</sub> ... CE<sub>n</sub> )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DisjointUnion</span>&nbsp;:= 'DisjointUnion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Class</span> <span class="nonterminal">disjointClassExpressions</span> ')'<br />
<span class="nonterminal">disjointClassExpressions</span>&nbsp;:= <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> }
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DisjointUnion( <i>a:Child</i> <i>a:Boy</i> <i>a:Girl</i> )
  </td><td> Each child is either a boy or a girl, each boy is a child, each girl is a child, and nothing can be both a boy and a girl.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Child</i> <i>a:Stewie</i> )
  </td><td> Stewie is a child.
</td></tr>
<tr valign="top"><td> ClassAssertion( ObjectComplementOf( <i>a:Girl</i> ) <i>a:Stewie</i> )
  </td><td> Stewie is not a girl.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Child</i> <i>owl:disjointUnionOf</i> ( <i>a:Boy</i> <i>a:Girl</i> ) .
  </td><td> Each child is either a boy or a girl, each boy is a child, each girl is a child, and nothing can be both a boy and a girl.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> <i>a:Child</i> .
  </td><td> Stewie is a child.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Class</i> .<br /> _:x <i>owl:complementOf</i> <i>a:Girl</i> .
  </td><td> Stewie is not a girl.
</td></tr>
</table>
<p>By the first two axioms, <i>a:Stewie</i> is either an instance of <i>a:Boy</i> or <i>a:Girl</i>. The last assertion eliminates the second possibility, so <i>a:Stewie</i> is classified as an instance of <i>a:Boy</i>.
</p>
</div>
<a name="Object_Property_Axioms"></a><h3> <span class="mw-headline">9.2  Object Property Axioms </span></h3>
<p>OWL 2 provides axioms that can be used to characterize and establish relationships between object property expressions. For clarity, the structure of these axioms is shown in two separate figures, Figure 14 and Figure 15. The <span class="nonterminal">SubObjectPropertyOf</span> axiom allows one to state that the extension of one object property expression is included in the extension of another object property expression. The <span class="nonterminal">EquivalentObjectProperties</span> axiom allows one to state that the extensions of several object property expressions are the same. The <span class="nonterminal">DisjointObjectProperties</span> axiom allows one to state that the extensions of several object property expressions are pairwise disjoint &mdash; that is, that they do not share pairs of connected individuals. The <span class="nonterminal">InverseObjectProperties</span> axiom can be used to state that two object property expressions are the inverse of each other. The <span class="nonterminal">ObjectPropertyDomain</span> and <span class="nonterminal">ObjectPropertyRange</span> axioms can be used to restrict the first and the second individual, respectively, connected by an object property expression to be instances of the specified class expression.
</p>
<div class="image">
<p><img alt="Object Property Axioms in OWL 2, Part I" border="0" height="618" src="A_objectproperty1.gif" width="960" /><br />
<span class="caption">Figure 14.</span> Object Property Axioms in OWL 2, Part I
</p>
</div>
<p>The <span class="nonterminal">FunctionalObjectProperty</span> axiom allows one to state that an object property expression is functional &mdash; that is, that each individual can have at most one outgoing connection of the specified object property expression. The <span class="nonterminal">InverseFunctionalObjectProperty</span> axiom allows one to state that an object property expression is inverse-functional &mdash; that is, that each individual can have at most one incoming connection of the specified object property expression. Finally, the <span class="nonterminal">ReflexiveObjectProperty</span>, <span class="nonterminal">IrreflexiveObjectProperty</span>, <span class="nonterminal">SymmetricObjectProperty</span>, <span class="nonterminal">AsymmetricObjectProperty</span>, and <span class="nonterminal">TransitiveObjectProperty</span> axioms allow one to state that an object property expression is reflexive, irreflexive, symmetric, asymmetric, or transitive, respectively.
</p>
<div class="image">
<p><img alt="Axioms Defining Characteristics of Object Properties in OWL 2, Part II" border="0" height="615" src="A_objectproperty2.gif" width="943" /><br />
<span class="caption">Figure 15.</span> Axioms Defining Characteristics of Object Properties in OWL 2, Part II
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">ObjectPropertyAxiom</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SubObjectPropertyOf</span> | <span class="nonterminal">EquivalentObjectProperties</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DisjointObjectProperties</span> | <span class="nonterminal">InverseObjectProperties</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectPropertyDomain</span> | <span class="nonterminal">ObjectPropertyRange</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">FunctionalObjectProperty</span> | <span class="nonterminal">InverseFunctionalObjectProperty</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ReflexiveObjectProperty</span> | <span class="nonterminal">IrreflexiveObjectProperty</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SymmetricObjectProperty</span> | <span class="nonterminal">AsymmetricObjectProperty</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">TransitiveObjectProperty</span>
</p>
</div>
<a name="Object_Subproperties"></a><h4> <span class="mw-headline">9.2.1  Object Subproperties </span></h4>
<p>Object subproperty axioms are analogous to subclass axioms, and they come in two forms.
</p><p>The basic form is <span class="name" id="a_SubObjectPropertyOf">SubObjectPropertyOf( OPE<sub>1</sub> OPE<sub>2</sub> )</span>. This axiom states that the object property expression <span class="name">OPE<sub>1</sub></span> is a subproperty of the object property expression <span class="name">OPE<sub>2</sub></span> &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">OPE<sub>1</sub></span> to an individual <span class="name">y</span>, then <span class="name">x</span> is also connected by <span class="name">OPE<sub>2</sub></span> to <span class="name">y</span>.
</p><p>The more complex form is <span class="name" id="a_SubObjectPropertyOfChain">SubObjectPropertyOf( ObjectPropertyChain( OPE<sub>1</sub> ... OPE<sub>n</sub> ) OPE )</span>. This axiom states that, if an individual <span class="name">x</span> is connected by a sequence of object property expressions <span class="name">OPE<sub>1</sub></span>, ..., <span class="name">OPE<sub>n</sub></span> with an individual <span class="name">y</span>, then <span class="name">x</span> is also connected with <span class="name">y</span> by the object property expression <span class="name">OPE</span>. Such axioms are also known as <i>complex role inclusions</i> [<cite><a href="#ref-sroiq" title="">SROIQ</a></cite>].
</p>
<div class="grammar">
<p><span class="nonterminal">SubObjectPropertyOf</span>&nbsp;:= 'SubObjectPropertyOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subObjectPropertyExpression</span> <span class="nonterminal">superObjectPropertyExpression</span> ')'<br />
<span class="nonterminal">subObjectPropertyExpression</span>&nbsp;:= <span class="nonterminal">ObjectPropertyExpression</span> | <span class="nonterminal">propertyExpressionChain</span><br />
<span class="nonterminal">propertyExpressionChain</span>&nbsp;:= 'ObjectPropertyChain' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> { <span class="nonterminal">ObjectPropertyExpression</span> } ')'<br />
<span class="nonterminal">superObjectPropertyExpression</span>&nbsp;:= <span class="nonterminal">ObjectPropertyExpression</span>
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubObjectPropertyOf( <i>a:hasDog</i> <i>a:hasPet</i> )
  </td><td> Having a dog implies having a pet.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasDog</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a dog of Peter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasDog</i> <i>rdfs:subPropertyOf</i> <i>a:hasPet</i> .
  </td><td> Having a dog implies having a pet.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasDog</i> <i>a:Brian</i> .
  </td><td> Brian is a dog of Peter.
</td></tr>
</table>
<p>Since <i>a:hasDog</i> is a subproperty of <i>a:hasPet</i>, each tuple of individuals connected by the former property expression is also connected by the latter property expression. Therefore, this ontology entails that <i>a:Peter</i> is connected to <i>a:Brian</i> by <i>a:hasPet</i>; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasPet</i> <i>a:Peter</i> <i>a:Brian</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:hasPet</i> <i>a:Brian</i> .
</td></tr>
</table>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasMother</i> <i>a:hasSister</i> ) <i>a:hasAunt</i> )
  </td><td> The sister of someone's mother is that person's aunt.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasMother</i> <i>a:Stewie</i> <i>a:Lois</i> )
  </td><td> Lois is the mother of Stewie.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasSister</i> <i>a:Lois</i> <i>a:Carol</i> )
  </td><td> Carol is a sister of Lois.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasAunt</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasMother</i> <i>a:hasSister</i> ) .
  </td><td> The sister of someone's mother is that person's aunt.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasMother</i> <i>a:Lois</i> .
  </td><td> Lois is the mother of Stewie.
</td></tr>
<tr valign="top"><td> <i>a:Lois</i> <i>a:hasSister</i> <i>a:Carol</i> .
  </td><td> Carol is a sister of Lois.
</td></tr>
</table>
<p>The axioms in this ontology imply that <i>a:Stewie</i> is connected by <i>a:hasAunt</i> with <i>a:Carol</i>; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasAunt</i> <i>a:Stewie</i> <i>a:Carol</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Stewie</i> <i>a:hasAunt</i> <i>a:Carol</i> .
</td></tr>
</table>
</div>
<a name="Equivalent_Object_Properties"></a><h4> <span class="mw-headline">9.2.2  Equivalent Object Properties </span></h4>
<p>An equivalent object properties axiom <span class="name">EquivalentObjectProperties( OPE<sub>1</sub> ... OPE<sub>n</sub> )</span> states that all of the object property expressions <span class="name">OPE<sub>i</sub></span>, 1 &le; i &le; n, are semantically equivalent to each other. This axiom allows one to use each <span class="name">OPE<sub>i</sub></span> as a synonym for each <span class="name">OPE<sub>j</sub></span> &mdash; that is, in any expression in the ontology containing such an axiom, <span class="name">OPE<sub>i</sub></span> can be replaced with <span class="name">OPE<sub>j</sub></span> without affecting the meaning of the ontology. The axiom <span class="name">EquivalentObjectProperties( OPE<sub>1</sub> OPE<sub>2</sub> )</span> is equivalent to the following two axioms:
</p>
<div class="indent">
<p><span class="name">SubObjectPropertyOf( OPE<sub>1</sub> OPE<sub>2</sub> )</span><br />
<span class="name">SubObjectPropertyOf( OPE<sub>2</sub> OPE<sub>1</sub> )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">EquivalentObjectProperties</span>&nbsp;:= 'EquivalentObjectProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> { <span class="nonterminal">ObjectPropertyExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> EquivalentObjectProperties( <i>a:hasBrother</i> <i>a:hasMaleSibling</i> )
  </td><td> Having a brother is the same as having a male sibling.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasBrother</i> <i>a:Chris</i> <i>a:Stewie</i> )
  </td><td> Stewie is a brother of Chris.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasMaleSibling</i> <i>a:Stewie</i> <i>a:Chris</i> )
  </td><td> Chris is a male sibling of Stewie.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasBrother</i> <i>owl:equivalentProperty</i> <i>a:hasMaleSibling</i> .
  </td><td> Having a brother is the same as having a male sibling.
</td></tr>
<tr valign="top"><td> <i>a:Chris</i> <i>a:hasBrother</i> <i>a:Stewie</i> .
  </td><td> Stewie is a brother of Chris.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasMaleSibling</i> <i>a:Chris</i> .
  </td><td> Chris is a male sibling of Stewie.
</td></tr>
</table>
<p>Since <i>a:hasBrother</i> and <i>a:hasMaleSibling</i> are equivalent properties, this ontology entails that <i>a:Chris</i> is connected by <i>a:hasMaleSibling</i> with <i>a:Stewie</i> &mdash; that is, it entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasMaleSibling</i> <i>a:Chris</i> <i>a:Stewie</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Chris</i> <i>a:hasMaleSibling</i> <i>a:Stewie</i> .
</td></tr>
</table>
<p>Furthermore, the ontology also entails that that <i>a:Stewie</i> is connected by <i>a:hasBrother</i> with <i>a:Chris</i> &mdash; that is, it entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasBrother</i> <i>a:Stewie</i> <i>a:Chris</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Stewie</i> <i>a:hasBrother</i> <i>a:Chris</i> .
</td></tr>
</table>
</div>
<a name="Disjoint_Object_Properties"></a><h4> <span class="mw-headline">9.2.3  Disjoint Object Properties </span></h4>
<p>A disjoint object properties axiom <span class="name">DisjointObjectProperties( OPE<sub>1</sub> ... OPE<sub>n</sub> )</span> states that all of the object property expressions <span class="name">OPE<sub>i</sub></span>, 1 &le; i &le; n, are pairwise disjoint; that is, no individual <span class="name">x</span> can be connected to an individual <span class="name">y</span> by both <span class="name">OPE<sub>i</sub></span> and <span class="name">OPE<sub>j</sub></span> for i &ne; j.
</p>
<div class="grammar">
<p><span class="nonterminal">DisjointObjectProperties</span>&nbsp;:= 'DisjointObjectProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> { <span class="nonterminal">ObjectPropertyExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DisjointObjectProperties( <i>a:hasFather</i> <i>a:hasMother</i> )
  </td><td> Fatherhood is disjoint with motherhood.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasFather</i> <i>a:Stewie</i> <i>a:Peter</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasMother</i> <i>a:Stewie</i> <i>a:Lois</i> )
  </td><td> Lois is the mother of Stewie.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasFather</i> <i>owl:propertyDisjointWith</i> <i>a:hasMother</i> .
  </td><td> Fatherhood is disjoint with motherhood.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasFather</i> <i>a:Peter</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasMother</i> <i>a:Lois</i> .
  </td><td> Lois is the mother of Stewie.
</td></tr>
</table>
<p>In this ontology, the disjointness axiom is satisfied. If, however, one were to add the following assertion, the disjointness axiom would be invalidated and the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasMother</i> <i>a:Stewie</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Stewie</i> <i>a:hasMother</i> <i>a:Peter</i> .
</td></tr>
</table>
</div>
<a name="Inverse_Object_Properties_2"></a><h4> <span class="mw-headline">9.2.4  Inverse Object Properties </span></h4>
<p>An inverse object properties axiom <span class="name">InverseObjectProperties( OPE<sub>1</sub> OPE<sub>2</sub> )</span> states that the object property expression <span class="name">OPE<sub>1</sub></span> is an inverse of the object property expression <span class="name">OPE<sub>2</sub></span>. Thus, if an individual <span class="name">x</span> is connected by <span class="name">OPE<sub>1</sub></span> to an individual <span class="name">y</span>, then <span class="name">y</span> is also connected by <span class="name">OPE<sub>2</sub></span> to <span class="name">x</span>, and vice versa. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">EquivalentObjectProperties( OPE<sub>1</sub> ObjectInverseOf( OPE<sub>2</sub> ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">InverseObjectProperties</span>&nbsp;:= 'InverseObjectProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> InverseObjectProperties( <i>a:hasFather</i> <i>a:fatherOf</i> )
  </td><td> Having a father is the opposite of being a father of someone.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasFather</i> <i>a:Stewie</i> <i>a:Peter</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Chris</i> )
  </td><td> Peter is Chris's father.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasFather</i> <i>owl:inverseOf</i> <i>a:fatherOf</i> .
  </td><td> Having a father is the opposite of being a father of someone.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasFather</i> <i>a:Peter</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Chris</i> .
  </td><td> Peter is Chris's father.
</td></tr>
</table>
<p>This ontology entails that <i>a:Peter</i> is connected by <i>a:fatherOf</i> with <i>a:Stewie</i> &mdash; that is, it entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
</td></tr>
</table>
<p>Furthermore, the ontology also entails that <i>a:Chris</i> is connected by <i>a:hasFather</i> with <i>a:Peter</i> &mdash; that is, it entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasFather</i> <i>a:Chris</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Chris</i> <i>a:hasFather</i> <i>a:Peter</i> .
</td></tr>
</table>
</div>
<a name="Object_Property_Domain"></a><h4> <span class="mw-headline">9.2.5  Object Property Domain </span></h4>
<p>An object property domain axiom <span class="name">ObjectPropertyDomain( OPE CE )</span> states that the domain of the object property expression <span class="name">OPE</span> is the class expression <span class="name">CE</span> &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">OPE</span> with some other individual, then <span class="name">x</span> is an instance of <span class="name">CE</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( ObjectSomeValuesFrom( OPE <i>owl:Thing</i> ) CE )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">ObjectPropertyDomain</span>&nbsp;:= 'ObjectPropertyDomain' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyDomain( <i>a:hasDog</i> <i>a:Person</i> )
  </td><td> Only people can own dogs.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasDog</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a dog of Peter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasDog</i> <i>rdfs:domain</i> <i>a:Person</i> .
  </td><td> Only people can own dogs.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasDog</i> <i>a:Brian</i> .
  </td><td> Brian is a dog of Peter.
</td></tr>
</table>
<p>By the first axiom, each individual that has an outgoing <i>a:hasDog</i> connection must be an instance of <i>a:Person</i>. Therefore, <i>a:Peter</i> can be classified as an instance of <i>a:Person</i>; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Person</i> <i>a:Peter</i>  )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>rdf:type</i> <i>a:Person</i> .
</td></tr>
</table>
<p>Domain axioms in OWL 2 have a standard first-order semantics that is somewhat different from the semantics of such axioms in databases and object-oriented systems, where such axioms are interpreted as checks. The domain axiom from the example ontology would in such systems be interpreted as a <i>constraint</i> saying that <i>a:hasDog</i> can point only from individuals that are known to be instances of <i>a:Person</i>; furthermore, since the example ontology does not explicitly state that <i>a:Peter</i> is an instance of <i>a:Person</i>, one might expect the domain constraint to be invalidated. This, however, is not the case in OWL 2: as shown in the previous paragraph, the missing type is <i>inferred</i> from the domain constraint.
</p>
</div>
<a name="Object_Property_Range"></a><h4> <span class="mw-headline">9.2.6  Object Property Range </span></h4>
<p>An object property range axiom <span class="name">ObjectPropertyRange( OPE CE )</span> states that the range of the object property expression <span class="name">OPE</span> is the class expression <span class="name">CE</span> &mdash; that is, if some individual is connected by <span class="name">OPE</span> with an individual <span class="name">x</span>, then <span class="name">x</span> is an instance of <span class="name">CE</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( <i>owl:Thing</i> ObjectAllValuesFrom( OPE CE ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">ObjectPropertyRange</span>&nbsp;:= 'ObjectPropertyRange' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyRange( <i>a:hasDog</i> <i>a:Dog</i> )
  </td><td> The range of the <i>a:hasDog</i> property is the class <i>a:Dog</i>.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasDog</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a dog of Peter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasDog</i> <i>rdfs:range</i> <i>a:Dog</i> .
  </td><td> The range of the <i>a:hasDog</i> property is the class <i>a:Dog</i>.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasDog</i> <i>a:Brian</i> .
  </td><td> Brian is a dog of Peter.
</td></tr>
</table>
<p>By the first axiom, each individual that has an incoming <i>a:hasDog</i> connection must be an instance of <i>a:Dog</i>. Therefore, <i>a:Brian</i> can be classified as an instance of <i>a:Dog</i>; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
</td></tr>
</table>
<p>Range axioms in OWL 2 have a standard first-order semantics that is somewhat different from the semantics of such axioms in databases and object-oriented systems, where such axioms are interpreted as checks. The range axiom from the example ontology would in such systems be interpreted as a <i>constraint</i> saying that <i>a:hasDog</i> can point only to individuals that are known to be instances of <i>a:Dog</i>; furthermore, since the example ontology does not explicitly state that <i>a:Brian</i> is an instance of <i>a:Dog</i>, one might expect the range constraint to be invalidated. This, however, is not the case in OWL 2: as shown in the previous paragraph, the missing type is <i>inferred</i> from the range constraint.
</p>
</div>
<a name="Functional_Object_Properties"></a><h4> <span class="mw-headline">9.2.7  Functional Object Properties </span></h4>
<p>An object property functionality axiom <span class="name">FunctionalObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is functional &mdash; that is, for each individual <span class="name">x</span>, there can be at most one distinct individual <span class="name">y</span> such that <span class="name">x</span> is connected by <span class="name">OPE</span> to <span class="name">y</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( <i>owl:Thing</i> ObjectMaxCardinality( 1 OPE ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">FunctionalObjectProperty</span>&nbsp;:= 'FunctionalObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> FunctionalObjectProperty( <i>a:hasFather</i> )
  </td><td> Each object can have at most one father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasFather</i> <i>a:Stewie</i> <i>a:Peter</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasFather</i> <i>a:Stewie</i> <i>a:Peter_Griffin</i> )
  </td><td> Peter Griffin is Stewie's father.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasFather</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one father.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasFather</i> <i>a:Peter</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> <i>a:Stewie</i> <i>a:hasFather</i> <i>a:Peter_Griffin</i> .
  </td><td> Peter Griffin is Stewie's father.
</td></tr>
</table>
<p>By the first axiom, <i>a:hasFather</i> can point from <i>a:Stewie</i> to at most one distinct individual, so <i>a:Peter</i> and <i>a:Peter_Griffin</i> must be equal; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SameIndividual( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter_Griffin</i> <i>owl:sameAs</i> <i>a:Peter</i> .
</td></tr>
</table>
<p>One might expect the previous ontology to be inconsistent, since the <i>a:hasFather</i> property points to two different values for <i>a:Stewie</i>. OWL 2, however, does not make the unique name assumption, so <i>a:Peter</i> and <i>a:Peter_Griffin</i> are not necessarily distinct individuals. If the ontology were extended with the following assertion, then it would indeed become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DifferentIndividuals( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>owl:differentFrom</i> <i>a:Peter_Griffin</i> .
</td></tr>
</table>
</div>
<a name="Inverse-Functional_Object_Properties"></a><h4> <span class="mw-headline">9.2.8  Inverse-Functional Object Properties </span></h4>
<p>An object property inverse functionality axiom <span class="name">InverseFunctionalObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is inverse-functional &mdash; that is, for each individual <span class="name">x</span>, there can be at most one individual <span class="name">y</span> such that <span class="name">y</span> is connected by <span class="name">OPE</span> with <span class="name">x</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( <i>owl:Thing</i> ObjectMaxCardinality( 1 ObjectInverseOf( OPE ) ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">InverseFunctionalObjectProperty</span>&nbsp;:= 'InverseFunctionalObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> InverseFunctionalObjectProperty( <i>a:fatherOf</i> )
  </td><td> Each object can have at most one father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter_Griffin</i> <i>a:Stewie</i> )
  </td><td> Peter Griffin is Stewie's father.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:fatherOf</i> <i>rdf:type</i> <i>owl:InverseFunctionalProperty</i> .
  </td><td> Each object can have at most one father.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> <i>a:Peter_Griffin</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter Griffin is Stewie's father.
</td></tr>
</table>
<p>By the first axiom, at most one distinct individual can point by <i>a:fatherOf</i> to <i>a:Stewie</i>, so <i>a:Peter</i> and <i>a:Peter_Griffin</i> must be equal; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SameIndividual( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>owl:sameAs</i> <i>a:Peter_Griffin</i> .
</td></tr>
</table>
<p>One might expect the previous ontology to be inconsistent, since there are two individuals that <i>a:Stewie</i> is connected to by <i>a:fatherOf</i>. OWL 2, however, does not make the unique name assumption, so <i>a:Peter</i> and <i>a:Peter_Griffin</i> are not necessarily distinct individuals. If the ontology were extended with the following assertion, then it would indeed become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DifferentIndividuals( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>owl:differentFrom</i> <i>a:Peter_Griffin</i> .
</td></tr>
</table>
</div>
<a name="Reflexive_Object_Properties"></a><h4> <span class="mw-headline">9.2.9  Reflexive Object Properties </span></h4>
<p>An object property reflexivity axiom <span class="name">ReflexiveObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is reflexive &mdash; that is, each individual is connected by <span class="name">OPE</span> to itself. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( <i>owl:Thing</i> ObjectHasSelf( OPE ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">ReflexiveObjectProperty</span>&nbsp;:= 'ReflexiveObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ReflexiveObjectProperty( <i>a:knows</i> )
  </td><td> Everybody knows themselves.
</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Person</i> <i>a:Peter</i> )
  </td><td> Peter is a person.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:knows</i> <i>rdf:type</i> <i>owl:ReflexiveProperty</i> .
  </td><td> Everybody knows themselves.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:Person</i> .
  </td><td> Peter is a person.
</td></tr>
</table>
<p>By the first axiom, <i>a:Peter</i> must be connected by <i>a:knows</i> to itself; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:knows</i> <i>a:Peter</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:knows</i> <i>a:Peter</i> .
</td></tr>
</table>
</div>
<a name="Irreflexive_Object_Properties"></a><h4> <span class="mw-headline">9.2.10  Irreflexive Object Properties </span></h4>
<p>An object property irreflexivity axiom <span class="name">IrreflexiveObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is irreflexive &mdash; that is, no individual is connected by <span class="name">OPE</span> to itself. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( ObjectHasSelf( OPE ) <i>owl:Nothing</i> )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">IrreflexiveObjectProperty</span>&nbsp;:= 'IrreflexiveObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> IrreflexiveObjectProperty( <i>a:marriedTo</i> )
  </td><td> Nobody can be married to themselves.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:marriedTo</i> <i>rdf:type</i> <i>owl:IrreflexiveProperty</i> .
  </td><td> Nobody can be married to themselves.
</td></tr>
</table>
<p>If this ontology were extended with the following assertion, the irreflexivity axiom would be contradicted and the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:marriedTo</i> <i>a:Peter</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:marriedTo</i> <i>a:Peter</i> .
</td></tr>
</table>
</div>
<a name="Symmetric_Object_Properties"></a><h4> <span class="mw-headline">9.2.11  Symmetric Object Properties </span></h4>
<p>An object property symmetry axiom <span class="name">SymmetricObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is symmetric &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">OPE</span> to an individual <span class="name">y</span>, then <span class="name">y</span> is also connected by <span class="name">OPE</span> to <span class="name">x</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubObjectPropertyOf( OPE ObjectInverseOf( OPE ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">SymmetricObjectProperty</span>&nbsp;:= 'SymmetricObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SymmetricObjectProperty( <i>a:friend</i> )
  </td><td> If x is a friend of y, then y is a friend of x.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:friend</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a friend of Peter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:friend</i> <i>rdf:type</i> <i>owl:SymmetricProperty</i> .
  </td><td> If x is a friend of y, then y is a friend of x.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:friend</i> <i>a:Brian</i> .
  </td><td> Brian is a friend of Peter.
</td></tr>
</table>
<p>Since <i>a:friend</i> is symmetric, <i>a:Peter</i> must be connected by <i>a:friend</i> to <i>a:Brian</i>; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:friend</i> <i>a:Brian</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Brian</i> <i>a:friend</i> <i>a:Peter</i> .
</td></tr>
</table>
</div>
<a name="Asymmetric_Object_Properties"></a><h4> <span class="mw-headline">9.2.12  Asymmetric Object Properties </span></h4>
<p>An object property asymmetry axiom <span class="name">AsymmetricObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is asymmetric &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">OPE</span> to an individual <span class="name">y</span>, then <span class="name">y</span> cannot be connected by <span class="name">OPE</span> to <span class="name">x</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">AsymmetricObjectProperty</span>&nbsp;:= 'AsymmetricObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> AsymmetricObjectProperty( <i>a:parentOf</i> )
  </td><td> If x is a parent of y, then y is not a parent of x.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:parentOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is a parent of Stewie.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:parentOf</i> <i>rdf:type</i> <i>rdf:AsymmetricProperty</i> .
  </td><td> If x is a parent of y, then y is not a parent of x.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:parentOf</i> <i>a:Stewie</i> .
  </td><td> Peter is a parent of Stewie.
</td></tr>
</table>
<p>If this ontology were extended with the following assertion, the asymmetry axiom would be invalidated and the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:parentOf</i> <i>a:Stewie</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Stewie</i> <i>a:parentOf</i> <i>a:Peter</i> .
</td></tr>
</table>
</div>
<a name="Transitive_Object_Properties"></a><h4> <span class="mw-headline">9.2.13  Transitive Object Properties </span></h4>
<p>An object property transitivity axiom <span class="name">TransitiveObjectProperty( OPE )</span> states that the object property expression <span class="name">OPE</span> is transitive &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">OPE</span> to an individual <span class="name">y</span> that is connected by <span class="name">OPE</span> to an individual <span class="name">z</span>, then <span class="name">x</span> is also connected by <span class="name">OPE</span> to <span class="name">z</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubObjectPropertyOf( ObjectPropertyChain( OPE OPE ) OPE )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">TransitiveObjectProperty</span>&nbsp;:= 'TransitiveObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> TransitiveObjectProperty( <i>a:ancestorOf</i> )
  </td><td> If x is an ancestor of y and y is an ancestor of z, then x is an ancestor of z.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:ancestorOf</i> <i>a:Carter</i> <i>a:Lois</i> )
  </td><td> Carter is an ancestor of Lois.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:ancestorOf</i> <i>a:Lois</i> <i>a:Meg</i> )
  </td><td> Lois is an ancestor of Meg.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:ancestorOf</i> <i>rdf:type</i> <i>owl:TransitiveProperty</i> .
  </td><td> If x is an ancestor of y and y is an ancestor of z, then x is an ancestor of z.
</td></tr>
<tr valign="top"><td> <i>a:Carter</i> <i>a:ancestorOf</i> <i>a:Lois</i> .
  </td><td> Carter is an ancestor of Lois.
</td></tr>
<tr valign="top"><td> <i>a:Lois</i> <i>a:ancestorOf</i> <i>a:Meg</i> .
  </td><td> Lois is an ancestor of Meg.
</td></tr>
</table>
<p>Since <i>a:ancestorOf</i> is transitive, <i>a:Carter</i> must be connected by <i>a:ancestorOf</i> to <i>a:Meg</i> &amp;mdsah; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:ancestorOf</i> <i>a:Carter</i> <i>a:Meg</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Carter</i> <i>a:ancestorOf</i> <i>a:Meg</i> .
</td></tr>
</table>
</div>
<a name="Data_Property_Axioms"></a><h3> <span class="mw-headline">9.3  Data Property Axioms </span></h3>
<p>OWL 2 also provides for data property axioms. Their structure is similar to object property axioms, as shown in Figure 16. The <span class="nonterminal">SubDataPropertyOf</span> axiom allows one to state that the extension of one data property expression is included in the extension of another data property expression. The <span class="nonterminal">EquivalentDataProperties</span> allows one to state that several data property expressions have the same extension. The <span class="nonterminal">DisjointDataProperties</span> axiom allows one to state that the extensions of several data property expressions are disjoint with each other &mdash; that is, they do not share individual&ndash;literal pairs. The <span class="nonterminal">DataPropertyDomain</span> axiom can be used to restrict individuals connected by a property expression to be instances of the specified class; similarly, the <span class="nonterminal">DataPropertyRange</span> axiom can be used to restrict the literals pointed to by a property expression to be in the specified unary data range. Finally, the <span class="nonterminal">FunctionalDataProperty</span> axiom allows one to state that a data property expression is functional &mdash; that is, that each individual can have at most one outgoing connection of the specified data property expression. 
</p>
<div class="image">
<p><img alt="Data Property Axioms of OWL 2" border="0" height="611" src="A_dataproperty.gif" width="949" /><br />
<span class="caption">Figure 16.</span> Data Property Axioms of OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DataPropertyAxiom</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SubDataPropertyOf</span> | <span class="nonterminal">EquivalentDataProperties</span> | <span class="nonterminal">DisjointDataProperties</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataPropertyDomain</span> | <span class="nonterminal">DataPropertyRange</span> | <span class="nonterminal">FunctionalDataProperty</span>
</p>
</div>
<a name="Data_Subproperties"></a><h4> <span class="mw-headline">9.3.1  Data Subproperties </span></h4>
<p>A data subproperty axiom <span class="name">SubDataPropertyOf( DPE<sub>1</sub> DPE<sub>2</sub> )</span> states that the data property expression <span class="name">DPE<sub>1</sub></span> is a subproperty of the data property expression <span class="name">DPE<sub>2</sub></span> &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">DPE<sub>1</sub></span> to a literal <span class="name">y</span>, then <span class="name">x</span> is connected by <span class="name">DPE<sub>2</sub></span> to <span class="name">y</span> as well.
</p>
<div class="grammar">
<p><span class="nonterminal">SubDataPropertyOf</span>&nbsp;:= 'SubDataPropertyOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subDataPropertyExpression</span> <span class="nonterminal">superDataPropertyExpression</span> ')'<br />
<span class="nonterminal">subDataPropertyExpression</span>&nbsp;:= <span class="nonterminal">DataPropertyExpression</span><br />
<span class="nonterminal">superDataPropertyExpression</span>&nbsp;:= <span class="nonterminal">DataPropertyExpression</span>
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubDataPropertyOf( <i>a:hasLastName</i> <i>a:hasName</i> )
  </td><td> A last name of someone is his/her name as well.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasLastName</i> <i>a:Peter</i> "Griffin" )
  </td><td>Peter's last name is <span class="name">"Griffin"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasLastName</i> <i>rdfs:subPropertyOf</i> <i>a:hasName</i> .
  </td><td> A last name of someone is his/her name as well.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasLastName</i> "Griffin" .
  </td><td>Peter's last name is <span class="name">"Griffin"</span>.</td></tr>
</table>
<p>Since <i>a:hasLastName</i> is a subproperty of <i>a:hasName</i>, each individual connected by the former property to a literal is also connected by the latter property to the same literal. Therefore, this ontology entails that <i>a:Peter</i> is connected to <span class="name">"Griffin"</span> through <i>a:hasName</i>; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Griffin" )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:hasName</i> "Griffin" .
</td></tr>
</table>
</div>
<a name="Equivalent_Data_Properties"></a><h4> <span class="mw-headline">9.3.2  Equivalent Data Properties </span></h4>
<p>An equivalent data properties axiom <span class="name">EquivalentDataProperties( DPE<sub>1</sub> ... DPE<sub>n</sub> )</span> states that all the data property expressions <span class="name">DPE<sub>i</sub></span>, 1 &le; i &le; n, are semantically equivalent to each other. This axiom allows one to use each <span class="name">DPE<sub>i</sub></span> as a synonym for each <span class="name">DPE<sub>j</sub></span> &mdash; that is, in any expression in the ontology containing such an axiom, <span class="name">DPE<sub>i</sub></span> can be replaced with <span class="name">DPE<sub>j</sub></span> without affecting the meaning of the ontology. The axiom <span class="name">EquivalentDataProperties( DPE<sub>1</sub> DPE<sub>2</sub> )</span> can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubDataPropertyOf( DPE<sub>1</sub> DPE<sub>2</sub> )</span><br />
<span class="name">SubDataPropertyOf( DPE<sub>2</sub> DPE<sub>1</sub> )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">EquivalentDataProperties</span>&nbsp;:= 'EquivalentDataProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> EquivalentDataProperties( <i>a:hasName</i> <i>a:seLlama</i> )
  </td><td> <i>a:hasName</i> and <i>a:seLlama</i> (in Spanish) are synonyms.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Meg</i> "Meg Griffin" )
  </td><td>Meg's name is <span class="name">"Meg Griffin"</span>.</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:seLlama</i> <i>a:Meg</i> "Megan Griffin" )
  </td><td>Meg's name is <span class="name">"Megan Griffin"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasName</i> <i>owl:equivalentProperty</i> <i>a:seLlama</i> .
  </td><td> <i>a:hasName</i> and <i>a:seLlama</i> (in Spanish) are synonyms.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasName</i> "Meg Griffin" .
  </td><td>Meg's name is <span class="name">"Meg Griffin"</span>.</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:seLlama</i> "Megan Griffin" .
  </td><td>Meg's name is <span class="name">"Megan Griffin"</span>.</td></tr>
</table>
<p>Since <i>a:hasName</i> and <i>a:seLlama</i> are equivalent properties, this ontology entails that <i>a:Meg</i> is connected by <i>a:seLlama</i> with <span class="name">"Meg Griffin"</span> &mdash; that is, it entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:seLlama</i> <i>a:Meg</i> "Meg Griffin" )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Meg</i> <i>a:seLlama</i> "Meg Griffin" .
</td></tr>
</table>
<p>Furthermore, the ontology also entails that <i>a:Meg</i> is also connected by <i>a:hasName</i> with <span class="name">"Megan Griffin"</span> &mdash; that is, it entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:hasName</i> <i>a:Meg</i> "Megan Griffin" )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Meg</i> <i>a:hasName</i> "Megan Griffin" .
</td></tr>
</table>
</div>
<a name="Disjoint_Data_Properties"></a><h4> <span class="mw-headline">9.3.3  Disjoint Data Properties </span></h4>
<p>A disjoint data properties axiom <span class="name">DisjointDataProperties( DPE<sub>1</sub> ... DPE<sub>n</sub> )</span> states that all of the data property expressions <span class="name">DPE<sub>i</sub></span>, 1 &le; i &le; n, are pairwise disjoint; that is, no individual <span class="name">x</span> can be connected to a literal <span class="name">y</span> by both <span class="name">DPE<sub>i</sub></span> and <span class="name">DPE<sub>j</sub></span> for i &ne; j.
</p>
<div class="grammar">
<p><span class="nonterminal">DisjointDataProperties</span>&nbsp;:= 'DisjointDataProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DisjointDataProperties( <i>a:hasName</i> <i>a:hasAddress</i> )
  </td><td> Someone's name must be different from his address.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Peter Griffin" )
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAddress</i> <i>a:Peter</i> "Quahog, Rhode Island" )
  </td><td>Peter's address is <span class="name">"Quahog, Rhode Island"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasName</i> <i>owl:propertyDisjointWith</i> <i>a:hasAddress</i> .
  </td><td> Someone's name must be different from his address.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Peter Griffin" .
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasAddress</i> "Quahog, Rhode Island" .
  </td><td>Peter's address is <span class="name">"Quahog, Rhode Island"</span>.</td></tr>
</table>
<p>In this ontology, the disjointness axiom is satisfied. If, however, one were to add the following assertion, the disjointness axiom would be invalidated and the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:hasAddress</i> <i>a:Peter</i> "Peter Griffin" )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:hasAddress</i> "Peter Griffin" .
</td></tr>
</table>
</div>
<a name="Data_Property_Domain"></a><h4> <span class="mw-headline">9.3.4  Data Property Domain </span></h4>
<p>A data property domain axiom <span class="name">DataPropertyDomain( DPE CE )</span> states that the domain of the data property expression <span class="name">DPE</span> is the class expression <span class="name">CE</span> &mdash; that is, if an individual <span class="name">x</span> is connected by <span class="name">DPE</span> with some literal, then <span class="name">x</span> is an instance of <span class="name">CE</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( DataSomeValuesFrom( DPE <i>rdfs:Literal</i>) CE )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DataPropertyDomain</span>&nbsp;:= 'DataPropertyDomain' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyDomain( <i>a:hasName</i> <i>a:Person</i> )
  </td><td> Only people can have names.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Peter Griffin" )
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasName</i> <i>rdfs:domain</i> <i>a:Person</i> .
  </td><td> Only people can have names.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Peter Griffin" .
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
</table>
<p>By the first axiom, each individual that has an outgoing <i>a:hasName</i> connection must be an instance of <i>a:Person</i>. Therefore, <i>a:Peter</i> can be classified as an instance of <i>a:Person</i> &mdash; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Person</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>rdf:type</i> <i>a:Person</i> .
</td></tr>
</table>
<p>Domain axioms in OWL 2 have a standard first-order semantics that is somewhat different from the semantics of such axioms in databases and object-oriented systems, where such axioms are interpreted as checks. Thus, the domain axiom from the example ontology would in such systems be interpreted as a <i>constraint</i> saying that <i>a:hasName</i> can point only from individuals that are known to be instances of <i>a:Person</i>; furthermore, since the example ontology does not explicitly state that <i>a:Peter</i> is an instance of <i>a:Person</i>, one might expect the domain constraint to be invalidated. This, however, is not the case in OWL 2: as shown in the previous paragraph, the missing type is <i>inferred</i> from the domain constraint.
</p>
</div>
<a name="Data_Property_Range"></a><h4> <span class="mw-headline">9.3.5  Data Property Range </span></h4>
<p>A data property range axiom <span class="name">DataPropertyRange( DPE DR )</span> states that the range of the data property expression <span class="name">DPE</span> is the data range <span class="name">DR</span> &mdash; that is, if some individual is connected by <span class="name">DPE</span> with a literal <span class="name">x</span>, then <span class="name">x</span> is in <span class="name">DR</span>. The arity of <span class="name">DR</span> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be one. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( <i>owl:Thing</i> DataAllValuesFrom( DPE DR ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DataPropertyRange</span>&nbsp;:= 'DataPropertyRange' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">DataRange</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyRange( <i>a:hasName</i> <i>xsd:string</i> )
  </td><td> The range of the <i>a:hasName</i> property is <i>xsd:string</i>.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Peter Griffin" )
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasName</i> <i>rdfs:range</i> <i>xsd:string</i> .
  </td><td> The range of the <i>a:hasName</i> property is <i>xsd:string</i>.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Peter Griffin" .
  </td><td>Peter's name is <span class="name">"Peter Griffin"</span>.</td></tr>
</table>
<p>By the first axiom, each literal that has an incoming <i>a:hasName</i> link must be in <i>xsd:string</i>. In the example ontology, this axiom is satisfied. If, however, the ontology were extended with the following assertion, then the range axiom would imply that the literal <span class="name">"42"^^<i>xsd:integer</i></span> is in <i>xsd:string</i>, which is a contradiction and the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "42"^^<i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:hasName</i> "42"^^<i>xsd:integer</i> .
</td></tr>
</table>
</div>
<a name="Functional_Data_Properties"></a><h4> <span class="mw-headline">9.3.6  Functional Data Properties </span></h4>
<p>A data property functionality axiom <span class="name">FunctionalDataProperty( DPE )</span> states that the data property expression <span class="name">DPE</span> is functional &mdash; that is, for each individual <span class="name">x</span>, there can be at most one distinct literal <span class="name">y</span> such that <span class="name">x</span> is connected by <span class="name">DPE</span> with <span class="name">y</span>. Each such axiom can be seen as a syntactic shortcut for the following axiom:
</p>
<div class="indent">
<p><span class="name">SubClassOf( <i>owl:Thing</i> DataMaxCardinality( 1 DPE ) )</span>
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">FunctionalDataProperty</span>&nbsp;:= 'FunctionalDataProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> FunctionalDataProperty( <i>a:hasAge</i> )
  </td><td> Each object can have at most one age.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17"^^<i>xsd:integer</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasAge</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one age.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17"^^<i>xsd:integer</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<p>By the first axiom, <i>a:hasAge</i> can point from <i>a:Meg</i> to at most one distinct literal. In this example ontology, this axiom is satisfied. If, however, the ontology were extended with the following assertion, the semantics of functionality axioms would imply that <span class="name">"15"^^<i>xsd:integer</i></span> is equal to <span class="name">"17"^^<i>xsd:integer</i></span>, which is a contradiction and the ontology would become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "15"^^<i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Meg</i> <i>a:hasAge</i> "15"^^<i>xsd:integer</i> .
</td></tr>
</table>
</div>
<div class="anexample">
<p>Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions and functional data properties in OWL 2 is defined with respect to the latter. Consider the following example:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> FunctionalDataProperty( <i>a:hasAge</i> )
  </td><td> Each object can have at most one age.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17"^^<i>xsd:integer</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17.0"^^<i>xsd:decimal</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "+17"^^<i>xsd:int</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasAge</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> Each object can have at most one age.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17"^^<i>xsd:integer</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17.0"^^<i>xsd:decimal</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "+17"^^<i>xsd:int</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
</table>
<p>Literals <span class="name">"17"^^<i>xsd:integer</i></span>, <span class="name">"17.0"^^<i>xsd:decimal</i></span>, and <span class="name">"+17"^^<i>xsd:int</i></span> are all mapped to the identical data value &mdash; the integer 17. Therefore, the individual <i>a:Meg</i> is connected by the <i>a:hasAge</i> property to one distinct data value, so this ontology is satisfiable.
</p><p>In contrast, consider the following ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> FunctionalDataProperty( <i>a:numberOfChildren</i> )
  </td><td> An individual can have at most one value for <i>a:numberOfChildren</i>.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:numberOfChildren</i> <i>a:Meg</i> "+0"^^<i>xsd:float</i> )
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>+0</i>.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:numberOfChildren</i> <i>a:Meg</i> "-0"^^<i>xsd:float</i> )
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>-0</i>.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:numberOfChildren</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
  </td><td> An individual can have at most one value for <i>a:numberOfChildren</i>.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:numberOfChildren</i> "+0"^^<i>xsd:float</i> .
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>+0</i>.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:numberOfChildren</i> "-0"^^<i>xsd:float</i> .
  </td><td> The value of <i>a:numberOfChildren</i> for <i>a:Meg</i> is <i>-0</i>.
</td></tr>
</table>
<p>Literals <span class="name">"+0"^^<i>xsd:float</i></span> and <span class="name">"-0"^^<i>xsd:float</i></span> are mapped to distinct data values <i>+0</i> and <i>-0</i> in the value space of <i>xsf:float</i>; these data values are equal, but not identical. Therefore, the individual <i>a:Meg</i> is connected by the <i>a:numberOfChildren</i> property to two distinct data values, which violates the functionality restriction on <i>a:numberOfChildren</i> and makes the ontology unsatisfiable.
</p>
</div>
<a name="Datatype_Definitions"></a><h3> <span class="mw-headline">9.4  Datatype Definitions </span></h3>
<p>A datatype definition <span class="name">DatatypeDefinition( DT DR )</span> defines a new datatype <span class="name">DT</span> as being semantically equivalent to the data range <span class="name">DR</span>; the latter <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be a unary data range. This axiom allows one to use the <i>defined</i> datatype <span class="name">DT</span> as a synonym for <span class="name">DR</span> &mdash; that is, in any expression in the ontology containing such an axiom, <span class="name">DT</span> can be replaced with <span class="name">DR</span> without affecting the meaning of the ontology. The structure of such axiom is shown in Figure 17.
</p>
<div class="image">
<p><img alt="Datatype Definitions in OWL 2" border="0" height="218" src="A_datatypedefinition.gif" width="434" /><br />
<span class="caption">Figure 17.</span> Datatype Definitions in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">DatatypeDefinition</span>&nbsp;:= 'DatatypeDefinition' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Datatype</span> <span class="nonterminal">DataRange</span> ')'
</p>
</div>
<p>The datatypes defined by datatype definition axioms support no facets so they <em class="RFC2119" title="MUST NOT in RFC 2119 context">MUST NOT</em> occur in datatype restrictions. Furthermore, datatype definitions are not substitutes for declarations: if an OWL 2 ontology is to satisfy the typing constraints of OWL 2 DL from <a href="#Typing_Constraints_of_OWL_2_DL" title="">Section 5.8.1</a>, it <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> explicitly declare all datatypes that occur in datatype definitions.
</p>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> Declaration( Datatype( <i>a:SSN</i> ) )
  </td><td> <i>a:SSN</i> is a datatype.
</td></tr>
<tr valign="top"><td> DatatypeDefinition(<br /> &nbsp;&nbsp;&nbsp; <i>a:SSN</i><br /> &nbsp;&nbsp;&nbsp; DatatypeRestriction( <i>xsd:string</i> <i>xsd:pattern</i> "[0-9]{3}-[0-9]{2}-[0-9]{4}" )<br /> )
  </td><td> A social security number is a string that matches the given regular expression.
</td></tr>
<tr valign="top"><td> DataPropertyRange( <i>a:hasSSN</i> <i>a:SSN</i> )
  </td><td> The range of the <i>a:hasSSN</i> property is <i>a:SSN</i>.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:SSN</i> <i>rdf:type</i> <i>rdfs:Datatype</i> .
  </td><td> <i>a:SSN</i> is a datatype.
</td></tr>
<tr valign="top"><td> <i>a:SSN</i> <i>owl:equivalentClass</i> _:x .<br /> _:x <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x <i>owl:onDatatype</i> <i>xsd:string</i> .<br /> <i>_:x owl:withRestrictions</i> ( _:y ) .<br /> _:y <i>xsd:pattern</i> "[0-9]{3}-[0-9]{2}-[0-9]{4}" .
  </td><td> A social security number is a string that matches the given regular expression.
</td></tr>
<tr valign="top"><td> <i>a:hasSSN</i> <i>rdfs:range</i> <i>a:SSN</i> .
  </td><td> The range of the <i>a:hasSSN</i> property is <i>a:SSN</i>.
</td></tr>
</table>
<p>The second axiom defines <i>a:SSN</i> as an abbreviation for a datatype restriction on <i>xsd:string</i>. In order to satisfy the typing restrictions from <a href="#Typing_Constraints_of_OWL_2_DL" title="">Section 5.8.1</a>, the first axiom explicitly declares <i>a:SSN</i> to be a datatype. The datatype <i>a:SSN</i> can be used just like any other datatype; for example, it is used in the third axiom to define the range of the <i>a:hasSSN</i> property. The only restriction is that <i>a:SSN</i> supports no facets and therefore cannot be used in datatype restrictions.
</p>
</div>
<a name="Keys"></a><h3> <span class="mw-headline">9.5  Keys </span></h3>
<p>A key axiom <span class="name">HasKey( CE ( OPE<sub>1</sub> ... OPE<sub>m</sub> ) ( DPE<sub>1</sub> ... DPE<sub>n</sub> ) )</span> states that each (named) instance of the class expression <span class="name">CE</span> is uniquely identified by the object property expressions <span class="name">OPE<sub>i</sub></span> and/or the data property experssions <span class="name">DPE<sub>j</sub></span> &mdash; that is, no two distinct (named) instances of <span class="name">CE</span> can coincide on the values of all object property expressions <span class="name">OPE<sub>i</sub></span> and all data property expressions <span class="name">DPE<sub>j</sub></span>. In each such axiom in an OWL ontology, <span class="name">m</span> or <span class="name">n</span> (or both) <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> be larger than zero. A key axiom of the form <span class="name">HasKey( <i>owl:Thing</i> ( OPE ) () )</span> is similar to the axiom <span class="name">InverseFunctionalObjectProperty( OPE )</span>, the main differences being that the former axiom is applicable only to individuals that are explicitly named in an ontology, while the latter axiom is also applicable to individuals whose existence is implied by existential quantification. The structure of such axiom is shown in Figure 18.
</p>
<div class="image">
<p><img alt="Key Axioms in OWL 2" border="0" height="288" src="A_keys.gif" width="572" /><br />
<span class="caption">Figure 18.</span> Key Axioms in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">HasKey</span>&nbsp;:= 'HasKey' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> '(' { <span class="nonterminal">ObjectPropertyExpression</span> } ')' '(' { <span class="nonterminal">DataPropertyExpression</span> } ')' ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> HasKey( <i>owl:Thing</i> () ( <i>a:hasSSN</i> ) )
  </td><td> Each object is uniquely identified by its social security number.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasSSN</i> <i>a:Peter</i> "123-45-6789" )
  </td><td>Peter's social security number is <span class="name">"123-45-6789"</span>.</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasSSN</i> <i>a:Peter_Griffin</i> "123-45-6789" )
  </td><td>Peter Griffin's social security number is <span class="name">"123-45-6789"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>owl:Thing</i> <i>owl:hasKey</i> ( <i>a:hasSSN</i> ) .
  </td><td> Each object is uniquely identified by its social security number.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasSSN</i> "123-45-6789" .
  </td><td>Peter's social security number is <span class="name">"123-45-6789"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter_Griffin</i> <i>a:hasSSN</i> "123-45-6789" .
  </td><td>Peter Griffin's social security number is <span class="name">"123-45-6789"</span>.</td></tr>
</table>
<p>The first axiom makes <i>a:hasSSN</i> the key for instances of the <i>owl:Thing</i> class; thus, only one individual can have a particular value for <i>a:hasSSN</i>. Since the values of <i>a:hasSSN</i> are the same for the individuals <i>a:Peter</i> and <i>a:Peter_Griffin</i>, these two individuals are equal &mdash; that is, this ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SameIndividual( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>owl:sameAs</i> <i>a:Peter_Griffin</i> .
</td></tr>
</table>
<p>One might expect the previous ontology to be inconsistent, since the <i>a:hasSSN</i> has the same value for two individuals <i>a:Peter</i> and <i>a:Peter_Griffin</i>. However, OWL 2 does not make the unique name assumption, so <i>a:Peter</i> and <i>a:Peter_Griffin</i> are not necessarily distinct individuals. If the ontology were extended with the following assertion, then it would indeed become inconsistent:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DifferentIndividuals( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>owl:differentFrom</i> <i>a:Peter_Griffin</i> .
</td></tr>
</table>
</div>
<div class="anexample">
<p>The effect of a key axiom can be "localized" to instances of a particular class expression. Consider the following example:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> HasKey( <i>a:GriffinFamilyMember</i> () ( <i>a:hasName</i> ) )
  </td><td> Each member of the Griffin family is uniquely identified by its name.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Peter" )
  </td><td>Peter's name is <span class="name">"Peter"</span>.</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Peter</i> )
  </td><td> Peter is a member of the Griffin family.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter_Griffin</i> "Peter" )
  </td><td>Peter Griffin's name is <span class="name">"Peter"</span>.</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Peter_Griffin</i> )
  </td><td> Peter Griffin is a member of the Griffin family.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:StPeter</i> "Peter" )
  </td><td>St. Peter's name is <span class="name">"Peter"</span>.</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:GriffinFamilyMember</i> <i>owl:hasKey</i> ( <i>a:hasName</i> ) .
  </td><td> Each member of the Griffin family is uniquely identified by its name.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Peter" .
  </td><td>Peter's name is <span class="name">"Peter"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Peter is a member of the Griffin family.
</td></tr>
<tr valign="top"><td> <i>a:Peter_Griffin</i> <i>a:hasName</i> "Peter" .
  </td><td>Peter Griffin's name is <span class="name">"Peter"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter_Griffin</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Peter Griffin is a member of the Griffin family.
</td></tr>
<tr valign="top"><td> <i>a:StPeter</i> <i>a:hasName</i> "Peter" .
  </td><td>St. Peter's name is <span class="name">"Peter"</span>.</td></tr>
</table>
<p>The effects of the first key axiom are "localized" to the class <i>a:GriffinFamilyMember</i> &mdash; that is, the data property <i>a:hasName</i> uniquely identifies only instances of that class. The individuals <i>a:Peter</i> and <i>a:Peter_Griffin</i> are instances of <i>a:GriffinFamilyMember</i>, so the key axiom implies that <i>a:Peter</i> and <i>a:Peter_Griffin</i> are the same individuals &mdash; that is, the ontology implies the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> SameIndividual( <i>a:Peter</i> <i>a:Peter_Griffin</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>owl:sameAs</i> <i>a:Peter_Griffin</i> .
</td></tr>
</table>
<p>The individual <i>a:StPeter</i>, however, is not an instance of <i>a:GriffinFamilyMember</i>, so the key axiom is not applicable to it. Therefore, the ontology implies neither that <i>a:Peter</i> and <i>a:StPeter</i> are the same individuals, nor does it imply that <i>a:Peter_Griffin</i> and <i>a:StPeter</i> are the same. Keys can be made global by "localizing" them to the <i>owl:Thing</i> class, as shown in the previous example.
</p>
</div>
<div class="anexample">
<p>A key axiom does not make all the properties used in it functional. Consider the following example:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> HasKey( <i>a:GriffinFamilyMember</i> () ( <i>a:hasName</i> ) )
  </td><td> Each member of the Griffin family is uniquely identified by its name.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Peter" )
  </td><td>Peter's name is <span class="name">"Peter"</span>.</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasName</i> <i>a:Peter</i> "Kichwa-Tembo" )
  </td><td>Peter's name is <span class="name">"Kichwa-Tembo"</span>.</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:GriffinFamilyMember</i> <i>a:Peter</i> )
  </td><td> Peter is a member of the Griffin family.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:GriffinFamilyMember</i> <i>owl:hasKey</i> ( <i>a:hasName</i> ) .
  </td><td> Each member of the Griffin family is uniquely identified by its name.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Peter" .
  </td><td>Peter's name is <span class="name">"Peter"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasName</i> "Kichwa-Tembo" .
  </td><td>Peter's name is <span class="name">"Kichwa-Tembo"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:GriffinFamilyMember</i> .
  </td><td> Peter is a member of the Griffin family.
</td></tr>
</table>
<p>This ontology is consistent &mdash; that is, the fact that the individual <i>a:Peter</i> has two distinct values for <i>a:hasName</i> does not cause an inconsistency since the <i>a:hasName</i> data property is not necessarily functional.
</p><p>If desired, the properties used in a key axiom can always be made functional explicitly. Thus, if the example ontology were extended with the following axiom, it would become inconsistent.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> FunctionalDataProperty( <i>a:hasName</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:hasName</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
</td></tr>
</table>
</div>
<p>The semantics of key axioms is specific in that these axioms apply only to individuals explicitly introduced in the ontology by name, and not to unnamed individuals (i.e., the individuals whose existence is implied by existential quantification). This makes key axioms equivalent to a variant of DL-safe rules <cite><a href="#ref-dl-safe" title="">DL-Safe</a></cite>]. Thus, key axioms will typically not affect class-based inferences such as the computation of the subsumption hierarchy, but they will play a role in answering queries about individuals.
</p>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> HasKey( <i>a:Person</i> () ( <i>a:hasSSN</i> ) )
  </td><td> Each person is uniquely identified by their social security number.
</td></tr>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasSSN</i> <i>a:Peter</i> "123-45-6789" )
  </td><td>Peter's social security number is <span class="name">"123-45-6789"</span>.</td></tr>
<tr valign="top"><td> ClassAssertion( <i>a:Person</i> <i>a:Peter</i> )
  </td><td> Peter is a person.
</td></tr>
<tr valign="top"><td> ClassAssertion(<br /> &nbsp;&nbsp;&nbsp; ObjectSomeValuesFrom(<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <i>a:marriedTo</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectIntersectionOf( <i>a:Man</i> DataHasValue( <i>a:hasSSN</i> "123-45-6789" ) )<br /> &nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; <i>a:Lois</i><br /> )
  </td><td>Lois is married to some man whose social security number is <span class="name">"123-45-6789"</span>.</td></tr>
<tr valign="top"><td> SubClassOf( <i>a:Man</i> <i>a:Person</i> )
  </td><td> Each man is a person.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Person</i> <i>owl:hasKey</i> ( <i>a:hasSSN</i> ) .
  </td><td> Each person is uniquely identified by their social security number.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasSSN</i> "123-45-6789" .
  </td><td>Peter's social security number is <span class="name">"123-45-6789"</span>.</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>rdf:type</i> <i>a:Person</i> .
  </td><td> Peter is a person.
</td></tr>
<tr valign="top"><td> <i>a:Lois</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:marriedTo</i> .<br /> _:x <i>owl:someValuesFrom</i> _:y .<br /> _:y <i>rdf:type</i> <i>owl:Class</i> .<br /> _:y <i>owl:intersectionOf</i> SEQ( <i>a:Man</i> _:z ) .<br /> _:z <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:z <i>owl:onProperty</i> <i>a:hasSSN</i> .<br /> _:z <i>owl:hasValue</i> "123-45-6789" .
  </td><td>Lois is married to some man whose social security number is <span class="name">"123-45-6789"</span>.</td></tr>
<tr valign="top"><td> <i>a:Man</i> <i>rdfs:subClassOf</i> <i>a:Person</i> .
  </td><td> Each man is a person.
</td></tr>
</table>
<p>The fourth axiom implies existence of some individual <span class="name">x</span> that is an instance of <i>a:Man</i> and whose value for the <i>a:hasSSN</i> data property is <span class="name">"123-45-6789"</span>; by the fifth axiom, <span class="name">x</span> is an instance of <i>a:Person</i> as well. Furthermore, the second and the third axiom say that <i>a:Peter</i> is an instance of <i>a:Person</i> and that the value of <i>a:hasSSN</i> for <i>a:Peter</i> is <span class="name">"123-45-6789"</span>. Finally, the first axiom says that <i>a:hasSSN</i> is a key property for instances of <i>a:Person</i>. Thus, one might expect <span class="name">x</span> to be equal to <i>a:Peter</i>, and for the ontology to entail the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Man</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>rdf:type</i> <i>a:Man</i> .
</td></tr>
</table>
<p>The inferences in the previous paragraph, however, cannot be drawn because of the DL-safe semantics of key axioms: <span class="name">x</span> is an individual that has not been explicitly named in the ontology; therefore, the semantics of key axioms does not apply to <span class="name">x</span>. Therefore, this OWL 2 ontology does not entail the mentioned assertion.
</p>
</div>
<a name="Assertions"></a><h3> <span class="mw-headline">9.6  Assertions </span></h3>
<p>OWL 2 supports a rich set of axioms for stating <i>assertions</i> &mdash; axioms about individuals that are often also called <i>facts</i>. For clarity, different types of assertions are shown in three separate figures, Figure 19, 20, and 21. The <span class="nonterminal">SameIndividual</span> assertion allows one to state that several individuals are all equal to each other, while the <span class="nonterminal">DifferentIndividuals</span> assertion allows for the opposite &mdash; that is, to state that several individuals are all different from each other. (More precisely, that the several different individuals in the syntax are also semantically different.) The <span class="nonterminal">ClassAssertion</span> axiom allows one to state that an individual is an instance of a particular class.
</p>
<div class="image">
<p><img alt="Class and Individual (In)Equality Assertions in OWL 2" border="0" height="450" src="A_abox1.gif" width="605" /><br />
<span class="caption">Figure 19.</span> Class and Individual (In)Equality Assertions in OWL 2
</p>
</div>
<p>The <span class="nonterminal">ObjectPropertyAssertion</span> axiom allows one to state that an individual is connected by an object property expression to an individual, while <span class="nonterminal">NegativeObjectPropertyAssertion</span> allows for the opposite &mdash; that is, to state that an individual is not connected by an object property expression to an individual.
</p>
<div class="image">
<p><img alt="Object Property Assertions in OWL 2" border="0" height="542" src="A_abox2.gif" width="528" /><br />
<span class="caption">Figure 20.</span> Object Property Assertions in OWL 2
</p>
</div>
<p>The <span class="nonterminal">DataPropertyAssertion</span> axiom allows one to state that an individual is connected by a data property expression to a literal, while <span class="nonterminal">NegativeDataPropertyAssertion</span> allows for the opposite &mdash; that is, to state that an individual is not connected by a data property expression to a literal.
</p>
<div class="image">
<p><img alt="Data Property Assertions in OWL 2" border="0" height="618" src="A_abox3.gif" width="574" /><br />
<span class="caption">Figure 21.</span> Data Property Assertions in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">Assertion</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SameIndividual</span> | <span class="nonterminal">DifferentIndividuals</span> | <span class="nonterminal">ClassAssertion</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectPropertyAssertion</span> | <span class="nonterminal">NegativeObjectPropertyAssertion</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataPropertyAssertion</span> | <span class="nonterminal">NegativeDataPropertyAssertion</span><br />
<br />
<span class="nonterminal">sourceIndividual</span>&nbsp;:= <span class="nonterminal">Individual</span><br />
<span class="nonterminal">targetIndividual</span>&nbsp;:= <span class="nonterminal">Individual</span><br />
<span class="nonterminal">targetValue</span>&nbsp;:= <span class="nonterminal">Literal</span>
</p>
</div>
<a name="Individual_Equality"></a><h4> <span class="mw-headline">9.6.1  Individual Equality </span></h4>
<p>An individual equality axiom <span class="name">SameIndividual( a<sub>1</sub> ... a<sub>n</sub> )</span> states that all of the individuals a<sub>i</sub>, 1 &le; i &le; n, are equal to each other. This axiom allows one to use each <span class="name">a<sub>i</sub></span> as a synonym for each <span class="name">a<sub>j</sub></span> &mdash; that is, in any expression in the ontology containing such an axiom, <span class="name">a<sub>i</sub></span> can be replaced with <span class="name">a<sub>j</sub></span> without affecting the meaning of the ontology.
</p>
<div class="grammar">
<p><span class="nonterminal">SameIndividual</span>&nbsp;:= 'SameIndividual' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Individual</span> <span class="nonterminal">Individual</span> { <span class="nonterminal">Individual</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SameIndividual( <i>a:Meg</i> <i>a:Megan</i> )
  </td><td> Meg and Megan are the same objects.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasBrother</i> <i>a:Meg</i> <i>a:Stewie</i> )
  </td><td> Meg has a brother Stewie.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Meg</i> <i>owl:sameAs</i> <i>a:Megan</i> .
  </td><td> Meg and Megan are the same objects.
</td></tr>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasBrother</i> <i>a:Stewie</i> .
  </td><td> Meg has a brother Stewie.
</td></tr>
</table>
<p>Since <i>a:Meg</i> and <i>a:Megan</i> are equal, one individual can always be replaced with the other one. Therefore, this ontology entails that <i>a:Megan</i> is connected by <i>a:hasBrother</i> with <i>a:Stewie</i> &mdash; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasBrother</i> <i>a:Megan</i> <i>a:Stewie</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Megan</i> <i>a:hasBrother</i> <i>a:Stewie</i> .
</td></tr>
</table>
</div>
<a name="Individual_Inequality"></a><h4> <span class="mw-headline">9.6.2  Individual Inequality </span></h4>
<p>An individual inequality axiom <span class="name">DifferentIndividuals( a<sub>1</sub> ... a<sub>n</sub> )</span> states that all of the individuals <span class="name">a<sub>i</sub></span>, 1 &le; i &le; n, are different from each other; that is, no individuals <span class="name">a<sub>i</sub></span> and <span class="name">a<sub>j</sub></span> with i &ne; j can be derived to be equal. This axiom can be used to axiomatize the <i>unique name assumption</i> &mdash; the assumption that all different individual names denote different individuals.
</p>
<div class="grammar">
<p><span class="nonterminal">DifferentIndividuals</span>&nbsp;:= 'DifferentIndividuals' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Individual</span> <span class="nonterminal">Individual</span> { <span class="nonterminal">Individual</span> } ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Meg</i> )
  </td><td> Peter is Meg's father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Chris</i> )
  </td><td> Peter is Chris's father.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:fatherOf</i> <i>a:Peter</i> <i>a:Stewie</i> )
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> DifferentIndividuals( <i>a:Peter</i> <i>a:Meg</i> <i>a:Chris</i> <i>a:Stewie</i> )
  </td><td> Peter, Meg, Chris, and Stewie are all different from each other.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Meg</i> .
  </td><td> Peter is Meg's father.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Chris</i> .
  </td><td> Peter is Chris's father.
</td></tr>
<tr valign="top"><td> <i>a:Peter</i> <i>a:fatherOf</i> <i>a:Stewie</i> .
  </td><td> Peter is Stewie's father.
</td></tr>
<tr valign="top"><td> _:x <i>rdf:type</i> <i>owl:AllDifferent</i> .<br /> _:x <i>owl:members</i> ( <i>a:Peter</i> <i>a:Meg</i> <i>a:Chris</i> <i>a:Stewie</i> ) .
  </td><td> Peter, Meg, Chris, and Stewie are all different from each other.
</td></tr>
</table>
<p>The last axiom in this example ontology axiomatizes the unique name assumption (but only for the four names in the axiom). If the ontology were extended with the following axiom stating that <i>a:fatherOf</i> is functional, then this axiom would imply that <i>a:Meg</i>, <i>a:Chris</i>, and <i>a:Stewie</i> are all equal, thus invalidating the unique name assumption and making the ontology inconsistent.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> FunctionalObjectProperty( <i>a:fatherOf</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:fatherOf</i> <i>rdf:type</i> <i>owl:FunctionalProperty</i> .
</td></tr>
</table>
</div>
<a name="Class_Assertions"></a><h4> <span class="mw-headline">9.6.3  Class Assertions </span></h4>
<p>A class assertion <span class="name">ClassAssertion( CE a )</span> states that the individual <span class="name">a</span> is an instance of the class expression <span class="name">CE</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">ClassAssertion</span>&nbsp;:= 'ClassAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> <span class="nonterminal">Individual</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ClassAssertion( <i>a:Dog</i> <i>a:Brian</i> )
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> SubClassOf( <i>a:Dog</i> <i>a:Mammal</i> )
  </td><td> Each dog is a mammal.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Brian</i> <i>rdf:type</i> <i>a:Dog</i> .
  </td><td> Brian is a dog.
</td></tr>
<tr valign="top"><td> <i>a:Dog</i> <i>rdfs:subClassOf</i> <i>a:Mammal</i> .
  </td><td> Each dog is a mammal.
</td></tr>
</table>
<p>The first axiom states that <i>a:Brian</i> is an instance of the class <i>a:Dog</i>. By the second axiom, each instance of <i>a:Dog</i> is an instance of <i>a:Mammal</i>. Therefore, this ontology entails that <i>a:Brian</i> is an instance of <i>a:Mammal</i> &mdash; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Mammal</i> <i>a:Brian</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Brian</i> <i>rdf:type</i> <i>a:Mammal</i> .
</td></tr>
</table>
</div>
<a name="Positive_Object_Property_Assertions"></a><h4> <span class="mw-headline">9.6.4  Positive Object Property Assertions </span></h4>
<p>A positive object property assertion <span class="name">ObjectPropertyAssertion( OPE a<sub>1</sub> a<sub>2</sub> )</span> states that the individual <span class="name">a<sub>1</sub></span> is connected by the object property expression <span class="name">OPE</span> to the individual <span class="name">a<sub>2</sub></span>.
</p>
<div class="grammar">
<p><span class="nonterminal">ObjectPropertyAssertion</span>&nbsp;:= 'ObjectPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetIndividual</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasDog</i> <i>a:Peter</i> <i>a:Brian</i> )
  </td><td> Brian is a dog of Peter.
</td></tr>
<tr valign="top"><td> SubClassOf( ObjectSomeValuesFrom( <i>a:hasDog</i> <i>owl:Thing</i> ) <i>a:DogOwner</i> )
  </td><td> Objects that have a dog are dog owners.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Peter</i> <i>a:hasDog</i> <i>a:Brian</i> .
  </td><td> Brian is a dog of Peter.
</td></tr>
<tr valign="top"><td> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasDog</i> .<br /> _:x <i>owl:someValuesFrom</i> <i>owl:Thing</i> .<br /> _:x <i>rdfs:subClassOf</i> <i>a:DogOwner</i> .
  </td><td> Objects that have a dog are dog owners.
</td></tr>
</table>
<p>The first axiom states that <i>a:Peter</i> is connected by <i>a:hasDog</i> to <i>a:Brian</i>. By the second axiom, each individual connected by <i>a:hasDog</i> to an individual is an instance of <i>a:DogOwner</i>. Therefore, this ontology entails that <i>a:Peter</i> is an instance of <i>a:DogOwner</i> &mdash; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:DogOwner</i> <i>a:Peter</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>rdf:type</i> <i>a:DogOwner</i> .
</td></tr>
</table>
</div>
<a name="Negative_Object_Property_Assertions"></a><h4> <span class="mw-headline">9.6.5  Negative Object Property Assertions </span></h4>
<p>A negative object property assertion <span class="name">NegativeObjectPropertyAssertion( OPE a<sub>1</sub> a<sub>2</sub> )</span> states that the individual <span class="name">a<sub>1</sub></span> is not connected by the object property expression <span class="name">OPE</span> to the individual <span class="name">a<sub>2</sub></span>.
</p>
<div class="grammar">
<p><span class="nonterminal">NegativeObjectPropertyAssertion</span>&nbsp;:= 'NegativeObjectPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetIndividual</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> NegativeObjectPropertyAssertion( <i>a:hasSon</i> <i>a:Peter</i> <i>a:Meg</i> )
  </td><td> Meg is not a son of Peter.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> _:x <i>rdf:type</i> <i>owl:NegativePropertyAssertion</i> .<br /> _:x <i>owl:sourceIndividual</i> <i>a:Peter</i> .<br /> _:x <i>owl:assertionProperty</i> <i>a:hasSon</i> .<br /> _:x <i>owl:targetIndividual</i> <i>a:Meg</i> .
  </td><td> Meg is not a son of Peter.
</td></tr>
</table>
<p>The ontology would become inconsistent if it were extended with the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasSon</i> <i>a:Peter</i> <i>a:Meg</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Peter</i> <i>a:hasSon</i> <i>a:Meg</i> .
</td></tr>
</table>
</div>
<a name="Positive_Data_Property_Assertions"></a><h4> <span class="mw-headline">9.6.6  Positive Data Property Assertions </span></h4>
<p>A positive data property assertion <span class="name">DataPropertyAssertion( DPE a lt )</span> states that the individual <span class="name">a</span> is connected by the data property expression <span class="name">DPE</span> to the literal <span class="name">lt</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">DataPropertyAssertion</span>&nbsp;:= 'DataPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetValue</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axioms.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "17"^^<i>xsd:integer</i> )
  </td><td> Meg is seventeen years old.
</td></tr>
<tr valign="top"><td> SubClassOf(<br /> &nbsp;&nbsp;&nbsp; DataSomeValuesFrom( <i>a:hasAge</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; DatatypeRestriction( <i>xsd:integer</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <i>xsd:minInclusive</i> "13"^^<i>xsd:integer</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <i>xsd:maxInclusive</i> "19"^^<i>xsd:integer</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; <i>a:Teenager</i><br /> )
  </td><td> Objects that are older than 13 and younger than 19 (both inclusive) are teenagers.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Meg</i> <i>a:hasAge</i> "17"^^<i>xsd:integer</i> .
  </td><td> Meg is seventeen years old.
</td></tr>
<tr valign="top"><td> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasAge</i> .<br /> _:x <i>owl:someValuesFrom</i> _:y .<br /> _:y <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:y <i>owl:onDatatype</i> <i>xsd:intege</i>r .<br /> _:y <i>owl:withRestrictions</i> ( _:z _:w ) .<br /> _:z <i>xsd:minInclusive</i> "13"^^<i>xsd:integer</i> .<br /> _:w <i>xsd:maxInclusive</i> "19"^^<i>xsd:integer</i> .<br /> _:x <i>rdfs:subClassOf</i> <i>a:Teenager</i> .
  </td><td> Objects that are often than 13 and younger than 19 (both inclusive) are teenagers.
</td></tr>
</table>
<p>The first axiom states that <i>a:Meg</i> is connected by <i>a:hasAge</i> to the literal <span class="name">"17"^^<i>xsd:integer</i></span>. By the second axiom, each individual connected by <i>a:hasAge</i> to an integer between 13 and 19 is an instance of <i>a:Teenager</i>. Therefore, this ontology entails that <i>a:Meg</i> is an instance of <i>a:Teenager</i> &mdash; that is, the ontology entails the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion( <i>a:Teenager</i> <i>a:Meg</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Meg</i> <i>rdf:type</i> <i>a:Teenager</i> .
</td></tr>
</table>
</div>
<a name="Negative_Data_Property_Assertions"></a><h4> <span class="mw-headline">9.6.7  Negative Data Property Assertions </span></h4>
<p>A negative data property assertion <span class="name">NegativeDataPropertyAssertion( DPE a lt )</span> states that the individual <span class="name">a</span> is not connected by the data property expression <span class="name">DPE</span> to the literal <span class="name">lt</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">NegativeDataPropertyAssertion</span>&nbsp;:= 'NegativeDataPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetValue</span> ')'
</p>
</div>
<div class="anexample">
<p>Consider the ontology consisting of the following axiom.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> NegativeDataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "5"^^<i>xsd:integer</i> )
  </td><td> Meg is not five years old.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> _:x <i>rdf:type</i> <i>owl:NegativePropertyAssertion</i> .<br /> _:x <i>owl:sourceIndividual</i> <i>a:Meg</i> .<br /> _:x <i>owl:assertionProperty</i> <i>a:hasAge</i> .<br /> _:x <i>owl:targetValue</i> "5"^^<i>xsd:integer</i> .
  </td><td> Meg is not five years old.
</td></tr>
</table>
<p>The ontology would become inconsistent if it were extended with the following assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> DataPropertyAssertion( <i>a:hasAge</i> <i>a:Meg</i> "5"^^<i>xsd:integer</i> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Meg</i> <i>a:hasAge</i> "5"^^<i>xsd:integer</i> .
</td></tr>
</table>
</div>
<a name="Annotations"></a><h2> <span class="mw-headline">10  Annotations </span></h2>
<p>OWL 2 applications often need ways to associate additional information with ontologies, entities, and axioms. To this end, OWL 2 provides for <span id="def_annotations"><i>annotations</i></span> on ontologies, axioms, and entities.
</p>
<div class="anexample">
<p>One might want to associate human-readable labels with IRIs and use them when visualizing an ontology. To this end, one might use the <i>rdfs:label</i> annotation property to associate such labels with ontology IRIs.
</p>
</div>
<p>Various OWL 2 syntaxes, such as the functional-style syntax, provide a mechanism for embedding comments into ontology documents. The structure of such comments is, however, dependent on the syntax, so these are simply discarded during parsing. In contrast, annotations are "first-class citizens" in the structural specification of OWL 2, and their structure is independent of the underlying syntax.
</p>
<div class="anexample">
<p>Since it is based on XML, the OWL 2 XML Syntax [<cite><a href="#ref-owl-2-xml-serialization" title="">OWL 2 XML Serialization</a></cite>] allows the embedding of the standard XML comments into ontology documents. Such comments are not represented in the structural specification of OWL 2 and, consequently, they should be ignored during document parsing.
</p>
</div>
<a name="Annotations_of_Ontologies.2C_Axioms.2C_and_other_Annotations"></a><h3> <span class="mw-headline">10.1  Annotations of Ontologies, Axioms, and other Annotations </span></h3>
<p>Ontologies, axioms, and annotations themselves can be annotated using annotations shown in Figure 22. As shown in the figure, such annotations consist of an annotation property and an annotation value, where the latter can be anonymous individuals, IRIs, and literals.
</p>
<div class="image">
<p><img alt="Annotations of Ontologies and Axioms in OWL 2" border="0" height="372" src="Annotations.gif" width="487" /><br />
<span class="caption">Figure 22.</span> Annotations of Ontologies and Axioms in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">Annotation</span>&nbsp;:= 'Annotation' '(' <span class="nonterminal">annotationAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">AnnotationValue</span> ')'<br />
<span class="nonterminal">annotationAnnotations</span> &nbsp;:= { <span class="nonterminal">Annotation</span> }<br />
<span class="nonterminal">AnnotationValue</span>&nbsp;:= <span class="nonterminal">AnonymousIndividual</span> | <span class="nonterminal">IRI</span> | <span class="nonterminal">Literal</span>
</p>
</div>
<a name="Annotation_Axioms"></a><h3> <span class="mw-headline">10.2  Annotation Axioms </span></h3>
<p>OWL 2 provides means to state several types of axioms about annotation properties, as shown in Figure 23. These statements are treated as axioms only in order to simplify the structural specification of OWL 2.
</p>
<div class="image">
<p><img alt="Annotations of IRIs and Anonymous Individuals in OWL 2" border="0" height="634" src="A_annotation.gif" width="996" /><br />
<span class="caption">Figure 23.</span> Annotations of IRIs and Anonymous Individuals in OWL 2
</p>
</div>
<div class="grammar">
<p><span class="nonterminal">AnnotationAxiom</span>&nbsp;:= <span class="nonterminal">AnnotationAssertion</span> | <span class="nonterminal">SubAnnotationPropertyOf</span> | <span class="nonterminal">AnnotationPropertyDomain</span> | <span class="nonterminal">AnnotationPropertyRange</span>
</p>
</div>
<a name="Annotation_Assertion"></a><h4> <span class="mw-headline">10.2.1  Annotation Assertion </span></h4>
<p>An annotation assertion <span class="name">AnnotationAssertion( AP as av )</span> states that the annotation subject <span class="name">as</span> &mdash; an IRI or an anonymous individual &mdash; is annotated with the annotation property <span class="name">AP</span> and the annotation value <span class="name">av</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">AnnotationAssertion</span>&nbsp;:= 'AnnotationAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">AnnotationSubject</span> <span class="nonterminal">AnnotationValue</span> ')'<br />
<span class="nonterminal">AnnotationSubject</span>&nbsp;:= <span class="nonterminal">IRI</span> | <span class="nonterminal">AnonymousIndividual</span>
</p>
</div>
<div class="anexample">
<p>The following axiom assigns a human-readable comment to the IRI <i>a:Person</i>.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> AnnotationAssertion( <i>rdfs:label</i> <i>a:Person</i> "Represents the set of all people." )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Person</i> <i>rdfs:label</i> "Represents the set of all people." .
</td></tr>
</table>
<p>Since the annotation is assigned to an IRI, it applies to all entities with the given IRI. Thus, if an ontology contains both a class and an individual <i>a:Person</i>, the above comment applies to both entities.
</p>
</div>
<a name="Annotation_Subproperties"></a><h4> <span class="mw-headline">10.2.2  Annotation Subproperties </span></h4>
<p>An annotation subproperty axiom <span class="name">SubAnnotationPropertyOf( AP<sub>1</sub> AP<sub>2</sub> )</span> states that the annotation property <span class="name">AP<sub>1</sub></span> is a subproperty of the annotation property <span class="name">AP<sub>2</sub></span>.
</p>
<div class="grammar">
<p><span class="nonterminal">SubAnnotationPropertyOf</span>&nbsp;:= 'SubAnnotationPropertyOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subAnnotationProperty</span> <span class="nonterminal">superAnnotationProperty</span> ')'<br />
<span class="nonterminal">subAnnotationProperty</span>&nbsp;:= <span class="nonterminal">AnnotationProperty</span><br />
<span class="nonterminal">superAnnotationProperty</span>&nbsp;:= <span class="nonterminal">AnnotationProperty</span>
</p>
</div>
<a name="Annotation_Property_Domain"></a><h4> <span class="mw-headline">10.2.3  Annotation Property Domain </span></h4>
<p>An annotation property domain axiom <span class="name">AnnotationPropertyDomain( AP U )</span> states that the domain of the annotation property <span class="name">AP</span> is the IRI <span class="name">U</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">AnnotationPropertyDomain</span>&nbsp;:= 'AnnotationPropertyDomain' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">IRI</span> ')'
</p>
</div>
<a name="Annotation_Property_Range"></a><h4> <span class="mw-headline">10.2.4  Annotation Property Range </span></h4>
<p>An annotation property range axiom <span class="name">AnnotationPropertyRange( AP U )</span> states that the range of the annotation property <span class="name">AP</span> is the IRI <span class="name">U</span>.
</p>
<div class="grammar">
<p><span class="nonterminal">AnnotationPropertyRange</span>&nbsp;:= 'AnnotationPropertyRange' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">IRI</span> ')'
</p>
</div>
<a name="Global_Restrictions_on_Axioms_in_OWL_2_DL"></a><h2> <span class="mw-headline">11  Global Restrictions on Axioms in OWL 2 DL </span></h2>
<p>The axiom closure <i>Ax</i> (with anonymous individuals standardized apart as explained in <a href="#Anonymous_Individuals" title="">Section 5.6.2</a>) of each OWL 2 DL ontology <i>O</i> <em class="RFC2119" title="MUST in RFC 2119 context">MUST</em> satisfy the <i>global restrictions</i> defined in this section. As explained in the literature [<cite><a href="#ref-sroiq" title="">SROIQ</a></cite>], this restriction is necessary in order to obtain a decidable language. The formal definition of these conditions is rather technical, so it is split into two parts. <a href="#Property_Hierarchy_and_Simple_Object_Property_Expressions" title="">Section 11.1</a> first introduces the notions of a property hierarchy and of <i>simple</i> object property expressions. These notions are then used in <a href="#The_Restrictions_on_the_Axiom_Closure" title="">Section 11.2</a> to define the actual conditions on <i>Ax</i>.
</p>
<a name="Property_Hierarchy_and_Simple_Object_Property_Expressions"></a><h3> <span class="mw-headline">11.1  Property Hierarchy and Simple Object Property Expressions </span></h3>
<p>For an object property expression <span class="name">OPE</span>, the <i>inverse property expression</i> <span class="name">INV(OPE)</span> is defined as follows:
</p>
<ul><li> If <span class="name">OPE</span> is an object property <span class="name">OP</span>, then <span class="name">INV(OPE)</span> = <span class="name">ObjectInverseOf( OP )</span>.
</li><li> if <span class="name">OPE</span> is of the form <span class="name">ObjectInverseOf( OP )</span> for <span class="name">OP</span> an object property, then <span class="name">INV(OPE)</span> = <span class="name">OP</span>.
</li></ul>
<p>The set <i>AllOPE(Ax)</i> of all object property expressions w.r.t. <i>Ax</i> is the smallest set containing <span class="name">OP</span> and <span class="name">INV(OP)</span> for each object property <span class="name">OP</span> occurring in <i>Ax</i>.
</p><p>An object property expression <span class="name">OPE</span> is <i>composite</i> in the set of axioms <i>Ax</i> if 
</p>
<ul><li> <span class="name">OPE</span> is equal to <i>owl:topObjectProperty</i> or <i>owl:bottomObjectProperty</i>, or
</li><li> <i>Ax</i> contains an axiom of the form
<ul><li> <span class="name">SubObjectPropertyOf( ObjectPropertyChain( OPE<sub>1</sub> ... OPE<sub>n</sub> ) OPE )</span> with n &gt; 1, or
</li><li> <span class="name">SubObjectPropertyOf( ObjectPropertyChain( OPE<sub>1</sub> ... OPE<sub>n</sub> ) INV(OPE) )</span> with n &gt; 1, or
</li><li> <span class="name">TransitiveObjectProperty( OPE )</span>, or
</li><li> <span class="name">TransitiveObjectProperty( INV(OPE) )</span>.
</li></ul>
</li></ul>
<p>The relation &rarr; is the smallest relation on <i>AllOPE(Ax)</i> for which the following conditions hold (<span class="name">A</span> &rarr; <span class="name">B</span> means that &rarr; holds for <span class="name">A</span> and <span class="name">B</span>):
</p>
<ul><li> if <i>Ax</i> contains an axiom <span class="name">SubObjectPropertyOf( OPE<sub>1</sub> OPE<sub>2</sub> )</span>, then <span class="name">OPE<sub>1</sub></span> &rarr; <span class="name">OPE<sub>2</sub></span> holds; and
</li><li> if <i>Ax</i> contains an axiom <span class="name">EquivalentObjectProperties( OPE<sub>1</sub> OPE<sub>2</sub> )</span>, then <span class="name">OPE<sub>1</sub></span> &rarr; <span class="name">OPE<sub>2</sub></span> and <span class="name">OPE<sub>2</sub></span> &rarr; <span class="name">OPE<sub>1</sub></span> hold; and
</li><li> if <i>Ax</i> contains an axiom <span class="name">InverseObjectProperties( OPE<sub>1</sub> OPE<sub>2</sub> )</span>, then <span class="name">OPE<sub>1</sub></span> &rarr; <span class="name">INV(OPE<sub>2</sub>)</span> and <span class="name">INV(OPE<sub>2</sub>)</span> &rarr; <span class="name">OPE<sub>1</sub></span> hold; and
</li><li> if <i>Ax</i> contains an axiom <span class="name">SymmetricObjectProperty(OPE)</span>, then <span class="name">OPE</span> &rarr; <span class="name">INV(OPE)</span> holds; and
</li><li> if <span class="name">OPE<sub>1</sub></span> &rarr; <span class="name">OPE<sub>2</sub></span> holds, then <span class="name">INV(OPE<sub>1</sub>)</span> &rarr; <span class="name">INV(OPE<sub>2</sub>)</span> holds as well.
</li></ul>
<p>The <i>property hierarchy</i> relation &rarr;<sup>*</sup> is the reflexive-transitive closure of &rarr;.
</p><p>An object property expression <span class="name">OPE</span> is <span id="def_simple"><i>simple</i></span> in <i>Ax</i> if, for each object property expression <span class="name">OPE'</span> such that <span class="name">OPE'</span> &rarr;<sup>*</sup> <span class="name">OPE</span> holds, <span class="name">OPE'</span> is not composite.
</p>
<div class="anexample">
<p>Roughly speaking, a simple object property expression has no direct or indirect subproperties that are either transitive or are defined by means of property chains, where the notion of indirect subproperties is captured by the property hierarchy. Consider the following axioms:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasFather</i> <i>a:hasBrother</i> ) <i>a:hasUncle</i> )
  </td><td> The brother of someone's father is that person's uncle.
</td></tr>
<tr valign="top"><td> SubObjectPropertyOf( <i>a:hasUncle</i> <i>a:hasRelative</i> )
  </td><td> Having an uncle implies having a relative.
</td></tr>
<tr valign="top"><td> SubObjectPropertyOf( <i>a:hasBiologicalFather</i> <i>a:hasFather</i> )
  </td><td> Having a biological father implies having a father.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasUncle</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasFather</i> <i>a:hasBrother</i> ) .
  </td><td> The brother of someone's father is that person's uncle.
</td></tr>
<tr valign="top"><td> <i>a:hasUncle</i> <i>rdfs:subPropertyOf</i> <i>a:hasRelative</i> .
  </td><td> Having an uncle implies having a relative.
</td></tr>
<tr valign="top"><td> <i>a:hasBiologicalFather</i> <i>rdfs:subPropertyOf</i> <i>a:hasFather</i> .
  </td><td> Having a biological father implies having a father.
</td></tr>
</table>
<p>The object property <i>a:hasUncle</i> occurs in an object subproperty axiom involving a property chain, so it is not simple. Consequently, the object property <i>a:hasRelative</i> is not simple either, because <i>a:hasUncle</i> is a subproperty of <i>a:hasRelative</i> and <i>a:hasUncle</i> is not simple. In contrast, the object property <i>a:hasBiologicalFather</i> is simple, and so is <i>a:hasFather</i>.
</p>
</div>
<a name="The_Restrictions_on_the_Axiom_Closure"></a><h3> <span class="mw-headline">11.2  The Restrictions on the Axiom Closure </span></h3>
<p>The set of axioms <i>Ax</i> satisfies the <span id="def_global_restrictions"><i>global restrictions</i></span> of OWL 2 DL if all of the following conditions hold.
</p><p><b>Restriction on <i>owl:topDataProperty</i>.</b> The <i>owl:topDataProperty</i> property occurs in <i>Ax</i> only in the <span class="nonterminal">superDataPropertyExpression</span> part of <span class="nonterminal">SubDataPropertyOf</span> axioms.
</p><p>Without this restriction, <i>owl:topDataProperty</i> could be used to write axioms about datatypes, which would invalidate Theorem DS1 from the OWL 2 Direct Semantics [<cite><a href="#ref-owl-2-direct-semantics" title="">OWL 2 Direct Semantics</a></cite>]. That is, the consequences of an ontology would then not necessarily depend only on the datatypes used in the ontology, but would also depend on the datatypes selected in the OWL 2 datatype map. Thus, if an implementation or a future revision of OWL decided to extend the set of supported datatypes, it would run the risk of possibly changing the consequences of certain ontologies.
</p><p><b>Restrictions on Datatypes.</b>
</p>
<ul><li> Each datatype occurring in <i>Ax</i> satisfies exactly one of the following conditions: it is <i>rdfs:Literal</i>, or it is contained in the OWL 2 datatype map, or it is defined by a single datatype definition axiom in <i>Ax</i>.
</li><li> A strict partial order (i.e., an irreflexive and transitive relation) &lt; on the set of all datatypes in <i>Ax</i> exists such that, for each axiom of the form <span class="name">DatatypeDefinition( DT DR )</span> and each datatype <span class="name">DT<sub>1</sub></span> occurring in <span class="name">DR</span>, we have <span class="name">DT<sub>1</sub></span> &lt; <span class="name">DT</span>.
</li></ul>
<div class="anexample">
<p>The first condition ensures that all datatypes in <i>Ax</i> are given a well-defined interpretation and that datatype definitions do not redefine the datatypes from the OWL 2 datatype map. The second condition ensures that datatype definitions are acyclic &mdash; that is, if a datatype <span class="name">DT<sub>1</sub></span> is used in a definition of <span class="name">DT</span>, then <span class="name">DT</span> is not allowed to be used in the definition of <span class="name">DT<sub>1</sub></span> &mdash; and it is illustrated by the following example:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> Declaration( Datatype( <i>a:SSN</i> ) )
  </td><td> <i>a:SSN</i> is a datatype.
</td></tr>
<tr valign="top"><td> Declaration( Datatype( <i>a:TIN</i> ) )
  </td><td> <i>a:TIN</i> is a datatype.
</td></tr>
<tr valign="top"><td> Declaration( Datatype( <i>a:TaxNumber</i> ) )
  </td><td> <i>a:TaxNumber</i> is a datatype.
</td></tr>
<tr valign="top"><td> DatatypeDefinition(<br /> &nbsp;&nbsp;&nbsp; <i>a:SSN</i><br /> &nbsp;&nbsp;&nbsp; DatatypeRestriction( <i>xsd:string</i> <i>xsd:pattern</i> "[0-9]{3}-[0-9]{2}-[0-9]{4}" )<br /> )
  </td><td> A social security number is a string that matches the given regular expression.
</td></tr>
<tr valign="top"><td> DatatypeDefinition(<br /> &nbsp;&nbsp;&nbsp; <i>a:TIN</i><br /> &nbsp;&nbsp;&nbsp; DatatypeRestriction( <i>xsd:string</i> <i>xsd:pattern</i> "[0-9]{11}" )<br /> )
  </td><td> A TIN &mdash; a tax identification number used in Germany &mdash; is a string consisting of 11 digits.
</td></tr>
<tr valign="top"><td> DatatypeDefinition( <i>a:TaxNumber</i> DataUnionOf( <i>a:SSN</i> <i>a:TIN</i> ) )
  </td><td> A tax number is either a social security number of a TIN.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:SSN</i> <i>rdf:type</i> <i>rdfs:Datatype</i> .
  </td><td> <i>a:SSN</i> is a datatype.
</td></tr>
<tr valign="top"><td> <i>a:TIN</i> <i>rdf:type</i> <i>rdfs:Datatype</i> .
  </td><td> <i>a:TIN</i> is a datatype.
</td></tr>
<tr valign="top"><td> <i>a:TaxNumber</i> <i>rdf:type</i> <i>rdfs:Datatype</i> .
  </td><td> <i>a:TaxNumber</i> is a datatype.
</td></tr>
<tr valign="top"><td> <i>a:SSN</i> <i>owl:equivalentClass</i> _:x1 .<br /> _:x1 <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:x1 <i>owl:onDatatype</i> <i>xsd:string</i> .<br /> <i>_:x1 owl:withRestrictions</i> ( _:x2 ) .<br /> _:x2 <i>xsd:pattern</i> "[0-9]{3}-[0-9]{2}-[0-9]{4}" .
  </td><td> A social security number is a string that matches the given regular expression.
</td></tr>
<tr valign="top"><td> <i>a:TIN</i> <i>owl:equivalentClass</i> _:y1 .<br /> _:y1 <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:y1 <i>owl:onDatatype</i> <i>xsd:string</i> .<br /> <i>_:y1 owl:withRestrictions</i> ( _:y2 ) .<br /> _:y2 <i>xsd:pattern</i> "[0-9]{11}" .
  </td><td> A TIN &mdash; a tax identification number used in Germany &mdash; is a string consisting of 11 digits.
</td></tr>
<tr valign="top"><td> <i>a:TaxNumber</i> <i>owl:equivalentClass</i> _:z .<br /> _:z <i>rdf:type</i> <i>rdfs:Datatype</i> .<br /> _:z <i>owl:unionOf</i> ( <i>a:SSN</i> <i>a:TIN</i> ) .
  </td><td> A tax number is either a social security number of a TIN.
</td></tr>
</table>
<p>These datatype definitions are acyclic: <i>a:SSN</i> and <i>a:TIN</i> are defined in terms of <i>xsd:string</i>, and <i>a:TaxNumber</i> is defined in terms of <i>a:SSN</i> and <i>a:TIN</i>. To verify this condition formally, it suffices to find one strict partial order &lt; on these datatypes such that each datatype is defined only in terms of the datatypes that are smaller w.r.t. &lt;. For example, it can be readily verified that the order &lt; given below fulfills the above conditions.
</p>
<div class="indent">
<p><i>xsd:string</i> &nbsp; &lt; &nbsp; <i>a:SSN</i> &nbsp; &lt; &nbsp; <i>a:TIN</i> &nbsp; &lt; &nbsp; <i>a:TaxNumber</i>
</p>
</div>
<p>This restriction is necessary to ensure validity of Theorem DS1 from the OWL 2 Direct Semantics [<cite><a href="#ref-owl-2-direct-semantics" title="">OWL 2 Direct Semantics</a></cite>]. Furthermore, it is natural given that data ranges describe the set of values exactly; for example, it is unlikely that, in addition to the above axioms, one would want to add an axiom that defines <i>a:SSN</i> in terms of <i>a:TIN</i> and <i>a:TaxNumber'.</i>
</p>
</div>
<p><b>Restriction on Simple Roles.</b> Each class expression and each axiom in <i>Ax</i> of type from the following two lists contains only simple object properties.
</p>
<ul><li> <span class="nonterminal">ObjectMinCardinality</span>, <span class="nonterminal">ObjectMaxCardinality</span>, <span class="nonterminal">ObjectExactCardinality</span>, and <span class="nonterminal">ObjectHasSelf </span>.
</li><li> <span class="nonterminal">FunctionalObjectProperty</span>, <span class="nonterminal">InverseFunctionalObjectProperty</span>, <span class="nonterminal">IrreflexiveObjectProperty</span>, <span class="nonterminal">AsymmetricObjectProperty</span>, and <span class="nonterminal">DisjointObjectProperties</span>.
</li></ul>
<p>This restriction is necessary in order to guarantee decidability of the basic reasoning problems for OWL 2 DL [<cite><a href="#ref-description-logics" title="">Description Logics</a></cite>].
</p><p><b>Restriction on the Property Hierarchy.</b> A strict partial order (i.e., an irreflexive and transitive relation) &lt; on <i>AllOPE(Ax)</i> exists that fulfills the following conditions:
</p>
<ul><li> <span class="name">OP<sub>1</sub></span> &lt; <span class="name">OP<sub>2</sub></span> if and only if <span class="name">INV(OP<sub>1</sub>)</span> &lt; <span class="name">OP<sub>2</sub></span> for all object properties <span class="name">OP<sub>1</sub></span> and <span class="name">OP<sub>2</sub></span> occurring in <i>AllOPE(Ax)</i>.
</li><li> If <span class="name">OPE<sub>1</sub></span> &lt; <span class="name">OPE<sub>2</sub></span> holds, then <span class="name">OPE<sub>2</sub></span> &rarr;<sup>*</sup> <span class="name">OPE<sub>1</sub></span> does not hold;
</li><li> Each axiom in <i>Ax</i> of the form <span class="name">SubObjectPropertyOf( ObjectPropertyChain( OPE<sub>1</sub> ... OPE<sub>n</sub> ) OPE )</span> with n &ge; 2 fulfills the following conditions:
<ul><li> <span class="name">OPE</span> is equal to <i>owl:topObjectProperty</i>, or
</li><li> n = 2 and <span class="name">OPE<sub>1</sub></span> = <span class="name">OPE<sub>2</sub></span> = <span class="name">OPE</span>, or
</li><li> <span class="name">OPE<sub>i</sub></span> &lt; <span class="name">OPE</span> for each 1 &le; i &le; n, or
</li><li> <span class="name">OPE<sub>1</sub></span> = <span class="name">OPE</span> and <span class="name">OPE<sub>i</sub></span> &lt; <span class="name">OPE</span> for each 2 &le; i &le; n, or
</li><li> <span class="name">OPE<sub>n</sub></span> = <span class="name">OPE</span> and <span class="name">OPE<sub>i</sub></span> &lt; <span class="name">OPE</span> for each 1 &le; i &le; n-1.
</li></ul>
</li></ul>
<p>This restriction is necessary in order to guarantee decidability of the basic reasoning problems for OWL 2 DL [<cite><a href="#ref-description-logics" title="">Description Logics</a></cite>].
</p>
<div class="anexample">
<p>The main goal of this restriction is to prevent cyclic definitions involving object subproperty axioms with property chains. Consider the following ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasFather</i> <i>a:hasBrother</i> ) <i>a:hasUncle</i> )
  </td><td> The brother of someone's father is that person's uncle.
</td></tr>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasUncle</i> <i>a:hasWife</i> ) <i>a:hasAuntInLaw</i> )
  </td><td> The wife of someone's uncle is that person's aunt-in-law.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasUncle</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasFather</i> <i>a:hasBrother</i> ) .
  </td><td> The brother of someone's father is that person's uncle.
</td></tr>
<tr valign="top"><td> <i>a:hasAuntInLaw</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasUncle</i> <i>a:hasWife</i> ) .
  </td><td> The wife of someone's uncle is that person's aunt-in-law.
</td></tr>
</table>
<p>The first axiom defines <i>a:hasUncle</i> in terms of <i>a:hasFather</i> and <i>a:hasBrother</i>, and the second axiom defines <i>a:hasAuntInLaw</i> in terms of <i>a:hasUncle</i> and <i>a:hasWife</i>. The second axiom depends on the first one, but not vice versa; hence, these axioms are not cyclic and can occur together in the axiom closure of an OWL 2 DL ontology. To verify this condition formally, it suffices to find one strict partial order &lt; on object properties such that each property is defined only in terms of the properties that are smaller w.r.t. &lt;. For example, it can be readily verified that the order &lt; given below fulfills the above conditions.
</p>
<div class="indent">
<p><i>a:hasFather</i> &nbsp; &lt; &nbsp; <i>a:hasBrother</i> &nbsp; &lt; &nbsp; <i>a:hasUncle</i> &nbsp; &lt; &nbsp; <i>a:hasWife</i> &nbsp; &lt; &nbsp; <i>a:hasAuntInLaw</i>
</p>
</div>
</div>
<div class="anexample">
<p>In contrast to the previous example, the following axioms are cyclic and do not satisfy the restriction on the property hierarchy.
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasFather</i> <i>a:hasBrother</i> ) <i>a:hasUncle</i> )
  </td><td> The brother of someone's father is that person's uncle.
</td></tr>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasChild</i> <i>a:hasUncle</i> ) <i>a:hasBrother</i> )
  </td><td> The uncle of someone's child is that person's brother.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasUncle</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasFather</i> <i>a:hasBrother</i> ) .
  </td><td> The brother of someone's father is that person's uncle.
</td></tr>
<tr valign="top"><td> <i>a:hasBrother</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasChild</i> <i>a:hasUncle</i> ) .
  </td><td> The uncle of someone's child is that person's brother.
</td></tr>
</table>
<p>The first axiom defines <i>a:hasUncle</i> in terms of <i>a:hasBrother</i>, while the second axiom defines <i>a:hasBrother</i> in terms of <i>a:hasUncle</i>; these two definitions are thus cyclic and cannot occur together in the axiom closure of an OWL 2 DL ontology. To verify this condition formally, note that, for &lt; to satisfy the third subcondition of the third condition, we need <i>a:hasUncle</i> &lt; <i>a:hasBrother</i> and <i>a:hasBrother</i> &lt; <i>a:hasUncle</i>; by transitivity of &lt; we then have <i>a:hasUncle</i> &lt; <i>a:hasUncle</i> and <i>a:hasBrother</i> &lt; <i>a:hasBrother</i>; however, this contradicts the requirement that &lt; is irreflexive. Thus, an order &lt; satisfying all the required conditions does not exist.
</p>
</div>
<div class="anexample">
<p>A particular kind of cyclic definitions is known not to lead to decidability problems. Consider the following ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> SubObjectPropertyOf( ObjectPropertyChain( <i>a:hasChild</i> <i>a:hasSibling</i> ) <i>a:hasChild</i> )
  </td><td> The sibling of someone's child is that person's child.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:hasChild</i> <i>owl:propertyChainAxiom</i> ( <i>a:hasChild</i> <i>a:hasSibling</i> ) .
  </td><td> The sibling of someone's child is that person's child.
</td></tr>
</table>
<p>The above definition is cyclic, since the object property <i>a:hasChild</i> occurs in both the subproperty chain and as a superproperty. As per the fourth and the fifth subcondition of the third condition, however, axioms of this form do not violate the restriction on the property hierarchy.
</p>
</div>
<p><b>Restrictions on the Usage of Anonymous Individuals.</b>
</p>
<ul><li> No axiom in <i>Ax</i> of the following form contains anonymous individuals:
<ul><li> <span class="nonterminal">SameIndividual</span>, <span class="nonterminal">DifferentIndividuals</span>, <span class="nonterminal">NegativeObjectPropertyAssertion</span>, and <span class="nonterminal">NegativeDataPropertyAssertion</span>.
</li></ul>
</li><li> A forest <i>F</i> over the anonymous individuals in <i>Ax</i> exists such that the following conditions are satisfied:
<ul><li> for each assertion in <i>Ax</i> of the form <span class="name">ObjectPropertyAssertion( OPE _:x _:y )</span>, either <span class="name">_:x</span> is a child of <span class="name">_:y</span> or <span class="name">_:y</span> is a child of <span class="name">_:x</span> in <i>F</i>;
</li><li> for each pair of anonymous individuals <span class="name">_:x</span> and <span class="name">_:y</span> such that <span class="name">_:y</span> is a child of <span class="name">_:x</span> in <i>F</i>, the set <i>Ax</i> contains at most one assertion of the form <span class="name">ObjectPropertyAssertion( OPE _:x _:y )</span> or <span class="name">ObjectPropertyAssertion( OPE _:y _:x )</span>; and
</li><li> for each anonymous individual <span class="name">_:x</span> that is a root in <i>F</i>, the set <i>Ax</i> contains at most one assertion of the form <span class="name">ObjectPropertyAssertion( OPE _:x a )</span> or <span class="name">ObjectPropertyAssertion( OPE a _:x )</span>.
</li></ul>
</li></ul>
<div class="anexample">
<p>These restrictions ensure that each OWL 2 DL ontology with anonymous individuals can be transformed to an equivalent ontology without anonymous individuals. Roughly speaking, this is possible if property assertions connect anonymous individuals in a tree-like way. Consider the following ontology:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasChild</i> <i>a:Francis</i> _:a1 )
  </td><td> Francis has some (unknown) child.
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasChild</i> _:a1 <i>a:Meg</i> )
  </td><td> This unknown child has Meg...
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasChild</i> _:a1 <i>a:Chris</i> )
  </td><td> ...Chris...
</td></tr>
<tr valign="top"><td> ObjectPropertyAssertion( <i>a:hasChild</i> _:a1 <i>a:Stewie</i> )
  </td><td> ...and Stewie as children.
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td> <i>a:Francis</i> <i>a:hasChild</i> _:a1 .
  </td><td> Francis has some (unknown) child.
</td></tr>
<tr valign="top"><td> _:a1 <i>a:hasChild</i> <i>a:Meg</i> .
  </td><td> This unknown child has Meg...
</td></tr>
<tr valign="top"><td> _:a1 <i>a:hasChild</i> <i>a:Chris</i> .
  </td><td> ...Chris...
</td></tr>
<tr valign="top"><td> _:a1 <i>a:hasChild</i> <i>a:Stewie</i> .
  </td><td> ...and Stewie as children.
</td></tr>
</table>
<p>The connections between individuals <i>a:Francis</i>, <i>a:Meg</i>, <i>a:Chris</i>, and <i>a:Stewie</i> can be understood as a tree that contains <span class="name">_:a1</span> as its root. Because of that, the anonymous individuals can be "rolled up"; that is, these four assertions can be replaced by the following equivalent assertion:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ClassAssertion(<br /> &nbsp;&nbsp;&nbsp; ObjectSomeValuesFrom( <i>a:hasChild</i><br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectIntersectionOf(<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectHasValue( <i>a:hasChild</i> <i>a:Meg</i> )<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectHasValue( <i>a:hasChild</i> <i>a:Chris</i> )<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ObjectHasValue( <i>a:hasChild</i> <i>a:Stewie</i> )<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; )<br /> &nbsp;&nbsp;&nbsp; <i>a:Francis</i><br /> )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> <i>a:Francis</i> <i>rdf:type</i> _:x .<br /> _:x <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:x <i>owl:onProperty</i> <i>a:hasChild</i> .<br /> _:x <i>owl:someValuesFrom</i> _:y .<br /> _:y <i>rdf:type</i> <i>owl:Class</i> .<br /> _:y <i>owl:intersectionOf</i> ( _:z1 _:z2 _:z3 ) .<br /> _:z1 <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:z1 <i>owl:onProperty</i> <i>a:hasChild</i> .<br /> _:z1 <i>owl:hasValue</i> <i>a:Meg</i> .<br /> _:z2 <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:z2 <i>owl:onProperty</i> <i>a:hasChild</i> .<br /> _:z2 <i>owl:hasValue</i> <i>a:Chris</i> .<br /> _:z3 <i>rdf:type</i> <i>owl:Restriction</i> .<br /> _:z3 <i>owl:onProperty</i> <i>a:hasChild</i> .<br /> _:z3 <i>owl:hasValue</i> <i>a:Stewie</i> .
</td></tr>
</table>
</div>
<div class="anexample">
<p>Unlike in the previous example, the following ontology does not satisfy the restrictions on the usage of anonymous individuals:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasSibling</i> _:b1 _:b2 )
</td></tr>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasSibling</i> _:b2 _:b3 )
</td></tr>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasSibling</i> _:b3 _:b1 )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:b1 <i>a:hasSibling</i> _:b2 .
</td></tr>
<tr valign="top"><td colspan="2"> _:b2 <i>a:hasSibling</i> _:b3 .
</td></tr>
<tr valign="top"><td colspan="2"> _:b3 <i>a:hasSibling</i> _:b1 .
</td></tr>
</table>
<p>The following ontology does not satisfy these restrictions either:
</p>
<table class="fss">
<caption class="fss" style="display: none">Functional-Style Syntax:</caption>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasChild</i> _:b1 _:b2 )
</td></tr>
<tr valign="top"><td colspan="2"> ObjectPropertyAssertion( <i>a:hasDaughter</i> _:b1 _:b2 )
</td></tr>
</table>
<table class="rdf" style="display: none">
<caption class="rdf">RDF:</caption>
<tr valign="top"><td colspan="2"> _:b1 <i>a:hasChild</i> _:b2 .
</td></tr>
<tr valign="top"><td colspan="2"> _:b1 <i>a:hasDaughter</i> _:b2 .
</td></tr>
</table>
<p>In both of these examples, the anonymous individuals are connected by property assertions in a non-tree-like way. These assertions can therefore not be replaced with class expressions, which can lead to the undecidability of the basic reasoning problems.
</p>
</div>
<a name="Appendix:_Internet_Media_Type.2C_File_Extension.2C_and_Macintosh_File_Type"></a><h2> <span class="mw-headline">12  Appendix: Internet Media Type, File Extension, and Macintosh File Type  </span></h2>
<dl><dt> Contact</dt><dd>
</dd><dd> Ivan Herman / Sandro Hawke
</dd><dt> See also</dt><dd>
</dd><dd> How to Register a Media Type for a W3C Specification [<cite><a href="#ref-register-mime" title="">Register MIME</a></cite>] and Internet Media Type registration, consistency of use [<cite><a href="#ref-mime-consistency" title="">MIME Consistency</a></cite>].
</dd></dl>
<p>The Internet Media Type / MIME Type for the OWL functional-style Syntax is <tt>text/owl-functional</tt>.
</p><p>It is recommended that OWL functional-style Syntax files have the extension <tt>.ofn</tt> (all lowercase) on all platforms.
</p><p>It is recommended that OWL functional-style Syntax files stored on Macintosh HFS file systems be given a file type of <tt>TEXT</tt>.
</p><p>The information that follows will be submitted to the IESG for review, approval, and registration with IANA.
</p>
<dl><dt> Type name</dt><dd>
</dd><dd>    text
</dd><dt> Subtype name</dt><dd>
</dd><dd>    owl-functional
</dd><dt> Required parameters</dt><dd>
</dd><dd>   None
</dd><dt> Optional parameters</dt><dd>
</dd><dd>   charset  This parameter may be required when transfering non-ASCII data across some protocols. If present, the value of charset should be UTF-8.  
</dd><dt> Encoding considerations</dt><dd>
</dd><dd>    The syntax of the OWL functional-style Syntax is expressed over code points in Unicode [<cite><a href="#ref-unicode" title="">UNICODE</a></cite>]. The encoding should be UTF-8 [<cite><a href="#ref-rfc-3629" title="">RFC 3629</a></cite>], but other encodings are allowed.
</dd><dt> Security considerations</dt><dd>
</dd><dd>    The OWL functional-style Syntax uses IRIs as term identifiers. Applications interpreting data expressed in the OWL functional-style Syntax should address the security issues of Internationalized Resource Identifiers (IRIs) [<cite><a href="#ref-rfc-3987" title="">RFC3987</a></cite>] Section 8, as well as Uniform Resource Identifiers (URI): Generic Syntax [<cite><a href="#ref-rfc-3986" title="">RFC 3986</a></cite>] Section 7. Multiple IRIs may have the same appearance. Characters in different scripts may look similar (a Cyrillic "o" may appear similar to a Latin "o"). A character followed by combining characters may have the same visual representation as another character (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation as LATIN SMALL LETTER E WITH ACUTE). Any person or application that is writing or interpreting data in the OWL functional-style Syntax must take care to use the IRI that matches the intended semantics, and avoid IRIs that may look similar. Further information about matching of similar characters can be found in Unicode Security Considerations [<cite><a href="#ref-unisec" title="">UNISEC</a></cite>] and Internationalized Resource Identifiers (IRIs) [<cite><a href="#ref-rfc-3987" title="">RFC3987</a></cite>] Section 8.
</dd><dt> Interoperability considerations</dt><dd>
</dd><dd>    There are no known interoperability issues.
</dd><dt> Published specification</dt><dd>
</dd><dd>    This specification.
</dd><dt> Applications which use this media type</dt><dd>
</dd><dd>     No widely deployed applications are known to currently use this media type. It is expected that OWL tools will use this media type in the future. 
</dd><dt> Additional information</dt><dd>
</dd><dd>     None.
</dd><dt> Magic number(s)</dt><dd>
</dd><dd>    OWL functional-style Syntax documents may have the strings "Prefix" or "Ontology" (case dependent) near the beginning of the document.
</dd><dt> File extension(s)</dt><dd>
</dd><dd>    ".ofn"
</dd><dt> Base IRI</dt><dd>
</dd><dd>   There are no constructs in the OWL functional-style Syntax to change the Base IRI.
</dd><dt> Macintosh file type code(s)</dt><dd>
</dd><dd>    "TEXT"
</dd><dt> Person &amp; email address to contact for further information</dt><dd>
</dd><dd>    Ivan Herman, ivan@w3.org / Sandro Hawke, sandro@w3.org. Please send technical comments and questions about OWL to public-owl-comments@w3.org, a mailing list with a public archive at <a class="external free" href="http://lists.w3.org/Archives/Public/public-owl-comments/" title="http://lists.w3.org/Archives/Public/public-owl-comments/">http://lists.w3.org/Archives/Public/public-owl-comments/</a>
</dd><dt> Intended usage</dt><dd>
</dd><dd>     COMMON
</dd><dt> Restrictions on usage</dt><dd>
</dd><dd>     None
</dd><dt> Author/Change controller</dt><dd>
</dd><dd>   The OWL functional-style Syntax is the product of the W3C OWL Working Group; W3C reserves change control over this specification.
</dd></dl>
<a name="Appendix:_Complete_Grammar_.28Normative.29"></a><h2> <span class="mw-headline">13  Appendix: Complete Grammar (Normative) </span></h2>
<p>This section contains the complete grammar of the functional-style syntax defined in this specification document. For easier reference, the grammar has been split into two parts.
</p>
<a name="General_Definitions"></a><h3> <span class="mw-headline">13.1  General Definitions </span></h3>
<div class="grammar">
<p><span class="nonterminal">nonNegativeInteger</span>&nbsp;:= <i>a nonempty finite sequence of digits between 0 and 9</i><br />
<span class="nonterminal">quotedString</span>&nbsp;:= <i>a finite sequence of characters in which " (U+22) and \ (U+5C) occur only in pairs of the form \" (U+5C, U+22) and \\ (U+5C, U+5C), enclosed in a pair of " (U+22) characters</i><br />
<span class="nonterminal">languageTag</span>&nbsp;:= <i>@ (U+40) followed a nonempty sequence of characters matching the langtag production from [<cite><a href="#ref-bcp-47" title="">BCP 47</a></cite>]</i><br />
<span class="nonterminal">nodeID</span>&nbsp;:= <i>a finite sequence of characters matching the BLANK_NODE_LABEL production of [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]</i><br />
<br />
<br />
<br />
<span class="nonterminal">fullIRI</span>&nbsp;:= <i>an IRI as defined in [<cite><a href="#ref-rfc-3987" title="">RFC3987</a></cite>], enclosed in a pair of &lt; (U+3C) and &gt; (U+3E) characters</i><br />
<span class="nonterminal">prefixName</span>&nbsp;:= <i>a finite sequence of characters matching the as PNAME_NS production of [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]</i><br />
<span class="nonterminal">abbreviatedIRI</span>&nbsp;:= <i>a finite sequence of characters matching the PNAME_LN production of [<cite><a href="#ref-sparql" title="">SPARQL</a></cite>]<br /></i>
<span class="nonterminal">IRI</span>&nbsp;:= <span class="nonterminal">fullIRI</span> | <span class="nonterminal">abbreviatedIRI</span><br />
<br />
<br />
<br />
<span class="nonterminal">ontologyDocument</span>&nbsp;:=  { <span class="nonterminal">prefixDeclaration</span> } <span class="nonterminal">Ontology</span><br />
<span class="nonterminal">prefixDeclaration</span>&nbsp;:= 'Prefix' '(' <span class="nonterminal">prefixName</span> '=' <span class="nonterminal">fullIRI</span> ')'<br />
<span class="nonterminal">Ontology</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; 'Ontology' '(' [ <span class="nonterminal">ontologyIRI</span> [ <span class="nonterminal">versionIRI</span> ] ]<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="nonterminal">directlyImportsDocuments</span><br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="nonterminal">ontologyAnnotations</span><br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <span class="nonterminal">axioms</span><br />
&nbsp;&nbsp;&nbsp; ')'<br />
<span class="nonterminal">ontologyIRI</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<span class="nonterminal">versionIRI</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<span class="nonterminal">directlyImportsDocuments</span>&nbsp;:= { 'Import' '(' <span class="nonterminal">IRI</span> ')' }<br />
<span class="nonterminal">ontologyAnnotations</span>&nbsp;:= { <span class="nonterminal">Annotation</span> }<br />
<span class="nonterminal">axioms</span>&nbsp;:= { <span class="nonterminal">Axiom</span> }<br />
<br />
<br />
<br />
<span class="nonterminal">Declaration</span>&nbsp;:= 'Declaration' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Entity</span> ')'<br />
<span class="nonterminal">Entity</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; 'Class' '(' <span class="nonterminal">Class</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'Datatype' '(' <span class="nonterminal">Datatype</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'ObjectProperty' '(' <span class="nonterminal">ObjectProperty</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'DataProperty' '(' <span class="nonterminal">DataProperty</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'AnnotationProperty' '(' <span class="nonterminal">AnnotationProperty</span> ')' |<br />
&nbsp;&nbsp;&nbsp; 'NamedIndividual' '(' <span class="nonterminal">NamedIndividual</span> ')'<br />
<br />
<br />
<br />
<span class="nonterminal">AnnotationSubject</span>&nbsp;:= <span class="nonterminal">IRI</span> | <span class="nonterminal">AnonymousIndividual</span><br />
<span class="nonterminal">AnnotationValue</span>&nbsp;:= <span class="nonterminal">AnonymousIndividual</span> | <span class="nonterminal">IRI</span> | <span class="nonterminal">Literal</span><br />
<span class="nonterminal">axiomAnnotations</span>&nbsp;:= { <span class="nonterminal">Annotation</span> }<br />
<br />
<span class="nonterminal">Annotation</span>&nbsp;:= 'Annotation' '(' <span class="nonterminal">annotationAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">AnnotationValue</span> ')'<br />
<span class="nonterminal">annotationAnnotations</span> &nbsp;:= { <span class="nonterminal">Annotation</span> }<br />
<br />
<span class="nonterminal">AnnotationAxiom</span>&nbsp;:= <span class="nonterminal">AnnotationAssertion</span> | <span class="nonterminal">SubAnnotationPropertyOf</span> | <span class="nonterminal">AnnotationPropertyDomain</span> | <span class="nonterminal">AnnotationPropertyRange</span><br />
<br />
<span class="nonterminal">AnnotationAssertion</span>&nbsp;:= 'AnnotationAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">AnnotationSubject</span> <span class="nonterminal">AnnotationValue</span> ')'<br />
<br />
<span class="nonterminal">SubAnnotationPropertyOf</span>&nbsp;:= 'SubAnnotationPropertyOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subAnnotationProperty</span> <span class="nonterminal">superAnnotationProperty</span> ')'<br />
<span class="nonterminal">subAnnotationProperty</span>&nbsp;:= <span class="nonterminal">AnnotationProperty</span><br />
<span class="nonterminal">superAnnotationProperty</span>&nbsp;:= <span class="nonterminal">AnnotationProperty</span><br />
<br />
<span class="nonterminal">AnnotationPropertyDomain</span>&nbsp;:= 'AnnotationPropertyDomain' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">IRI</span> ')'<br />
<br />
<span class="nonterminal">AnnotationPropertyRange</span>&nbsp;:= 'AnnotationPropertyRange' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">AnnotationProperty</span> <span class="nonterminal">IRI</span> ')'
</p>
</div>
<a name="Definitions_of_OWL_2_Constructs"></a><h3> <span class="mw-headline">13.2  Definitions of OWL 2 Constructs </span></h3>
<div class="grammar">
<p><span class="nonterminal">Class</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<br />
<span class="nonterminal">Datatype</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<br />
<span class="nonterminal">ObjectProperty</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<br />
<span class="nonterminal">DataProperty</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<br />
<span class="nonterminal">AnnotationProperty</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<br />
<span class="nonterminal">Individual</span>&nbsp;:= <span class="nonterminal">NamedIndividual</span> | <span class="nonterminal">AnonymousIndividual</span><br />
<br />
<span class="nonterminal">NamedIndividual</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<br />
<span class="nonterminal">AnonymousIndividual</span>&nbsp;:= <span class="nonterminal">nodeID</span><br />
<br />
<span class="nonterminal">Literal</span>&nbsp;:= <span class="nonterminal">typedLiteral</span> | <span class="nonterminal">stringLiteralNoLanguage</span> | <span class="nonterminal">stringLiteralWithLanguage</span><br />
<span class="nonterminal">typedLiteral</span>&nbsp;:= <span class="nonterminal">lexicalForm</span> '^^' <span class="nonterminal">Datatype</span><br />
<span class="nonterminal">lexicalForm</span>&nbsp;:= <span class="nonterminal">quotedString</span><br />
<span class="nonterminal">stringLiteralNoLanguage</span>&nbsp;:= <span class="nonterminal">quotedString</span><br />
<span class="nonterminal">stringLiteralWithLanguage</span>&nbsp;:= <span class="nonterminal">quotedString</span> <span class="nonterminal">languageTag</span><br />
<br />
<br />
<br />
<span class="nonterminal">ObjectPropertyExpression</span>&nbsp;:= <span class="nonterminal">ObjectProperty</span> | <span class="nonterminal">InverseObjectProperty</span><br />
<br />
<span class="nonterminal">InverseObjectProperty</span>&nbsp;:= 'ObjectInverseOf' '(' <span class="nonterminal">ObjectProperty</span> ')'<br />
<br />
<span class="nonterminal">DataPropertyExpression</span>&nbsp;:= <span class="nonterminal">DataProperty</span><br />
<br />
<br />
<br />
<span class="nonterminal">DataRange</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">Datatype</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataIntersectionOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataUnionOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataComplementOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataOneOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DatatypeRestriction</span><br />
<br />
<span class="nonterminal">DataIntersectionOf</span>&nbsp;:= 'DataIntersectionOf' '(' <span class="nonterminal">DataRange</span> <span class="nonterminal">DataRange</span> { <span class="nonterminal">DataRange</span> } ')'<br />
<br />
<span class="nonterminal">DataUnionOf</span>&nbsp;:= 'DataUnionOf' '(' <span class="nonterminal">DataRange</span> <span class="nonterminal">DataRange</span> { <span class="nonterminal">DataRange</span> } ')'<br />
<br />
<span class="nonterminal">DataComplementOf</span>&nbsp;:= 'DataComplementOf' '(' <span class="nonterminal">DataRange</span> ')'<br />
<br />
<span class="nonterminal">DataOneOf</span>&nbsp;:= 'DataOneOf' '(' <span class="nonterminal">Literal</span> { <span class="nonterminal">Literal</span> } ')'<br />
<br />
<span class="nonterminal">DatatypeRestriction</span>&nbsp;:= 'DatatypeRestriction' '(' <span class="nonterminal">Datatype</span> <span class="nonterminal">constrainingFacet</span> <span class="nonterminal">restrictionValue</span> { <span class="nonterminal">constrainingFacet</span> <span class="nonterminal">restrictionValue</span> } ')'<br />
<span class="nonterminal">constrainingFacet</span>&nbsp;:= <span class="nonterminal">IRI</span><br />
<span class="nonterminal">restrictionValue</span>&nbsp;:= <span class="nonterminal">Literal</span><br />
<br />
<br />
<br />
<span class="nonterminal">ClassExpression</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">Class</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectIntersectionOf</span> | <span class="nonterminal">ObjectUnionOf</span> | <span class="nonterminal">ObjectComplementOf</span> | <span class="nonterminal">ObjectOneOf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectSomeValuesFrom</span> | <span class="nonterminal">ObjectAllValuesFrom</span> | <span class="nonterminal">ObjectHasValue</span> | <span class="nonterminal">ObjectHasSelf</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectMinCardinality</span> | <span class="nonterminal">ObjectMaxCardinality</span> | <span class="nonterminal">ObjectExactCardinality</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataSomeValuesFrom</span> | <span class="nonterminal">DataAllValuesFrom</span> | <span class="nonterminal">DataHasValue</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataMinCardinality</span> | <span class="nonterminal">DataMaxCardinality</span> | <span class="nonterminal">DataExactCardinality</span><br />
<br />
<span class="nonterminal">ObjectIntersectionOf</span>&nbsp;:= 'ObjectIntersectionOf' '(' <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'<br />
<br />
<span class="nonterminal">ObjectUnionOf</span>&nbsp;:= 'ObjectUnionOf' '(' <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'<br />
<br />
<span class="nonterminal">ObjectComplementOf</span>&nbsp;:= 'ObjectComplementOf' '(' <span class="nonterminal">ClassExpression</span> ')'<br />
<br />
<span class="nonterminal">ObjectOneOf</span>&nbsp;:= 'ObjectOneOf' '(' <span class="nonterminal">Individual</span> { <span class="nonterminal">Individual</span> }')'<br />
<br />
<span class="nonterminal">ObjectSomeValuesFrom</span>&nbsp;:= 'ObjectSomeValuesFrom' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'<br />
<br />
<span class="nonterminal">ObjectAllValuesFrom</span>&nbsp;:= 'ObjectAllValuesFrom' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'<br />
<br />
<span class="nonterminal">ObjectHasValue</span>&nbsp;:= 'ObjectHasValue' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">Individual</span> ')'<br />
<br />
<span class="nonterminal">ObjectHasSelf</span>&nbsp;:= 'ObjectHasSelf' '(' <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">ObjectMinCardinality</span>&nbsp;:= 'ObjectMinCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">ObjectPropertyExpression</span> [ <span class="nonterminal">ClassExpression</span> ] ')'<br />
<br />
<span class="nonterminal">ObjectMaxCardinality</span>&nbsp;:= 'ObjectMaxCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">ObjectPropertyExpression</span> [ <span class="nonterminal">ClassExpression</span> ] ')'<br />
<br />
<span class="nonterminal">ObjectExactCardinality</span>&nbsp;:= 'ObjectExactCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">ObjectPropertyExpression</span> [ <span class="nonterminal">ClassExpression</span> ] ')'<br />
<br />
<span class="nonterminal">DataSomeValuesFrom</span>&nbsp;:= 'DataSomeValuesFrom' '(' <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } <span class="nonterminal">DataRange</span> ')'<br />
<br />
<span class="nonterminal">DataAllValuesFrom</span>&nbsp;:= 'DataAllValuesFrom' '(' <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } <span class="nonterminal">DataRange</span> ')'<br />
<br />
<span class="nonterminal">DataHasValue</span>&nbsp;:= 'DataHasValue' '(' <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">Literal</span> ')'<br />
<br />
<span class="nonterminal">DataMinCardinality</span>&nbsp;:= 'DataMinCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">DataPropertyExpression</span> [ <span class="nonterminal">DataRange</span> ] ')'<br />
<br />
<span class="nonterminal">DataMaxCardinality</span>&nbsp;:= 'DataMaxCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">DataPropertyExpression</span> [ <span class="nonterminal">DataRange</span> ] ')'<br />
<br />
<span class="nonterminal">DataExactCardinality</span>&nbsp;:= 'DataExactCardinality' '(' <span class="nonterminal">nonNegativeInteger</span> <span class="nonterminal">DataPropertyExpression</span> [ <span class="nonterminal">DataRange</span> ] ')'<br />
<br />
<br />
<br />
<span class="nonterminal">Axiom</span>&nbsp;:= <span class="nonterminal">Declaration</span> | <span class="nonterminal">ClassAxiom</span> | <span class="nonterminal">ObjectPropertyAxiom</span> | <span class="nonterminal">DataPropertyAxiom</span> | <span class="nonterminal">DatatypeDefinition</span> | <span class="nonterminal">HasKey</span> | <span class="nonterminal">Assertion</span> | <span class="nonterminal">AnnotationAxiom</span><br />
<br />
<br />
<br />
<span class="nonterminal">ClassAxiom</span>&nbsp;:= <span class="nonterminal">SubClassOf</span> | <span class="nonterminal">EquivalentClasses</span> | <span class="nonterminal">DisjointClasses</span> | <span class="nonterminal">DisjointUnion</span><br />
<br />
<span class="nonterminal">SubClassOf</span>&nbsp;:= 'SubClassOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subClassExpression</span> <span class="nonterminal">superClassExpression</span> ')'<br />
<span class="nonterminal">subClassExpression</span>&nbsp;:= <span class="nonterminal">ClassExpression</span><br />
<span class="nonterminal">superClassExpression</span>&nbsp;:= <span class="nonterminal">ClassExpression</span><br />
<br />
<span class="nonterminal">EquivalentClasses</span>&nbsp;:= 'EquivalentClasses' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'<br />
<br />
<span class="nonterminal">DisjointClasses</span>&nbsp;:= 'DisjointClasses' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> } ')'<br />
<br />
<span class="nonterminal">DisjointUnion</span>&nbsp;:= 'DisjointUnion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Class</span> <span class="nonterminal">disjointClassExpressions</span> ')'<br />
<span class="nonterminal">disjointClassExpressions</span>&nbsp;:= <span class="nonterminal">ClassExpression</span> <span class="nonterminal">ClassExpression</span> { <span class="nonterminal">ClassExpression</span> }<br />
<br />
<br />
<br />
<span class="nonterminal">ObjectPropertyAxiom</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SubObjectPropertyOf</span> | <span class="nonterminal">EquivalentObjectProperties</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DisjointObjectProperties</span> | <span class="nonterminal">InverseObjectProperties</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectPropertyDomain</span> | <span class="nonterminal">ObjectPropertyRange</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">FunctionalObjectProperty</span> | <span class="nonterminal">InverseFunctionalObjectProperty</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ReflexiveObjectProperty</span> | <span class="nonterminal">IrreflexiveObjectProperty</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SymmetricObjectProperty</span> | <span class="nonterminal">AsymmetricObjectProperty</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">TransitiveObjectProperty</span><br />
<br />
<span class="nonterminal">SubObjectPropertyOf</span>&nbsp;:= 'SubObjectPropertyOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subObjectPropertyExpression</span> <span class="nonterminal">superObjectPropertyExpression</span> ')'<br />
<span class="nonterminal">subObjectPropertyExpression</span>&nbsp;:= <span class="nonterminal">ObjectPropertyExpression</span> | <span class="nonterminal">propertyExpressionChain</span><br />
<span class="nonterminal">propertyExpressionChain</span>&nbsp;:= 'ObjectPropertyChain' '(' <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> { <span class="nonterminal">ObjectPropertyExpression</span> } ')'<br />
<span class="nonterminal">superObjectPropertyExpression</span>&nbsp;:= <span class="nonterminal">ObjectPropertyExpression</span><br />
<br />
<span class="nonterminal">EquivalentObjectProperties</span>&nbsp;:= 'EquivalentObjectProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> { <span class="nonterminal">ObjectPropertyExpression</span> } ')'<br />
<br />
<span class="nonterminal">DisjointObjectProperties</span>&nbsp;:= 'DisjointObjectProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> { <span class="nonterminal">ObjectPropertyExpression</span> } ')'<br />
<br />
<span class="nonterminal">ObjectPropertyDomain</span>&nbsp;:= 'ObjectPropertyDomain' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'<br />
<br />
<span class="nonterminal">ObjectPropertyRange</span>&nbsp;:= 'ObjectPropertyRange' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'<br />
<br />
<span class="nonterminal">InverseObjectProperties</span>&nbsp;:= 'InverseObjectProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">FunctionalObjectProperty</span>&nbsp;:= 'FunctionalObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">InverseFunctionalObjectProperty</span>&nbsp;:= 'InverseFunctionalObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">ReflexiveObjectProperty</span>&nbsp;:= 'ReflexiveObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">IrreflexiveObjectProperty</span>&nbsp;:= 'IrreflexiveObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">SymmetricObjectProperty</span>&nbsp;:= 'SymmetricObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">AsymmetricObjectProperty</span>&nbsp;:= 'AsymmetricObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<span class="nonterminal">TransitiveObjectProperty</span>&nbsp;:= 'TransitiveObjectProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> ')'<br />
<br />
<br />
<br />
<span class="nonterminal">DataPropertyAxiom</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SubDataPropertyOf</span> | <span class="nonterminal">EquivalentDataProperties</span> | <span class="nonterminal">DisjointDataProperties</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataPropertyDomain</span> | <span class="nonterminal">DataPropertyRange</span> | <span class="nonterminal">FunctionalDataProperty</span><br />
<br />
<span class="nonterminal">SubDataPropertyOf</span>&nbsp;:= 'SubDataPropertyOf' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">subDataPropertyExpression</span> <span class="nonterminal">superDataPropertyExpression</span> ')'<br />
<span class="nonterminal">subDataPropertyExpression</span>&nbsp;:= <span class="nonterminal">DataPropertyExpression</span><br />
<span class="nonterminal">superDataPropertyExpression</span>&nbsp;:= <span class="nonterminal">DataPropertyExpression</span><br />
<br />
<span class="nonterminal">EquivalentDataProperties</span>&nbsp;:= 'EquivalentDataProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } ')'<br />
<br />
<span class="nonterminal">DisjointDataProperties</span>&nbsp;:= 'DisjointDataProperties' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">DataPropertyExpression</span> { <span class="nonterminal">DataPropertyExpression</span> } ')'<br />
<br />
<span class="nonterminal">DataPropertyDomain</span>&nbsp;:= 'DataPropertyDomain' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">ClassExpression</span> ')'<br />
<br />
<span class="nonterminal">DataPropertyRange</span>&nbsp;:= 'DataPropertyRange' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">DataRange</span> ')'<br />
<br />
<span class="nonterminal">FunctionalDataProperty</span>&nbsp;:= 'FunctionalDataProperty' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> ')'<br />
<br />
<br />
<br />
<span class="nonterminal">DatatypeDefinition</span>&nbsp;:= 'DatatypeDefinition' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Datatype</span> <span class="nonterminal">DataRange</span> ')'<br />
<br />
<br />
<br />
<span class="nonterminal">HasKey</span>&nbsp;:= 'HasKey' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> '(' { <span class="nonterminal">ObjectPropertyExpression</span> } ')' '(' { <span class="nonterminal">DataPropertyExpression</span> } ')' ')'<br />
<br />
<br />
<br />
<span class="nonterminal">Assertion</span>&nbsp;:=<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">SameIndividual</span> | <span class="nonterminal">DifferentIndividuals</span> | <span class="nonterminal">ClassAssertion</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">ObjectPropertyAssertion</span> | <span class="nonterminal">NegativeObjectPropertyAssertion</span> |<br />
&nbsp;&nbsp;&nbsp; <span class="nonterminal">DataPropertyAssertion</span> | <span class="nonterminal">NegativeDataPropertyAssertion</span><br />
<br />
<span class="nonterminal">sourceIndividual</span>&nbsp;:= <span class="nonterminal">Individual</span><br />
<span class="nonterminal">targetIndividual</span>&nbsp;:= <span class="nonterminal">Individual</span><br />
<span class="nonterminal">targetValue</span>&nbsp;:= <span class="nonterminal">Literal</span><br />
<br />
<span class="nonterminal">SameIndividual</span>&nbsp;:= 'SameIndividual' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Individual</span> <span class="nonterminal">Individual</span> { <span class="nonterminal">Individual</span> } ')'<br />
<br />
<span class="nonterminal">DifferentIndividuals</span>&nbsp;:= 'DifferentIndividuals' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">Individual</span> <span class="nonterminal">Individual</span> { <span class="nonterminal">Individual</span> } ')'<br />
<br />
<span class="nonterminal">ClassAssertion</span>&nbsp;:= 'ClassAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ClassExpression</span> <span class="nonterminal">Individual</span> ')'<br />
<br />
<span class="nonterminal">ObjectPropertyAssertion</span>&nbsp;:= 'ObjectPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetIndividual</span> ')'<br />
<br />
<span class="nonterminal">NegativeObjectPropertyAssertion</span>&nbsp;:= 'NegativeObjectPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">ObjectPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetIndividual</span> ')'<br />
<br />
<span class="nonterminal">DataPropertyAssertion</span>&nbsp;:= 'DataPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetValue</span> ')'<br />
<br />
<span class="nonterminal">NegativeDataPropertyAssertion</span>&nbsp;:= 'NegativeDataPropertyAssertion' '(' <span class="nonterminal">axiomAnnotations</span> <span class="nonterminal">DataPropertyExpression</span> <span class="nonterminal">sourceIndividual</span> <span class="nonterminal">targetValue</span> ')'
</p>
</div>
<div id="changelog">
<a name="Appendix:_Change_Log_.28Informative.29"></a><h2> <span class="mw-headline">14  Appendix: Change Log (Informative) </span></h2>
<a name="Changes_Since_Proposed_Recommendation"></a><h3> <span class="mw-headline">14.1  Changes Since Proposed Recommendation </span></h3>
<p>This section summarizes the changes to this document since the <a class="external text" href="http://www.w3.org/TR/2009/PR-owl2-syntax-20090922/" title="http://www.w3.org/TR/2009/PR-owl2-syntax-20090922/">Proposed Recommendation of 22 September, 2009</a>.
</p>
<ul><li> Some minor editorial changes were made.
</li></ul>
<a name="Changes_Since_Candidate_Recommendation"></a><h3> <span class="mw-headline">14.2  Changes Since Candidate Recommendation </span></h3>
<p>This section summarizes the changes to this document since the <a class="external text" href="http://www.w3.org/TR/2009/CR-owl2-syntax-20090611/" title="http://www.w3.org/TR/2009/CR-owl2-syntax-20090611/">Candidate Recommendation of 11 June, 2009</a>.
</p>
<ul><li> The "Feature At Risk" warnings w.r.t. the owl:rational and rdf:XMLLiteral datatypes were removed: implementation support has been adequately demonstrated, and the features are no longer considered at risk (see <a class="external text" href="http://www.w3.org/2007/OWL/meeting/2009-08-05#resolution_5" title="http://www.w3.org/2007/OWL/meeting/2009-08-05#resolution_5">Resolution 5</a> and <a class="external text" href="http://www.w3.org/2007/OWL/meeting/2009-08-05#resolution_6" title="http://www.w3.org/2007/OWL/meeting/2009-08-05#resolution_6">Resolution 6</a>, 05 August 2009).
</li><li> The definition of the OWL 2 datatype map was strengthened so as to make it clear that OWL 2 DL ontologies can include only the specified datatypes, facets and values.
</li><li> The definition of <span class="nonterminal">HasKey</span> axioms was fixed to make it clear that each such axiom must involve at least one property.
</li><li> The restrictions in <a href="#Datatypes" title="">Section 5.2</a> on the usage of datatypes in an OWL 2 DL ontology were clarified.
</li><li> The restrictions in <a href="#Literals" title="">Section 5.7</a> on the allowed lexical forms of literals were weakened to apply to OWL 2 DL ontologies only.
</li><li> The restrictions in <a href="#Datatype_Restrictions" title="">Section 7.5</a> on the allowed facets in facet restrictions were weakened to apply to OWL 2 DL ontologies only.
</li><li> The restrictions in <a href="#The_Restrictions_on_the_Axiom_Closure" title="">Section 11.2</a> on the usage of datatypes were rephrased for clarity.
</li><li> The restrictions in <a href="#The_Restrictions_on_the_Axiom_Closure" title="">Section 11.2</a> on the usage of anonymous individuals were rephrased for clarity.
</li><li> Sundry small editorial changes were made.
</li></ul>
<a name="Changes_Since_Last_Call"></a><h3> <span class="mw-headline">14.3  Changes Since Last Call </span></h3>
<p>This section summarizes the changes to this document since the <a class="external text" href="http://www.w3.org/TR/2009/WD-owl2-syntax-20090421/" title="http://www.w3.org/TR/2009/WD-owl2-syntax-20090421/">Last Call Working Draft of 21 April, 2009</a>.
</p>
<ul><li> Per the warning in an "at-risk" comment, the name of <i>owl:dateTime</i> was changed to <i>xsd:dateTime</i> to conform to the name that will be part of XML Schema.
</li><li> The name of rdf:text was changed to rdf:PlainLiteral.
</li><li> Two of the examples were fixed.
</li><li> Some minor editorial changes were made.
</li></ul>
</div>
<a name="Acknowledgments"></a><h2> <span class="mw-headline">15  Acknowledgments </span></h2>
<p>The starting point for the development of OWL 2 was the <a class="external text" href="http://www.w3.org/Submission/2006/10/" title="http://www.w3.org/Submission/2006/10/">OWL1.1 member submission</a>, itself a result of user and developer feedback, and in particular of information gathered during the <a class="external text" href="http://www.webont.org/owled/" title="http://www.webont.org/owled/">OWL Experiences and Directions (OWLED) Workshop series</a>. The working group also considered <a class="external text" href="http://www.w3.org/2001/sw/WebOnt/webont-issues.html" title="http://www.w3.org/2001/sw/WebOnt/webont-issues.html">postponed issues</a> from the <a class="external text" href="http://www.w3.org/2004/OWL/" title="http://www.w3.org/2004/OWL/">WebOnt Working Group</a>.
</p><p>This document has been produced by the OWL Working Group (see below), and its contents reflect extensive discussions within the Working Group as a whole.
The editors extend special thanks to
Bernardo Cuenca Grau (Oxford University Computing Laboratory),
Ivan Herman (W3C/ERCIM),
Mike Smith (Clark &amp; Parsia) and
Vojtech Svatek (K-Space)
for their thorough reviews.
</p><p>The regular attendees at meetings of the OWL Working Group at the time of publication of this document were:
Jie Bao (RPI),
Diego Calvanese (Free University of Bozen-Bolzano),
Bernardo Cuenca Grau (Oxford University Computing Laboratory),
Martin Dzbor (Open University),
Achille Fokoue (IBM Corporation),
Christine Golbreich (Universit&eacute; de Versailles St-Quentin and LIRMM),
Sandro Hawke (W3C/MIT),
Ivan Herman (W3C/ERCIM),
Rinke Hoekstra (University of Amsterdam),
Ian Horrocks (Oxford University Computing Laboratory),
Elisa Kendall (Sandpiper Software),
Markus Kr&ouml;tzsch (FZI),
Carsten Lutz (Universit&auml;t Bremen),
Deborah L. McGuinness (RPI),
Boris Motik (Oxford University Computing Laboratory),
Jeff Pan (University of Aberdeen),
Bijan Parsia (University of Manchester),
Peter F. Patel-Schneider (Bell Labs Research, Alcatel-Lucent),
Sebastian Rudolph (FZI),
Alan Ruttenberg (Science Commons),
Uli Sattler (University of Manchester),
Michael Schneider (FZI),
Mike Smith (Clark &amp; Parsia),
Evan Wallace (NIST),
Zhe Wu (Oracle Corporation), and
Antoine Zimmermann (DERI Galway).
We would also like to thank past members of the working group:
Jeremy Carroll,
Jim Hendler,
Vipul Kashyap.
</p>
<a name="References"></a><h2> <span class="mw-headline">16  References </span></h2>
<a name="Normative_References"></a><h3> <span class="mw-headline">16.1  Normative References </span></h3>
<dl><dt> <span id="ref-bcp-47">[BCP 47]</span>
</dt><dd> <cite><a class="external text" href="http://www.rfc-editor.org/rfc/bcp/bcp47.txt" title="http://www.rfc-editor.org/rfc/bcp/bcp47.txt">BCP 47 - Tags for Identifying Languages</a></cite>. A. Phillips and M. Davis, eds.  IETF, September 2006. http://www.rfc-editor.org/rfc/bcp/bcp47.txt
</dd><dt> <span id="ref-iso-8601-2004">[ISO 8601:2004]</span>
</dt><dd> <cite>ISO 8601:2004. Representations of dates and times.</cite> ISO (International Organization for Standardization).
</dd><dt> <span id="ref-iso-iec-10646">[ISO/IEC 10646]</span>
</dt><dd> <cite>ISO/IEC 10646-1:2000. Information technology &mdash; Universal Multiple-Octet Coded Character Set (UCS) &mdash; Part 1: Architecture and Basic Multilingual Plane and ISO/IEC 10646-2:2001. Information technology &mdash; Universal Multiple-Octet Coded Character Set (UCS) &mdash; Part 2: Supplementary Planes, as, from time to time, amended, replaced by a new edition or expanded by the addition of new parts. [Geneva]: International Organization for Standardization.</cite> ISO (International Organization for Standardization).
</dd><dt> <span id="ref-rfc-2119">[RFC 2119]</span>
</dt><dd> <cite><a class="external text" href="http://www.ietf.org/rfc/rfc2119.txt" title="http://www.ietf.org/rfc/rfc2119.txt">RFC 2119: Key words for use in RFCs to Indicate Requirement Levels</a></cite>. Network Working Group, S. Bradner. IETF, March 1997, http://www.ietf.org/rfc/rfc2119.txt
</dd><dt> <span id="ref-rfc-3629">[<a class="external" href="http://tools.ietf.org/html/rfc3629" title="http://tools.ietf.org/html/rfc3629">RFC 3629</a>]</span>
</dt><dd> <cite><a class="external text" href="http://www.ietf.org/rfc/rfc3629.txt" title="http://www.ietf.org/rfc/rfc3629.txt">RFC 3629: UTF-8, a transformation format of ISO 10646</a></cite>.  F. Yergeau.  IETF, November 2003, http://www.ietf.org/rfc/rfc3629.txt
</dd><dt> <span id="ref-rfc-3987">[RFC 3987]</span>
</dt><dd> <cite><a class="external text" href="http://www.ietf.org/rfc/rfc3987.txt" title="http://www.ietf.org/rfc/rfc3987.txt">RFC 3987: Internationalized Resource Identifiers (IRIs)</a></cite>. M. Duerst and M. Suignard. IETF, January 2005, http://www.ietf.org/rfc/rfc3987.txt
</dd><dt> <span id="ref-rdf-concepts">[RDF Concepts]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/">Resource Description Framework (RDF): Concepts and Abstract Syntax</a></cite>. Graham Klyne and Jeremy J. Carroll, eds. W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.  Latest version available as http://www.w3.org/TR/rdf-concepts/.
</dd><dt> <span id="ref-rdf-testcases">[RDF Test Cases]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/">RDF Test Cases</a></cite>. Jan Grant and Dave Beckett, eds.  W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/.  Latest version available as http://www.w3.org/TR/rdf-testcases/.
</dd><dt> <span id="ref-rdf-plain-literal">[RDF:PLAINLITERAL]</span>
</dt><dd><span><cite><a href="http://www.w3.org/TR/2009/REC-rdf-plain-literal-20091027/"><span>rdf:PlainLiteral: A Datatype for RDF Plain Literals</span></a></cite> Jie Bao, Sandro Hawke, Boris Motik, Peter F. Patel-Schneider, Axel Polleres, eds. W3C Recommendation, 27 October 2009, <a href="http://www.w3.org/TR/2009/REC-rdf-plain-literal-20091027/">http://www.w3.org/TR/2009/REC-rdf-plain-literal-20091027/</a>.  Latest version available at <a href="http://www.w3.org/TR/rdf-plain-literal-1/">http://www.w3.org/TR/rdf-plain-literal-1/</a>.</span></dd><dt> <span id="ref-sparql">[SPARQL]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/" title="http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/">SPARQL Query Language for RDF</a></cite>. Eric Prud'hommeaux and Andy Seaborne, eds. W3C Recommendation, 15 January 2008, http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.  Latest version available as http://www.w3.org/TR/rdf-sparql-query/.
</dd><dt> <span id="ref-uml">[UML]</span>
</dt><dd> <cite><a class="external text" href="http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/" title="http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/">OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2</a></cite>. Object Management Group, OMG Available Specification, November 2007, http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.
</dd><dt> <span id="ref-unicode">[UNICODE]</span>
</dt><dd> <cite><a class="external text" href="http://www.unicode.org/unicode/standard/" title="http://www.unicode.org/unicode/standard/">The Unicode Standard</a></cite>. The Unicode Consortium, Version 5.1.0, ISBN 0-321-48091-0, as updated from time to time by the publication of new versions. (See <a class="external free" href="http://www.unicode.org/unicode/standard/versions/" title="http://www.unicode.org/unicode/standard/versions/">http://www.unicode.org/unicode/standard/versions/</a> for the latest version and additional information on versions of the standard and of the Unicode Character Database).
</dd><dt> <span id="ref-xml">[XML]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2008/REC-xml-20081126/" title="http://www.w3.org/TR/2008/REC-xml-20081126/">Extensible Markup Language (XML) 1.0 (Fifth Edition)</a></cite>. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Fran&ccedil;ois Yergeau, eds. W3C Recommendation, 26 November 2008, http://www.w3.org/TR/2008/REC-xml-20081126/.  Latest version available as http://www.w3.org/TR/xml/.
</dd><dt> <span id="ref-xml-schema-datatypes">[XML Schema Datatypes]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/" title="http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/">XML Schema Part 2: Datatypes Second Edition</a></cite>. Paul V. Biron, and Ashok Malhotra, eds. W3C Recommendation 28 October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. Latest version available as http://www.w3.org/TR/xmlschema-2/. This reference is to be considered a reference to <a class="external text" href="http://www.w3.org/TR/xmlschema11-2/" title="http://www.w3.org/TR/xmlschema11-2/">XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</a> upon its expected publication as a W3C Recommendation (see <a href="http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/#XML_Schema_Datatypes" title="Conformance">Section 2.3</a> in OWL 2 Conformance). The (non-normative) version of the XSD 1.1 document available at publication time is the <a class="external text" href="http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/" title="http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/">30 April 2009 Candidate Recommendation</a>.
</dd></dl>
<a name="Nonnormative_References"></a><h3> <span class="mw-headline">16.2  Nonnormative References </span></h3>
<dl><dt> <span id="ref-description-logics">[Description Logics]</span>
</dt><dd> <a class="external text" href="http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521876254" title="http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521876254"><cite>The Description Logic Handbook: Theory, Implementation, and Applications, second edition</cite></a>. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, eds. Cambridge University Press, 2007.  Also see the <a class="external text" href="http://dl.kr.org/" title="http://dl.kr.org/"><cite>Description Logics Home Page</cite></a>.
</dd><dt> <span id="ref-dl-safe">[DL-Safe]</span>
</dt><dd> <cite><a class="external text" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B758F-4GDSF2D-1&amp;_user=126524&amp;_coverDate=07%2F31%2F2005&amp;_alid=755096660&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_cdi=12925&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_ct=1&amp;_acct=C000010360&amp;_version=1&amp;_urlVersion=0&amp;_userid=126524&amp;md5=3044e0a4ab4fa6c18c571c4431632751" title="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B758F-4GDSF2D-1&amp;_user=126524&amp;_coverDate=07%2F31%2F2005&amp;_alid=755096660&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_cdi=12925&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_ct=1&amp;_acct=C000010360&amp;_version=1&amp;_urlVersion=0&amp;_userid=126524&amp;md5=3044e0a4ab4fa6c18c571c4431632751">Query Answering for OWL-DL with Rules</a></cite>. Boris Motik, Ulrike Sattler and Rudi Studer. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41&ndash;60, 2005.
</dd><dt> <span id="ref-mime-consistency">[MIME Consistency]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/2001/tag/2004/0430-mime" title="http://www.w3.org/2001/tag/2004/0430-mime">Internet Media Type registration, consistency of use</a></cite>. Tim Bray, ed. W3C TAG Finding, 30 April 2004.
</dd><dt> <span id="ref-mof">[MOF]</span>
</dt><dd> <cite><a class="external text" href="http://www.omg.org/spec/MOF/2.0/PDF/" title="http://www.omg.org/spec/MOF/2.0/PDF/">Meta Object Facility (MOF) Core Specification, version 2.0</a></cite>. Object Management Group, OMG Available Specification January 2006, http://www.omg.org/spec/MOF/2.0/PDF/.
</dd><dt> <span id="ref-owl-2-rdf-mapping">[OWL 2 RDF Mapping]</span>
</dt><dd><span><cite><a href="http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/">OWL 2 Web Ontology Language: <span>Mapping to RDF Graphs</span></a></cite> Peter F. Patel-Schneider, Boris Motik, eds. W3C Recommendation, 27 October 2009, <a href="http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/">http://www.w3.org/TR/2009/REC-owl2-mapping-to-rdf-20091027/</a>.  Latest version available at <a href="http://www.w3.org/TR/owl2-mapping-to-rdf/">http://www.w3.org/TR/owl2-mapping-to-rdf/</a>.</span></dd><dt> <span id="ref-owl-2-direct-semantics">[OWL 2 Direct Semantics]</span>
</dt><dd><span><cite><a href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/">OWL 2 Web Ontology Language: <span>Direct Semantics</span></a></cite> Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau, eds. W3C Recommendation, 27 October 2009, <a href="http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/">http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/</a>.  Latest version available at <a href="http://www.w3.org/TR/owl2-direct-semantics/">http://www.w3.org/TR/owl2-direct-semantics/</a>.</span></dd><dt> <span id="ref-owl-2-rdf-semantics">[OWL 2 RDF-Based Semantics]</span>
</dt><dd><span><cite><a href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/">OWL 2 Web Ontology Language: <span>RDF-Based Semantics</span></a></cite> Michael Schneider, editor. W3C Recommendation, 27 October 2009, <a href="http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/">http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/</a>.  Latest version available at <a href="http://www.w3.org/TR/owl2-rdf-based-semantics/">http://www.w3.org/TR/owl2-rdf-based-semantics/</a>.</span></dd><dt> <span id="ref-owl-2-conformance">[OWL 2 Conformance]</span>
</dt><dd><span><cite><a href="http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/">OWL 2 Web Ontology Language: <span>Conformance</span></a></cite> Michael Smith, Ian Horrocks, Markus Kr&ouml;tzsch, Birte Glimm, eds. W3C Recommendation, 27 October 2009, <a href="http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/">http://www.w3.org/TR/2009/REC-owl2-conformance-20091027/</a>.  Latest version available at <a href="http://www.w3.org/TR/owl2-conformance/">http://www.w3.org/TR/owl2-conformance/</a>.</span></dd><dt> <span id="ref-owl-2-xml-serialization">[OWL 2 XML Serialization]</span>
</dt><dd><span><cite><a href="http://www.w3.org/TR/2009/REC-owl2-xml-serialization-20091027/">OWL 2 Web Ontology Language: <span>XML Serialization</span></a></cite> Boris Motik, Bijan Parsia, Peter F. Patel-Schneider, eds. W3C Recommendation, 27 October 2009, <a href="http://www.w3.org/TR/2009/REC-owl2-xml-serialization-20091027/">http://www.w3.org/TR/2009/REC-owl2-xml-serialization-20091027/</a>.  Latest version available at <a href="http://www.w3.org/TR/owl2-xml-serialization/">http://www.w3.org/TR/owl2-xml-serialization/</a>.</span></dd><dt> <span id="ref-rdf-syntax">[RDF Syntax]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/" title="http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/">RDF/XML Syntax Specification (Revised)</a></cite>. Dave Beckett, ed. W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.  Latest version available as http://www.w3.org/TR/rdf-syntax-grammar/.
</dd><dt> <span id="ref-register-mime">[Register MIME]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/2002/06/registering-mediatype" title="http://www.w3.org/2002/06/registering-mediatype">Register an Internet Media Type for a W3C Spec</a></cite>. Philippe Le H&eacute;garet, ed. W3C Guidebook.
</dd><dt> <span id="ref-rfc-3986">[<a class="external" href="http://tools.ietf.org/html/rfc3986" title="http://tools.ietf.org/html/rfc3986">RFC 3986</a>]</span>
</dt><dd> <cite><a class="external text" href="http://www.ietf.org/rfc/rfc3986.txt" title="http://www.ietf.org/rfc/rfc3986.txt">RFC 3986: Uniform Resource Identifier (URI): Generic Syntax</a></cite>. T. Berners-Lee, R. Fielding, and L. Masinter. IETF, January 2005, http://www.ietf.org/rfc/rfc3986.txt
</dd><dt> <span id="ref-sroiq">[SROIQ]</span>
</dt><dd> <cite><a class="external text" href="http://www.cs.man.ac.uk/~sattler/publications/sroiq-TR.pdf" title="http://www.cs.man.ac.uk/~sattler/publications/sroiq-TR.pdf">The Even More Irresistible SROIQ</a></cite>. Ian Horrocks, Oliver Kutz, and Uli Sattler. In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006). AAAI Press, 2006.
</dd><dt> <span id="ref-unisec">[UNISEC]</span>
</dt><dd> <cite><a class="external text" href="http://www.unicode.org/reports/tr36/tr36-7.html" title="http://www.unicode.org/reports/tr36/tr36-7.html">Unicode Security Considerations</a></cite>.  Mark Davis and Michel Suignard.  Unicode technical report 36, 23 July 2008, http://www.unicode.org/reports/tr36/tr36-7.html.  Latest version available as http://www.unicode.org/reports/tr36/.
</dd><dt> <span id="ref-xml-namespaces">[XML Namespaces]</span>
</dt><dd> <cite><a class="external text" href="http://www.w3.org/TR/2006/REC-xml-names-20060816/" title="http://www.w3.org/TR/2006/REC-xml-names-20060816/">Namespaces in XML 1.0 (Second Edition)</a></cite>. Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, eds. W3C Recommendation, 16 August 2006, http://www.w3.org/TR/2006/REC-xml-names-20060816/. Latest version available as http://www.w3.org/TR/REC-xml-names/.
</dd></dl>


</body>
</html>